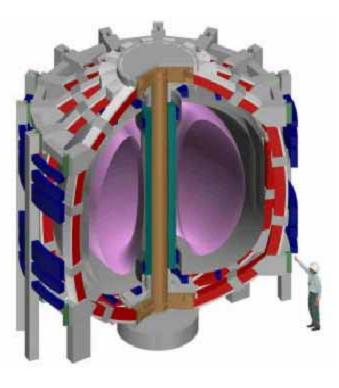


Advanced Insulation for Fusion Magnet Systems

Presented to:

Princeton Plasma Physics Laboratory

Paul E. Fabian


Lafayette, Colorado May 6, 2004

2600 Campus Drive, Suite D • Lafayette, Colorado 80026 • Phone: 303-664-0394 • www.CTD-materials.com

Outline

- Introduction to CTD
- Commercial Materials
- Current Insulation Research Programs
- New Material Development Proposals
- Additional Insulation Activities
- Discussion

3

Update on CTD

- Incorporated in 1988 to develop novel engineered materials
- Integrated Systematic Approach
 - Concurrent multi-disciplinary activities developing purpose-designed materials
 - Data, test methods, models, engineering methods

OtherBS

MS

□ PhD

- Highly skilled, multi-disciplinary staff
- Efforts leveraged by collaborations and key consultants
- 18,000 ft² state-of-the-art R&D facility in Lafayette, Colorado

Technician

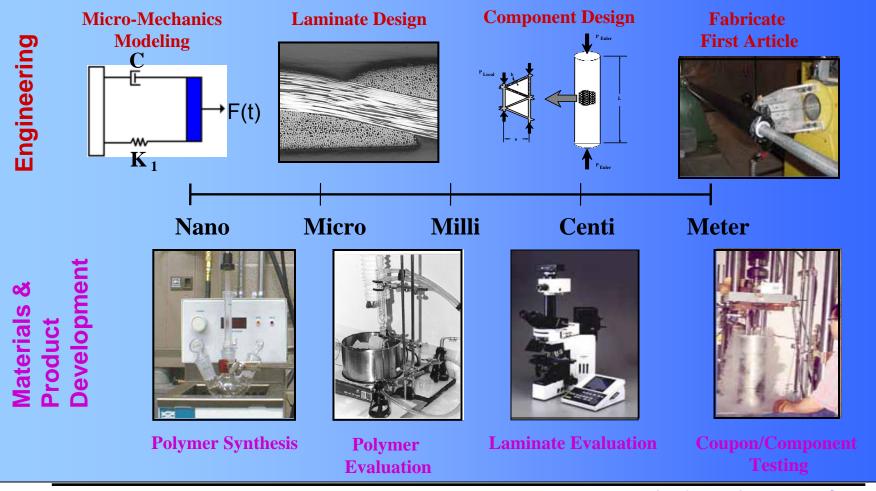
Engineering

Mat. Sci./ Processing
Chemistry

Bus. Dev./ Admin.

"Engineered Material Solutions"

CTD is a unique company where the development of original materials is fused with incisive engineering to provide innovative solutions for our customers' technology and system needs.

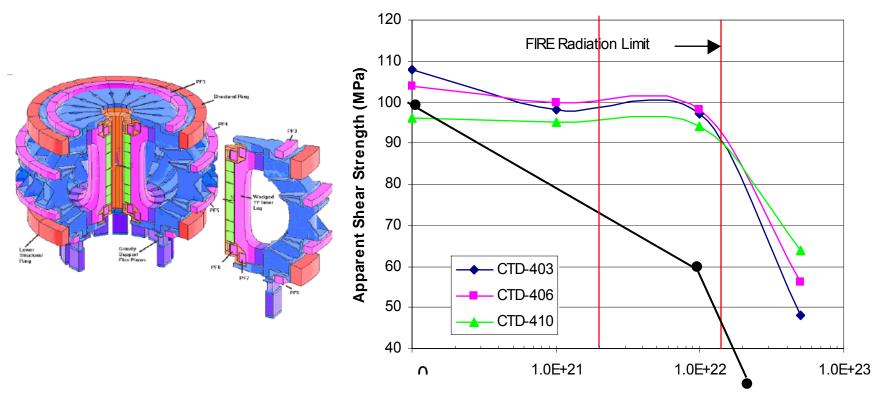

For CTD, development of new materials is an engineering tool

Product Development Tools

Define Requirements and develop conceptual component design

In the beginning...

Developed electrical insulation for superconducting magnets exposed to radiation


- Sponsored by DOE
 - Supporting fusion and high energy physics
- Developed epoxy based glassreinforced composite materials
 - Cryogenic performance
 - Resistance to radiation

- CTD's efforts
 - Formulated resin
 - Designed composite material
 - Developed evaluation tests
 - Verified insulation performance
 - Developed application process
 - Supported construction

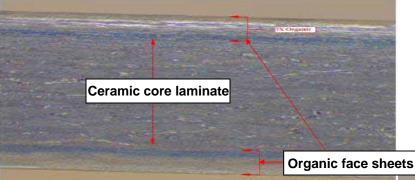
10 Fold Increase in Radiation Resistance

- Irradiation Test Results Shear
 - Cyanate Ester resins versus Epoxies
 - Tested at Liquid Nitrogen temperature

CTD Magnet Insulation History

Insulation Products

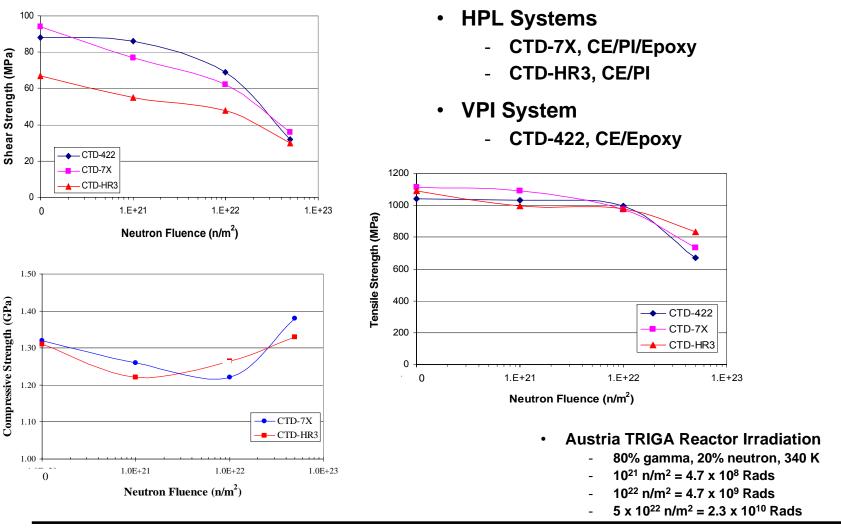
• Developing insulation to meet the needs of fusion magnets


Fabrication Method Conductor Type	Vacuum Pressure Impregnation	Pre-preg	High- Pressure Laminate	Coated Polyimide Film (Kapton)	Co- processed Ceramic Hybrid	Wet winding
Copper/NbTi	CTD-101K CTD-403 7056-BCP	CTD-115P CTD-121P CTD-10X	CTD-HR3 CTD-7X	CTD-121		CTD-521 CTD-540 CTD-422-FM6 CTD-500XA
Nb₃Sn	CTD-101K CTD-101 CTD-403 7056-BCP	CTD-115P CTD-121P CTD-15X	CTD-HR3 CTD-7X	CTD-121	CTD-1008X CTD-1012PX 7057 DX-2	CTD-521 CTD-540
HTS	CTD-101K CTD-403 CTD-528	CTD-115P CTD-121P		CTD-121		CTD-521 CTD-540

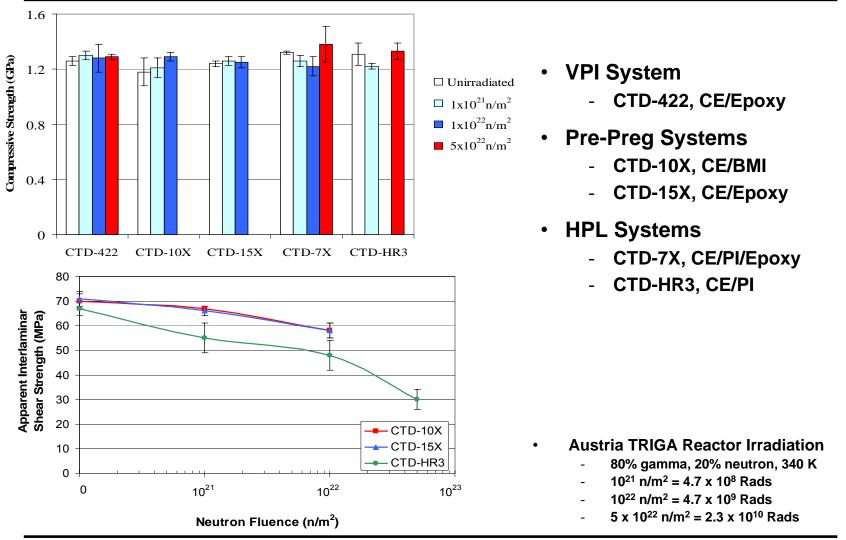
Commercial ProductDevelopmental Product	Not Available
---	---------------

Current DOE Insulation Programs

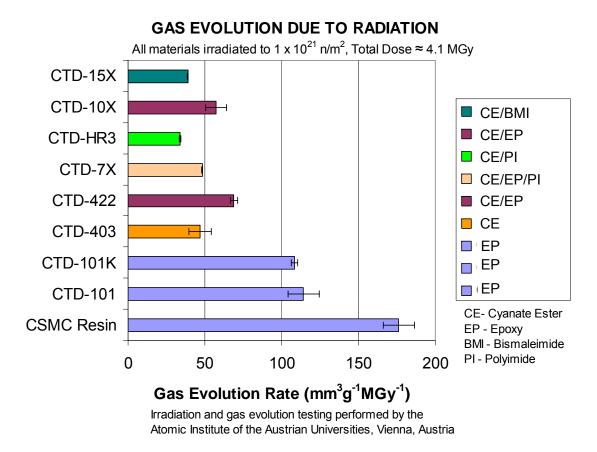
DOE Phase II SBIR – Radiation Resistant High Pressure Laminate Insulation


- Material development
 - Cyanate Esters
 - Polyimides
 - Bismaleimides
 - Ceramic Hybrids

- HPL process development
 - Pre-preg fabrication
 - High-pressure fabrication



Radiation Resistant HPL Insulation



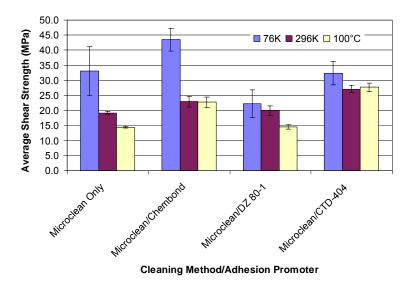
Radiation Resistant Insulation Systems

Gas Evolution Due to Irradiation

Current DOE Insulation Programs

DOE Phase II SBIR – Improved Adhesion of Insulation to Copper

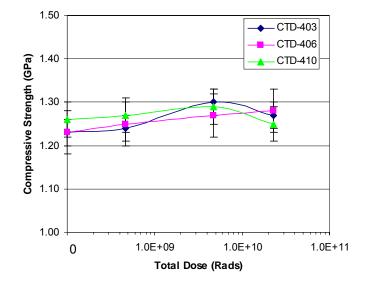
Oxidized Cu


Microclean Alkaline cleaner

Microclean cleaner/Acid etch

- Adhesive/Primer process integration
 - Surface prep/cleaning
 - In-line primer application

- Surface preparation/primer development
 - Cyanate Esters
 - Oxide layers
 - Ceramic coatings



Proposed DOE Insulation Programs

DOE Phase I SBIR – New, Low-Cost Radiation Resistant Polymer

- Cyanate ester resins most resistant to radiation of current organic
- Problem: High cost in comparison to epoxy systems
- Possible solutions
 - Dilute with epoxies cuts radiation resistance
 - Alternative chemistries with similar properties
- New polymer chemistry
 - Aromatic structure stable
 - High cross-link density
 - Thermal stability
 - Expected radiation resistance, low outgassing
 - 70% cheaper than Cyanate esters

Proposed DOE Insulation Programs

DOE Phase II SBIR – Block Copolymer Organic/Inorganic Resin

- Combination of organic and inorganic polymers
 - Inorganic converted to ceramic through chemical catalyst
 - Avoids high temperature ceramic conversion
 - Increased ceramic content provides
 - Increased operational temperature
 - Increased radiation resistance
 - Increased elastic modulus
- Adequate processing properties
 - Suitable for VPI, pre-pregs
 - Good resin flow
 - Capitalizes on Cyanate ester properties
- Good mechanical and electrical properties
 - Good low temperature properties
 - Improved properties at elevated temperatures after ceramic conversion

Block Copolymer Insulation System

	Prior to Phase I		After Phase I Development	After Phase II Development [†]	
Property/Material	Ероху	Cyanate Ester	Block Copolymer	Converted Block Copolymer	
Processing:					
Resin Type	Organic Polymer	Organic Polymer	Organic/Inorganic Polymer	Organic Polymer/Ceramic	
Viscosity	80-100 cPs	50-100 cPs	100-400 cPs	50-100 cPs	
Processing Temperature	50-80°C	30-50°C	80°C	50-80°C	
Pot-Life	8-16 h	8-16 h	12-16 h	12-16 h	
Resin Flow	Excellent	Excellent	Good	Excellent	
Mechanical @ 76 K:					
Compression Strength	1100 MPa	1200 MPa	1100 MPa	>1100 MPa	
Shear Strength	80-100 MPa	80-100 MPa	60-80 MPa	> 80-100 MPa	
Mechanical @ 373 K:					
Compression Strength	Unknown	680 MPa	300-400 MPa	>800 MPa	
Shear Strength	Unknown	50-60 MPa	30 MPa	> 80-100 MPa	
Through-Thickness					
Tensile Strength	Unknown	Unknown	Unknown	Good	
Electrical @ 76 K:					
Dielectric Strength	50-80 KV/mm	60-80 KV/mm	80-100 KV/mm	80-100 KV/mm	
Radiation Resistance:					
To 10 ⁷ Gy	Good	Excellent	Unknown	Excellent	
To 10 ⁸ Gy	Fair	Good	Unknown Unknown	Excellent	
> 10 ⁸ Gy					
> 10° Gy	Poor	Fair	Unknown	Excellent	

[†] Predicted

Proposed DOE Insulation Programs

DOE Phase II SBIR – Low Cost Ceramic Pre-preg Insulation

- Ceramic matrix resin can be co-processed with Nb₃Sn superconductor
 - Inorganic converted to ceramic during SC heat treatment
 - Uses an organic VPI resin after heat treatment for additional strength
- Formulated a lower cost ceramic matrix system
 - Pre-polymer ceramic
 - Less than half the cost of original
- Lower cost reinforcement
 - Previously used custom woven ceramic fabric tape
 - S-2 glass, Basalt reinforcement alternatives
 - 10% of ceramic tape cost
- Need improved strength
 - Fiber/matrix interface critical
 - Must be fusion compatible
 - Enable graceful failure

CTD-1012PX ceramic pre-preg as applied on FNAL half-coil

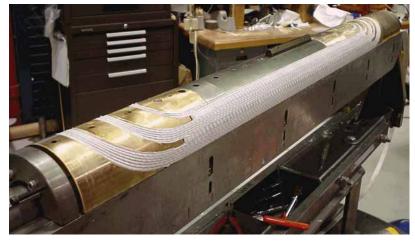
Low Cost Ceramic Pre-Preg Insulation

Material Component	Prior to Phase I	Prior to Phase I	After Phase I Development	After Phase II Development
Ceramic Matrix	CTD-1002X	CTD-1002X	7057-DX	7057-DX-2
% of Total Cost	28	37	60	40
Normalized Cost	1.00	1.00	0.40	0.40
Reinforcement*	CTD-CF-100	CTD-CF-100	CTD-GF-1X	CTD-GF-2X
	(ceramic)	(ceramic)	(S2-glass)	(S2-glass or alt.)
% of Total Cost	47	63	40	40
Normalized Cost	1.00	1.00	0.06	0.10
Interface**	B N ***	None	None	CTD-FI-X****
% of Total Cost	25	0	0	20
Normalized Cost	1.00	0.00	0.00	0.30
Compression Strength	1.00	0.60	0.52	>1.0
Shear Strength	1.00	0.15	0.17	>1.0
Total Normalized Material Cost	1.00	0.75	0.20	0.30 - 0.40

Cost of reinforcement includes custom weaving of thin tape.

** Cost of interface includes cost of application process.

*** Boron-nitride applied via chemical vapor deposition (CVD).


**** Fiber interfaces applied via liquid precursor deposition (LPD).

Predicted Values

Additional Insulation Activities

- High Energy Physics Applications
 - Fermi National Accelerator Laboratory
 - Ceramic matrix insulation systems
 - Co-processible with Nb₃Sn accelerator magnets
 - VPI resin systems
 - Lawrence Berkeley National Laboratory
 - High radiation applications, VLHC, etc.
 - Ceramic matrix insulation systems
 - VPI resin systems

FNAL half-coil fabricated using CTD-1012Px insulation system

LBNL sub-scale coil fabricated using CTD ceramic insulation and CTD-101 VPI resin

- Industrial Applications
 - NMR & MRI Magnet Fabrication
 - CTD-121P long outlife pre-preg
 - CTD-500 series refinements

Collaboration with CTD

- Cooperative research between PPPL and CTD
- Magnet Insulation Needs
 - Materials
 - Testing
 - Processing
 - Application
- Communicate Needs to Department of Energy and CTD
 - High Energy Physics and Fusion
 - Listing in SBIR Solicitations
- Collaborate with CTD on SBIR proposals

"Enabling Technology for the Magnet Industry"

Discussion

Range of Products

- VPI Systems
 - CTD-101K Widely used, low viscosity, long pot-life epoxy system
 - CTD-400 series Cyanate ester based, low viscosity, long potlife systems, highly radiation resistant
 - CTD-528 Room temperature cure system, limited pot-life
- Pre-Preg Systems
 - CTD-115P Hot-melt epoxy system, comparable to CTD-112P used on ITER CS Model Coil
 - CTD-10X New cyanate ester based hot-melt system
- High Pressure Laminate Systems
 - CTD-7X New cyanate ester based HPL system
 - CTD-HR3 Cyanate ester based System

Range of Products

- Co-Processed Ceramic Hybrid Systems
 - CTD-1008X/1002X Ceramic system used with an organic VPI system
 - CTD-1012PX Ceramic Pre-preg system used with organic VPI system
- Hand Lay-up/ Wet Winding/ Pultrusion Systems
 - CTD-500 series Room temperature cure organic resin systems
 - CTD-540 Room temperature, accelerated cure system
 - CTD-422PC Radiation resistant potting compound
- Adhesive Systems
 - CTD-620 series Filled or neat resin, good cryo adhesive
 - CTD-920 Filled system, good over large temperature range
 - CTD-900 series High temperature systems