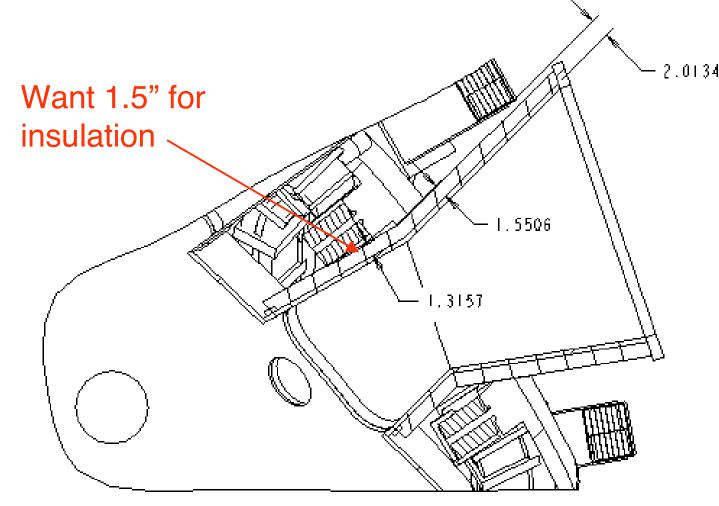

WBS3 Diagnostics Planning Update

Presented by B. Stratton with input from T. Brown, M. Cole, E. Fredrickson, R. Feder, P. Goranson, L. Guttadora, D. Johnson, E. Lazarus, A. Nagy, B. Nelson, H. Takahasi, and M. Zarnstorff

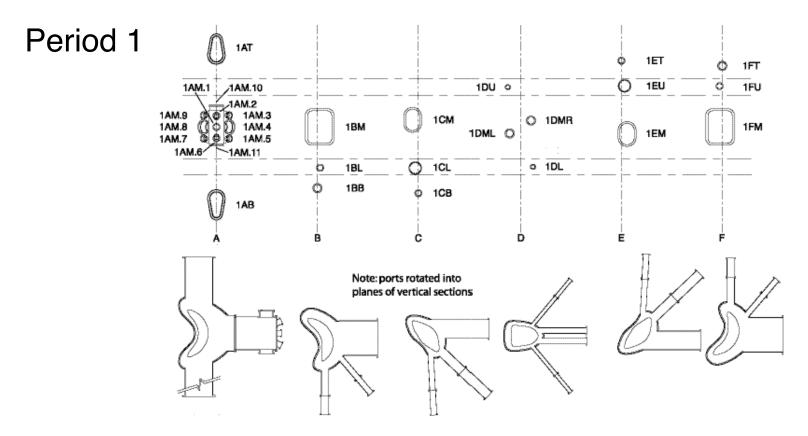
> NCSX Engineering Telecon 7-30-03

Topics

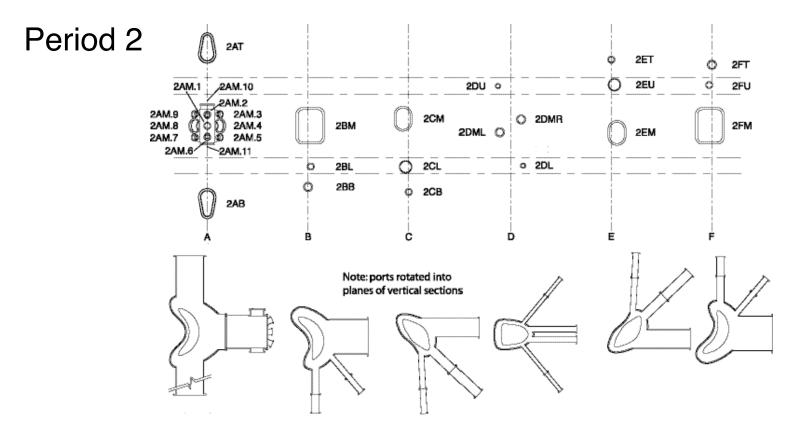

- 1. Progress on vacuum vessel port modifications relevant to diagnostics
- 2. Proposed port naming scheme and diagnostics port assignments
- 3. Electrical feedthrough requirements for diagnostics
- 4. Concepts for equilibrium magnetics diagnostics
- 5. In-vessel space requirements for SXR arrays

Changes to VV design affecting diagnostics

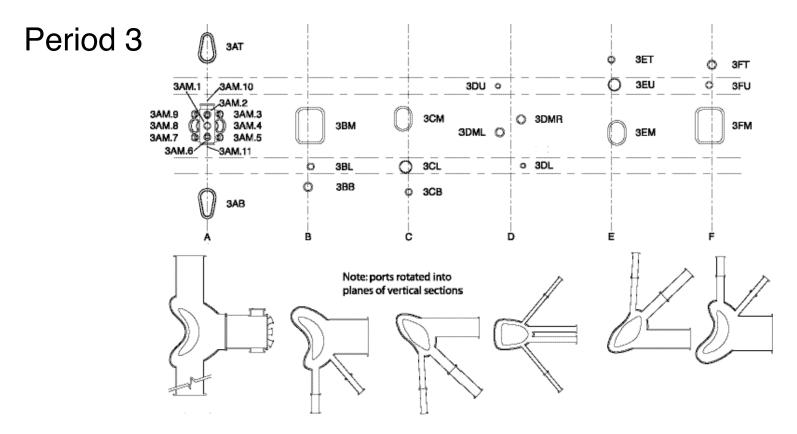
- Several small ports eliminated
 - No major impact on diagnostics
- Changed diameter of some circular ports
 - Increase diameters of ports 2 and 5? (M. Cole)
- Flared port 4 incorporated into VV model
 - Reshape top of port to provide clearance for modular coil insulation-do when changes to coils are finished (M. Cole)
- Can port 10 be flared as well? (R. Feder)
- Reviewed diagnostics port assignments in light of port changes
- Proposing new port naming scheme


Port 4 sections 8-12 inches above midplane show small interference with insulation

M. Cole

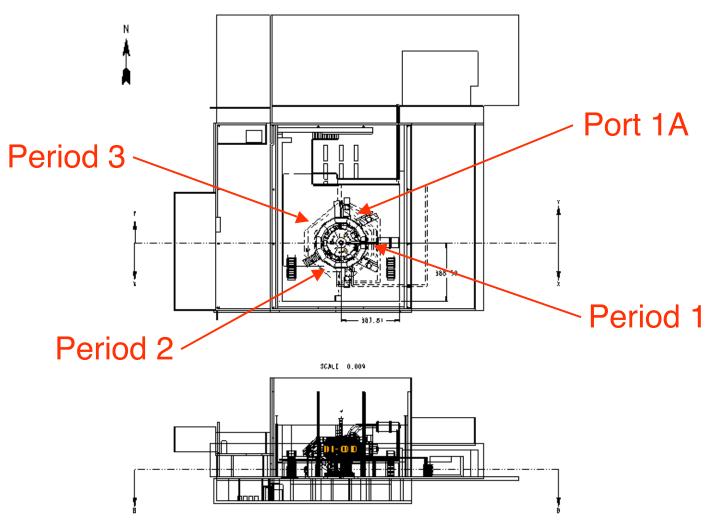

Proposed Port Naming Scheme

- Take advantage of repeated port pattern in each vacuum vessel period:
- Port names look like 1AM.3
 - 1. Leading number denotes period (1, 2, 3)
 - 2. First letter denotes bay within period (A...F)
 - Second letter denotes vertical position within bay (T: top, U: upper, M: midplane, L: lower, B: bottom)
 - 4. For port covers that have more than one port, number after period denotes specific port on port cover
- Following three slides show concept along with present diagnostics port assignments
 - Make into a controlled document


	A				В		С		D				E	F	
		div. bolometer											equilib. magn.		
		1AT div. camera								-		1ET	(120 MI)	1FT	
									Mirnov coils (90						Mirnov (20 tp)
		1AM.10						1DU	tp)			1EU		1FU	thermo (15 tp)
	thermocouples														
1AM.9	(45 tp)	1AM.2	1AM.3												
	heating neutral	1 mm	heating neutral		fluctuation diag.				SXR arrays (180		SXR arrays (180		1-D filtered (Hα,		CHERS/MSE &
1AM.8	beam	1AM.1 interferometer	1AM.4 beam	1BM	(BES)	1CM		1DML	tp)	1DMR	tp)	1EM	C) camera	1FM	He CHERS
	fast pressure	divertor UV													
1AM.7	gauges	1AM.6 spectrometer	1AM.5												
		vacuum pump,			core UV		visible				fast pressure				
		1AM.11 ion gauge		1BL	spectroscopy	1CL	spectroscopy			1DL	gauges				
		div. Bolometer			glow probe & 2		equilib. magn.								
		1AB div. IR camera		1BB	filaments (5 c)	1CB	(120 MI)								

Electrical feedthroughs: tp=twisted pair, MI=mineral insulated cable, c= single conductor

Α				В		С	D				Е	F		
	MPTS dump, 2AT divertor TS										2ET	equilib. magn. (120 MI)	2FT	fluctuation diag. (HIBP?)
	2AM.10						2DU	Mirnov coils (90 tp)]		2EU	(120 141)	2FT	Mirnov coils (20 tp)
thermocouples	visible 2AM.2 filterscope	2AM.3					200	цу)	J		210		210	τρ)
2AM.8 visible camera	diagnostic 2AM.1 neutral beam	2AM.4 visible camera	2BM	MPTS view	2CM	e-beam mapping probe	2DML	SXR arrays (180 tp)	2DMR	SXR arrays (180 tp)	2EM	visible filterscopes	2FM	fluctuation diag. (HIBP?)
fast pressure 2AM.7 gauges	visible 2AM.6 filterscopes	divertor visible 2AM.5 camera				·		·						
	vacuum pump, 2AM.11ion gauge		2BL		2CL	fast scanning edge probe			2DL	fast pressure gauges				
	MPTS laser, 2AB divertor TS		2BB	glow probe & 2 filaments (5 c)	2CB	equilib. magn. (120 MI)								

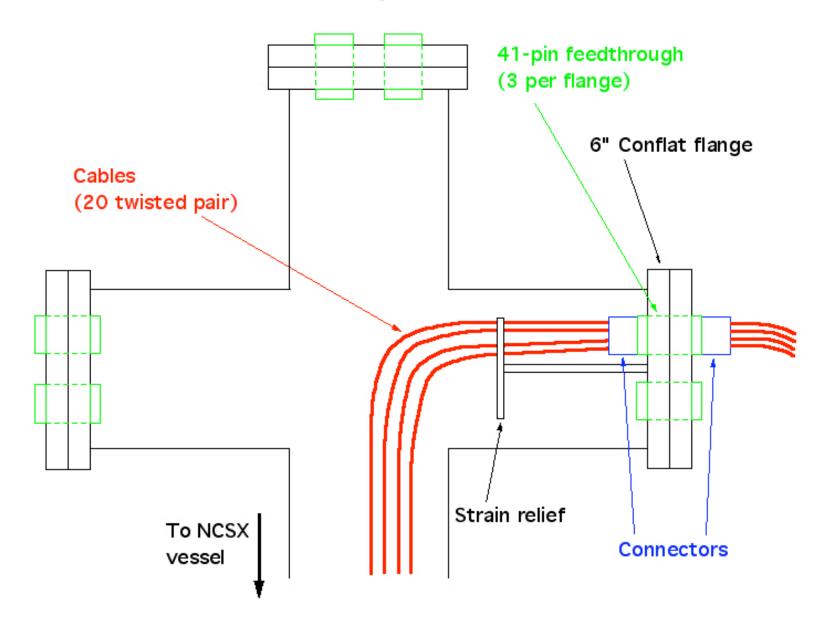

Electrical feedthroughs: tp=twisted pair, MI=mineral insulated cable, c= single conductor

	А		В	С		D			E		F	
	FIR 3AT interf./polarim.								3ET	equilib. magn. (120 MI)	3FT	
	31M.10				1DU	Mirnov (90 tp) thermo. (30 tp)			3EU	(120 101)	3FU	Mirnov coils (20 tp)
thermo. (15 tp) 3AM.9 Lang. Pr. (50 c)		3AM.3 fast IR camera										
3AM.8 visible camera	X-ray crystal 3AM.1 spectrometer	fast tang. X-ray 3AM,4 camera	neutral particle 3BM analyzer	3CM	1DML	SXR arrays (180 tp)	1DMR	SXR arrays (180 tp)	3EM	fluctuation diagnostic	3FM	e-beam mapping target
fast pressure 3AM.7 gauges	X-ray crystal 3AM.6 spectrometer	3AM.5				·				-		-
	vacuum pump, 3AM.11ion gauge FIR 3AB interf./polarim.		fast ion loss <u>3BL</u> probe glow probe & 2 <u>3BB</u> filaments (5 c)	movable <u>3CL</u> Langmiur probe equilib. magn. <u>3CB</u> (120 MI)			1DL	fast pressure gauges				

Electrical feedthroughs: tp=twisted pair, MI=mineral insulated cable, c= single conductor

Propose labeling ports clockwise starting on north side of machine

SE740-001//514 05-19-03


Large number of electrical feedthroughs needed for diagnostics (Liquid and gas feedthroughs not included)

Diagnostic	# Connections	Comments
Equilibrium magnetics: 360 probes (120 per period)	720	
Mirnov coils: 126 high-freq. poloidal (2-axis) 36 high-freq. Toroidal (2-axis) 6 low-freq. (locked-mode) Total Mirnov coils	504 144 12 660	252 connections if 1-axis 72 connections if 1-axis total=336 if 1-axis high-freq. coils
SXR Arrays: phase 3: 160 channels (8 20-channel arrays) phase 4: 160 channels (8 20-channel arrays) Total SXR arrays	360 360 720	45 connections per 20-channel array (IRD AXUV-20EL chip)
GDC probes & filaments: 1 glow probe and 2 filaments per period	15	High current feedthroughs required
Thermocouples: 30 at v=0 & 30 at v= $1/2$ cross sections in 1 period 15 per NB strike point X 4 strike points=60 Total thermocouples	120 120 240	Conservative estimate of total-not day 1 number
Langmiur probes: 50 probes	50	-
Total electrical feedthrough connections:	2405	total=2081 if 1-axis high-freq. coils

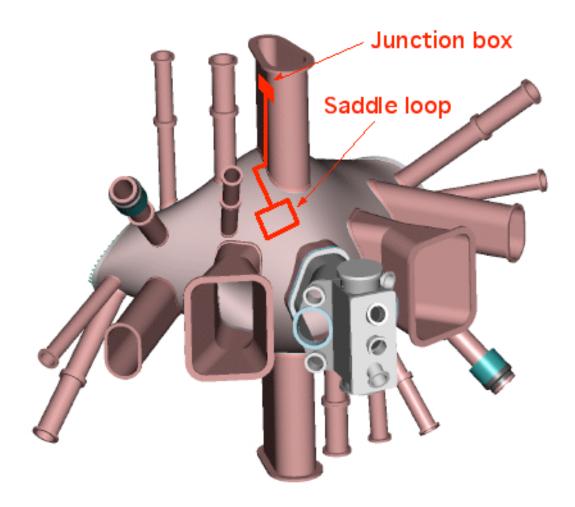
Diagnostics electrical feedthrough plan

- Can use existing ports and still meet other diagnostic port needs
 - Alternative of putting feedthroughs on blind ports has drawback that repair/modification on outside is extremely difficult
- Large number of electrical connections can be accommodated on crosses or tees using commercial feedthroughs and conflat vacuum hardware
- Use connectorized feedthroughs to simplify assembly and make repair/modification easier
 - Possible exception: mineral-insulated cable for equilibrium magnetics diagnostics may not use connectors on feedthroughs
- Bundle and strain-relieve cables on both sides of feedthroughs
- Most demanding case is 180 twisted pair cables through 6" O. D. port for SXR arrays: for 1/8" diameter cable, 10% of port cross sectional area is occupied by cables-less in other cases
- 9 41-pin circular feedthroughs (1.5" O. D) can accommodate 180 twisted pair cables-mount 3 on each arm of vacuum cross

Feedthrough tee concept

Equilibrium magnetics

- Number of sensors has increased since PDR; modeling study to be completed next winter will provide specific numbers (E. Lazarus)
- Generated ICDs defining requirements for:
 - Co-wound loops on modular and conventional coils
 ⇒To be installed as part of coil fabrication
 - Installation of saddle loops on outer surface of vacuum vessel


 \Rightarrow Issue: clearance with cooling tubes

- Space envelopes for coils inside vessel
 ⇒Issue: clearance between VV and liner
- Need to re-evaluate installation schedule for internal/external sensors
- Have investigated concepts for
 - Internal coils
 - External saddle loops

Mineral-insulated cable for equilibrium magnetic sensors

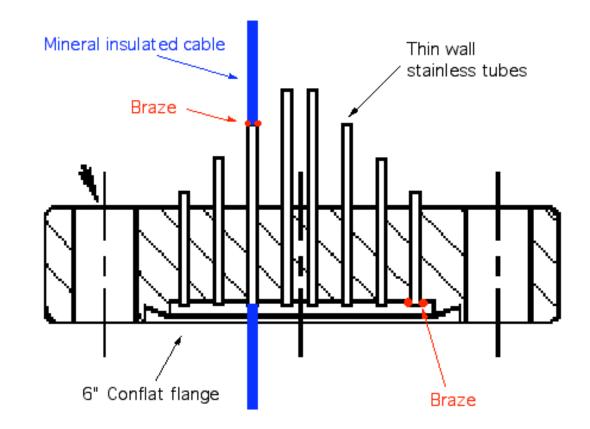
- MI cable is coax with solid metal outer jacket and MgO insulator
- Vacuum compatible and tolerant of temperature extremes
- Very reliable in DIII-D internal coils
- Variety of diameters: 1.0-1.5 mm (40-61 mil) used on DIII-D,
 0.25 mm (10 mil) diameter used at RFX
- MgO insulator is hydroscopic so ends of cable should be sealed by epoxy potting
- On DIII-D, vacuum seal is made by brazing MI cable to stainless tubes welded into vacuum flange
- Bring terminated MI cables to junction boxes for transition to conventional cables.

External saddle loops

Installation of external saddle loops

- Saddle loops will be installed before installation of cooling tubes on exterior of vessel
- Use template with holes to mark corners of loops
- Attach studs at corners
- Run MI cable around studs to form loop
- Run leads to junction boxes on vertical ports and terminate
- Spot weld thin tabs over MI cable to hold in place
- Install cooling tubes leaving 1/16 inch gap to vessel
- Fill gap with conductive epoxy
- Installation schedule is on critical path; needs to be re-evaluated

Space envelopes for internal coils


- Before starting design of internal coils, need to know available radial space between inside surface of vacuum vessel and liner. Could be 1 cm or less in some places.
- Compact coils are possible
- May need two coil designs with different radial dimensions

DIII-D magnetic probes

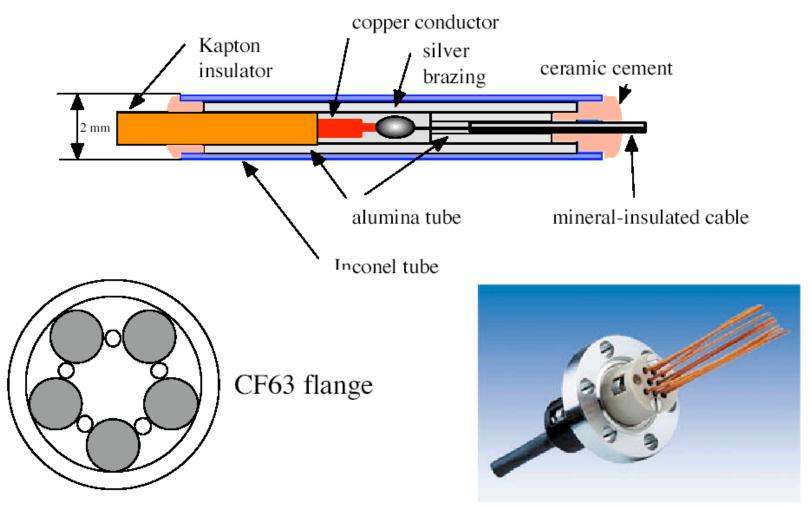
- Made from 1.0-1.5 mm diameter MI cable
- Sturdy design
- Radial build: 2 cm
- Probably too large for some places in NCSX

DIII-D mineral insulated cable vacuum flange

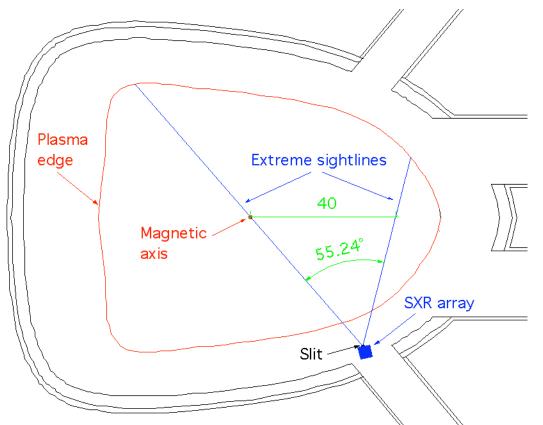
- DIII-D puts 66 MI cables on one 6" Conflat flange
- Terminate on outside using standard connectors

RFX magnetic probes are compact

G. Serianni, et al., 2002 Diagnostics Conference



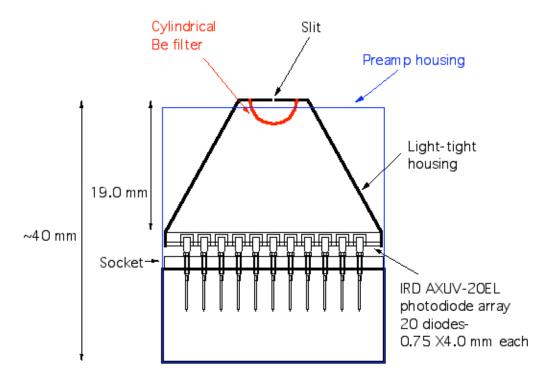
- Ceramic winding form
- Radial build is 5 mm
- 0.25 mm diameter MI cable (too fragile?)
- Transition from MI cable to conventional cable in vacuum allows use of connectorized feedthroughs


Transition from mineral-insulated cable to conventional cable

Serianni, et al.

jan

Space envelopes for SXR arrays



Preferred location for SXR arrays is near bullet-shaped cross section

 \Rightarrow maximizes spatial resolution

• Space envelope determined by desired spatial resolution, need to put preamp in secondary vacuum, and need for cooling

Compact SXR array concept

- Compact array concept requires minimum ~4 cm radial space to give 2 cm spatial resolution in plasma (6 cm radial space required for ~1 cm spatial resolution)
 - Engineering required to determine if array package can be made this small
- Sufficient radial space near vacuum vessel spacers (M. Cole)?
- Interference with RF antennas?