

UNDERWRITERS LABORATORIES INC. CERTIFICATE OF REGISTRATION

Tesla Engineering Limited

Water Lane Storrington Sussex, RH20 3EA United Kingdom

with an off-site facility located at:

Churchill Industrial Estate Elenheim Road Lancing West Sussex, BN15-BUQ United Kingdom

Underwriters Laboratories Inc.® (UL) issues this certificate to the Firm named above, after assessing the Firm's quality system and finding it in compliance with

ISO 9001:2000

EN ISO 9001:2000; BS EN ISO 9001:2000; ANSI/ASQ Q9001:2000

for the following scope of registration

3679 (US) : Electronic Components, Not Elsewhere Classified

The design and manufacture of magnets and coll systems.

The off-site facility at Lancing, West Sussex performs the following function: manufacturing.

Further clanifications regarding the scope of this certificate and the applicability of ISO 9001 2000 requirements may be obtained by consulting the organization.

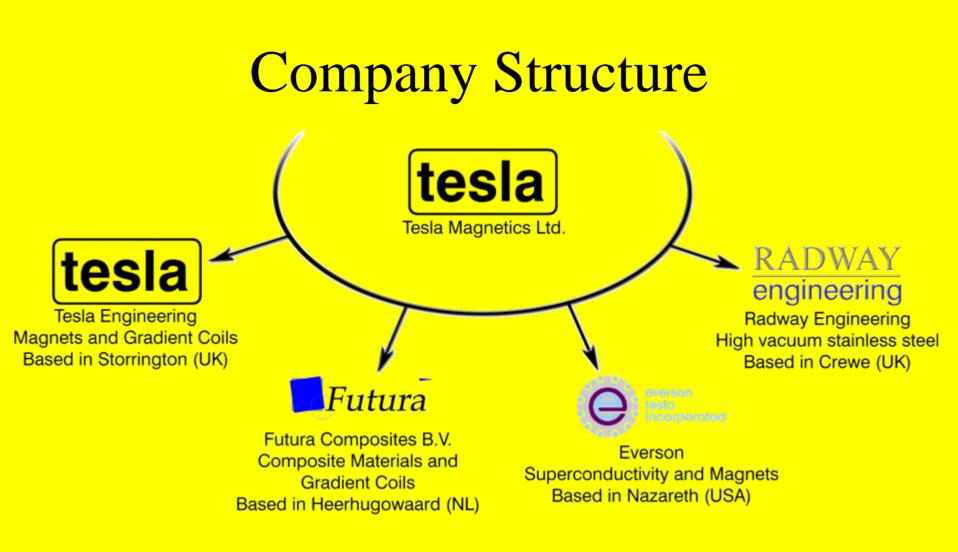
This quality system registration is included in UL's Directory of Registrated Firms and applies to the provision of goods and/or services as specified in the scope of registration from the addressies shown above. By issuance of this conflicted the firm represents that it will maritain its registration miniaccordance with the applicable requirements. This certificate is not transferable and remains the property of Underwriters Laboratories Inc. 8. File Number: A7147

Volume: 1 of 2 Original Certification Date: October 9, 1998 ISO 9001 2000 Issue Date: December 3, 2002 Revision Date: January 18, 2006 Renewal Date: October 8, 2008

Sajeev Jesudas

Chief Operating Officer

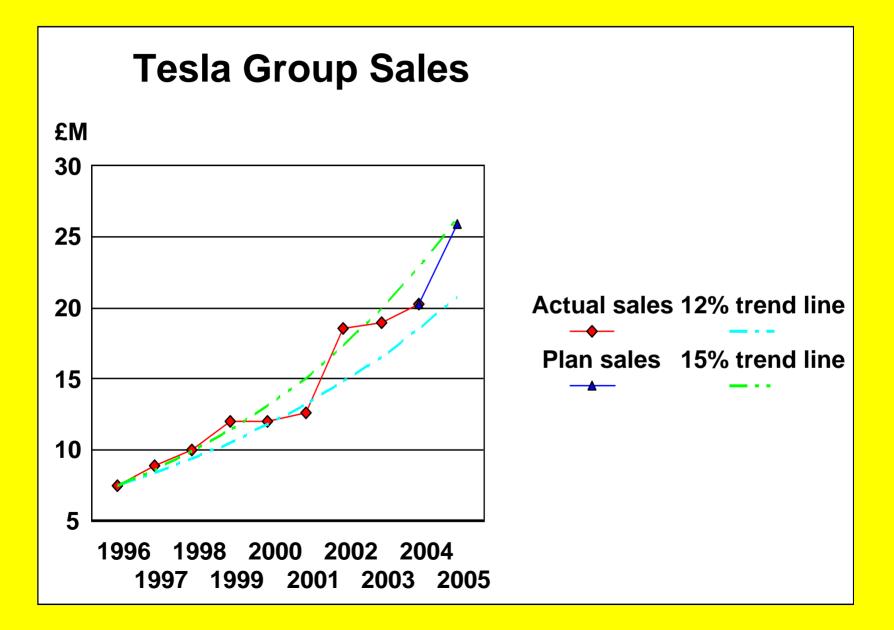
INVESTOR IN PEOPLE


This certificate records that

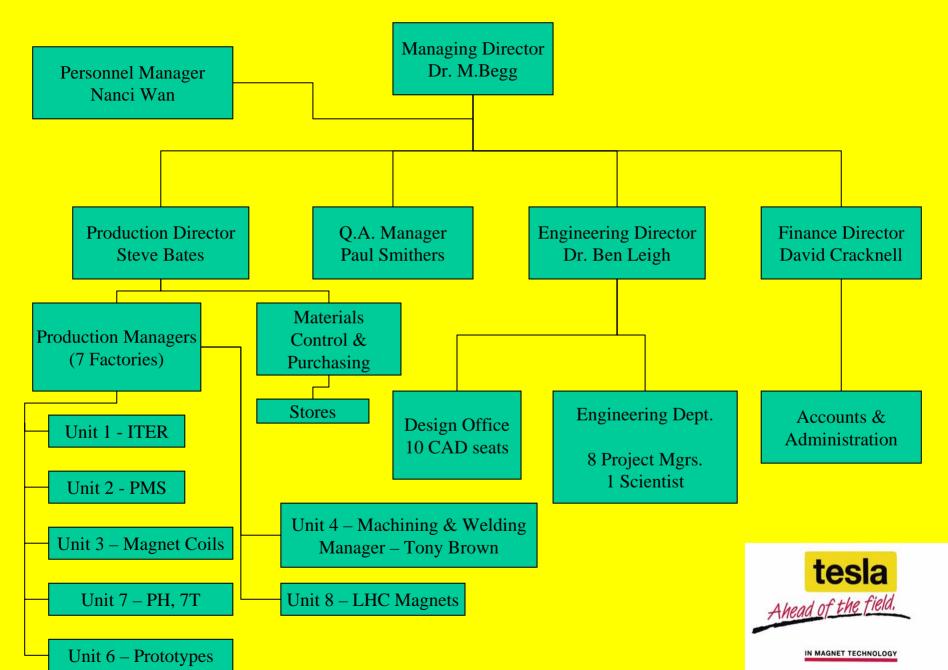
tesla Engineering Limited

Is recognised as meeting the national Standard for effective Investment in People

DATE. 26th March 1998 CERTIFICATE No. 43342



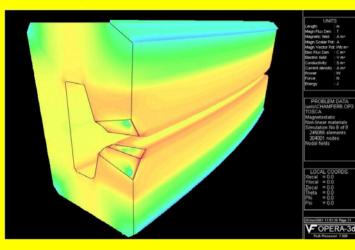
Company Overview

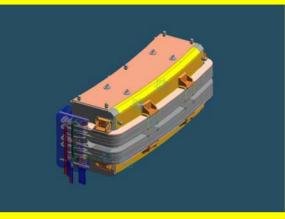

- Founded 1973. Producer of precision electromagnets.
- 200 employees (still growing).
- Sales ~ \in 30 million. Mostly export.
- Mixture of project based & medium volume work.
- All key processes in-house. Vertical integration.
- MRI, Accelerators, Proton Therapy, Fusion, Semi-con.
- Exports to Europe, U.S.A., Canada & Asia.
- Highly customer focussed.

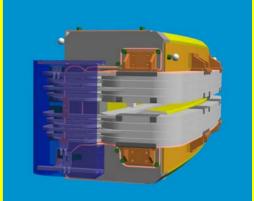
Sustained Growth

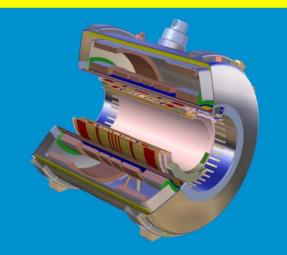
Tesla Engineering Ltd. Organisational Chart.

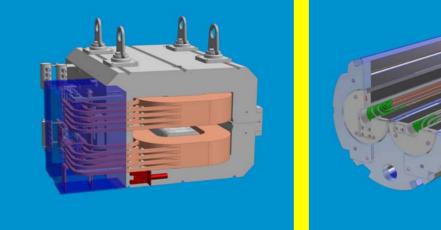
Manufacturing Facilities, UK

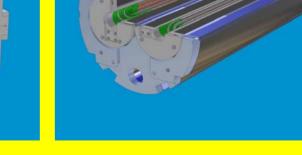

Unit	Details	Size (ft ²)	Size (m ²)	Crane (tonnes)
1	ITER & Clean Assy	6,400	576	2
2	MRI Coil Assembly	9,600	874	2 & 2
3	Magnet Coil Factory	19,300	1,758	10 & 10
4	Machine Shop & Magnet Fabrication	24,000	2,184	5 & 15
6	Special Projects	2,000	188	1
7	MRI & Magnet Assembly	14,000	1,265	2 & 16
8	CERN LHC s/c Magnets	17,600	1,600	8

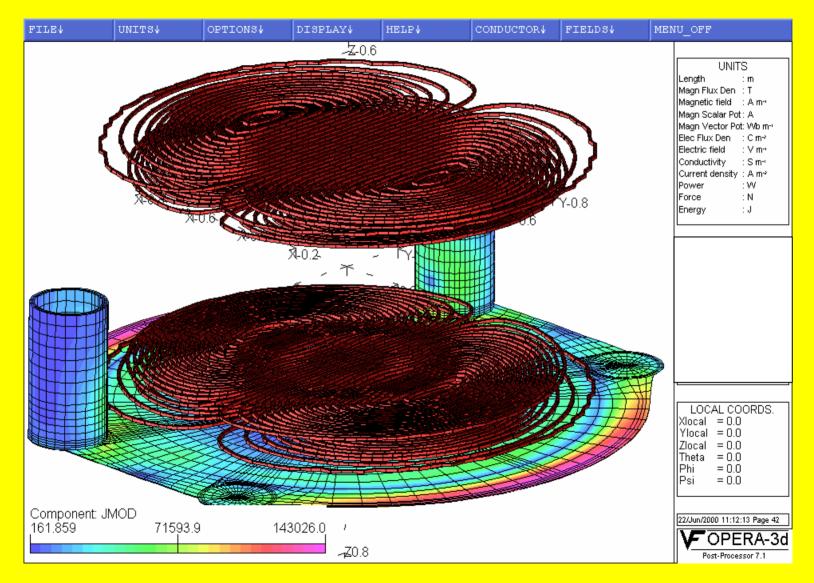



Design Capabilities

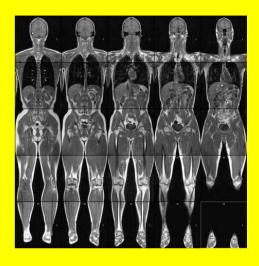


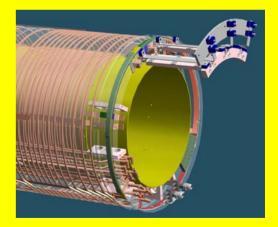

Opera 3-D finite element s/w.





Solid Edge 3-D CAD s/w.


Magnetic Design



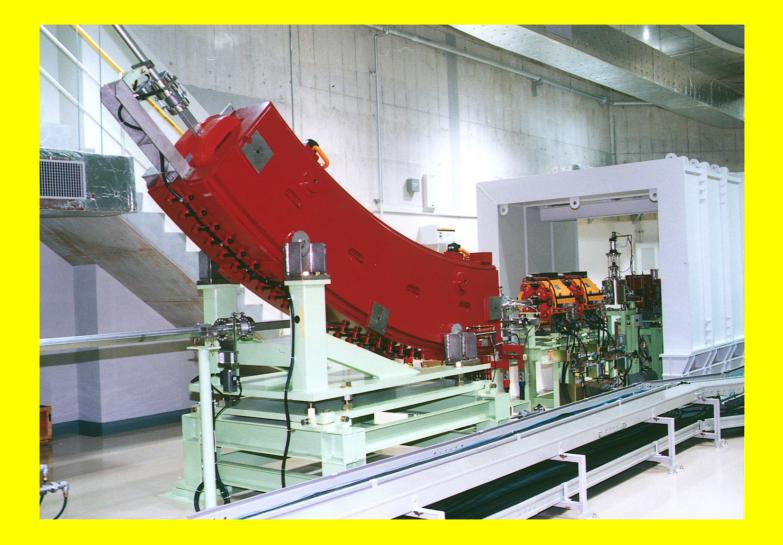
+ Gradient optimiser, thermal design.

MRI Cylindrical Gradient Coils

~ 650 per annum, various types

Panorama 1T Open

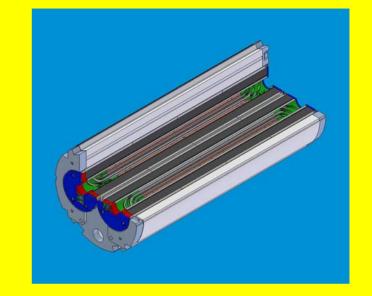
Heat Exchanger

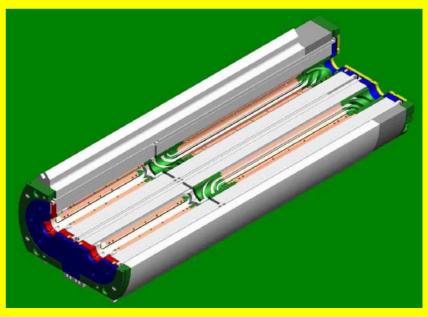


~ 3000 shipped

Accelerator Magnets

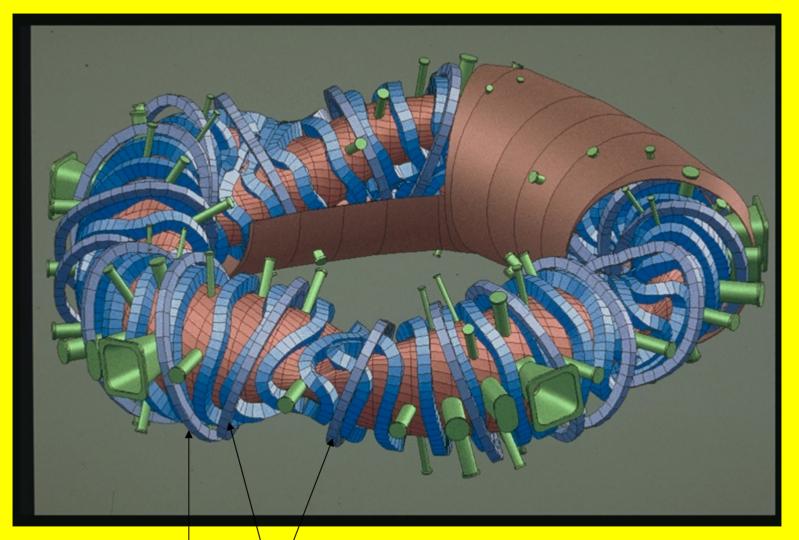
Proton Therapy Magnets


Ion Implanter Magnets

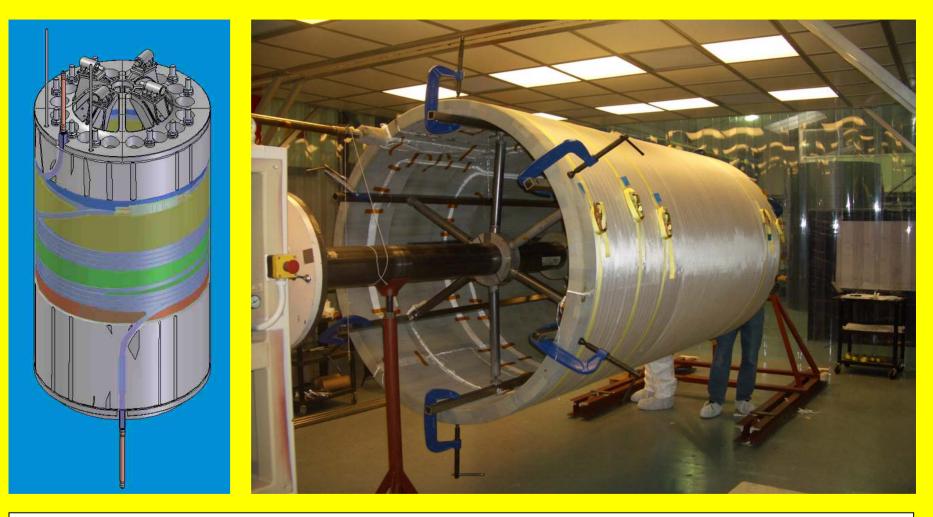


Superconducting Magnets for CERN LHC

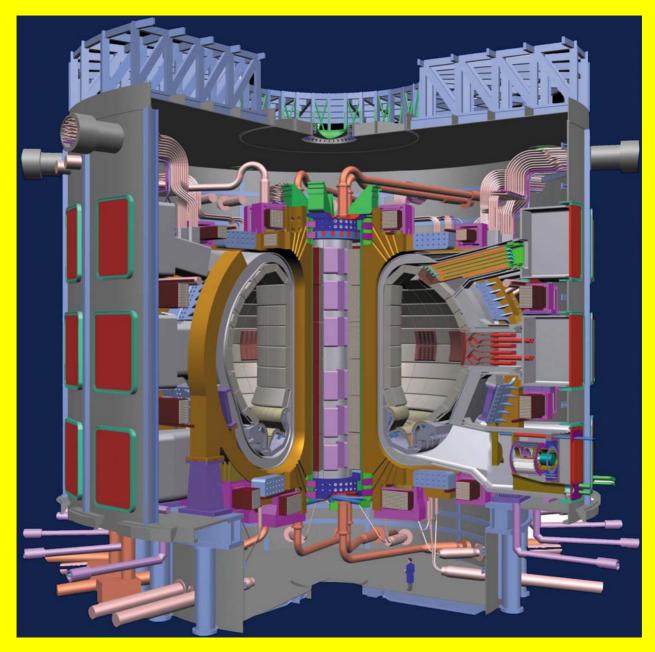
Currently making ~ 3000



Superconducting Coils for Fusion (W7X)


W7X Stellerator (Fusion)

20 Planar Coils being made by Tesla



Superconducting Coils for Fusion (ITER)

Computer Aided Design model of the Poloidal Field Conductor Insert coil (right) & PFCI coil (left) during manufacture at Tesla Engineering Ltd.

ITER

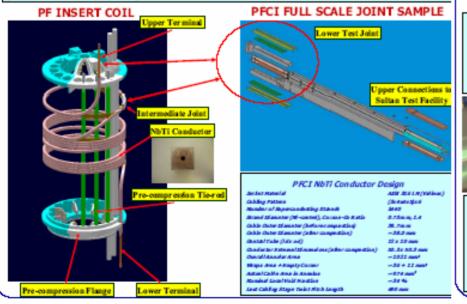
Design and Manufacture of a Full Size Joint Sample (FSJS) for the Oualification of the Poloidal Field Insert Coil (PFCI)

F.H. Hurd¹, C. Sborchia¹, E. Salpietro², D. Duglue², C. Keefe³, S. Bates³, P. Pesenti⁴, A. Della Corte⁵, P.L. Bruzzone⁶, M. Polak⁷ Enstitute for Plasma Physics, Max Plank Institute, Garching, Germany (formerly with EFDA) *EFDA Close Support Unit, Garching, Germany ²Tesia Engineering Ltd., Sterrington, United Kingdom Vinsaldo Supercenduttori, Genca, Italy *ENEA Prascati Research Centre, Superconductivity Division, Prascati, Italy 157 FL-CRUP, Fusion Technology, Villgen, Switzerland ²Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava, Slovaka

SCOPE OF THE WORK

The objective of the PF Conductor Insert coll is the testing in relevant conditions of full-scale Nb1 conductors and joints for the ITER Poloidal Field system. The test will be performed in the CSMC test facilit at JAERI. Naka. The purpose of the PFCI-FSJS has been the qualification of the conductor basic design an the manufacturing procedures for the joints. The sample has been tested at Sultan in Villigen (OH).

Within the framework of the European Fusion Programme the FSJS has been designed and manufactured b European Industry using a NbTi superconducting cable supplied by the Russian Federation.


In addition to the superconductor, the sample contains a number of unique features.

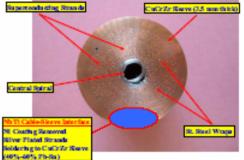
EFDA

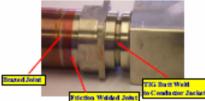
The overlap joints feature CuCrZr sleeves swaged onto the cable, similar to the CSMC overlap joints.

One leg of the FSJS has the conductor and sub-petal stainless steel wraps removed before jacketing.

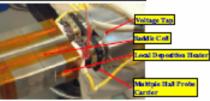
The sample has been instrumented with more sensors than any other previous European sample, these samples are sample in the sample in the sample in the sample is the sample in the sample is the sample in the sample is the s include several pairs of temperature sensors, a large number of voltage taps for guench detection an characterization and Tcs measurements, guadrupoles to detect the uneven voltage distribution across th jacket and conductor, hall arrays for current distribution measurements and saddle colls.

EUROPEAN FUSION DEVELOPMENT AGREEMENT

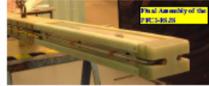

MANUFACTURE OF THE PECI-ESIS


Before jacketing of the RF cable the steel wrans were removed from the left kg. The twist pitch and the compaction ratio were carefully maintained during this operation.

In order to reduce the risk of buckling of the sleeves, a two-stage swage operation was carried out, first with a reduction of 30%, followed by a second swaging to the required diameter. The swaging machine developed by the ITER US Team for the CSMC joints was used.



The joint slowes have been manufactured from a CuOZr allow with Cubtainless steel transition pinces vacuum brazed at each end. The transition pieces are friction welded and the brazed joint is made with a Ap/Cu subsctic vacuum braze procedure.


ASSEMBLY OF THE PECI-ESJS

Senso is used in PRCI-P.	\$35
dense Texperature Amazer(add (lager type)	2
dernar Tesperature Senare (andder (rps)	28
Multage Tiges	82
Multiple Rall Probe Carolina	d (100) Probes
Makap Coll (Solid megantinting)	4
Mid-up Solido Colo (condutor megonfastion)	3
Local Depart for Readers	3
Charle America	2

Following the swaging, the two legs were assembled and the instrumentation added. The two test joint halves were heated to 220°C for soldering of the cable. The joint between the two legs was formed by Cu saddle pinces. The outer surface of the joint was Ag plated and the gap between saddles and terminations was filled with indians wire pre-loaded by thick clamps.

CONCLUSIONS

In terms of an engineering exercise the construction of the PFCI-FSJS was a success. During testing at Sultan the resistance of the joint was larger than expected (10 nΩ). The reasons for the relatively high resistance were due to poor bonding at the soldered interface between strands and sleeve and the low RRR of the unaged CuC/Zr used for the sleeve. For the PFCI intermediate joint additional solder will be added to the contact region and an active protective gas introduced during soldering. The CuCrZr sleeves will be precipitation age-hardened to increase their RRR value. A new joint mock-up is being manufactured to verify that these actions are effective to reduce the electrical resistance at 4 K.

Solid Edge 3-D CAD.

- Feature based Part modelling.
- Sheetmetal Part modelling.
- Large Assembly creation.
- Weldment environment.
- 2D drafting to world standards, with direct linked updates from 3D parts / assemblies.
- Fully integrated document management.
- Foreign data input, including DWG, DGN, STEP, IGS, ProE, & I-DEAS data files.
- Full parametric modelling capabilities.
- Xpress Route piping module.
- Photo rendering.
- Surfacing environment.
- Web based Part & Assembly publishing.
- Standard part libraries.

<u>E</u> dit <u>V</u> iew F <u>a</u> vorites <u>T</u> ool	ls <u>H</u> elp		•								
ess 👰 ftp://192.168.0.105/desig	npdf/design95/										
Back 🔹 🔿 👻 🛅 🛛 🧟 Search	🔁 Folders	🕉 History 🛛 🖗	2 72 X 4	D <u>III</u> ▼							
🙋 Lycos - meet you there											
	95-A1200.pdf	95-A1300.pdf	95-A1400.pdf	95-A1600.pdf	95-A1600P	95-A2000.pdf	95-A2000P	95-A2100.pdf	95-A2100P	95-A2200.pdf	
rer: 192.168.0.105 Name: Anonymous	95-A2300.pdf	95-A2300P	95-A2400.pdf	95-A2400P	95-A2500.pdf	95-A2500P	95-A2600.pdf	95-A2700.pdf	95-A2800.pdf	95-A2900.pdf	
<u>, here</u> to learn about browsing sites.	95-A3000.pdf	95-A3100.pdf	95-A3200.pdf	95-A3200P	95-A3300.pdf	95-A3400.pdf	95-A3500.pdf	95-A3500P	95-A3600.pdf	95-A3800.pdf	
	95-A3900.pdf	95-A4000.pdf	95-A4000P	95-A4100.pdf	95-A4100P	95-A4200.pdf	95-A4200P	95-A4300.pdf	95-A4300P	95-A4400.pdf	
	95-A5000.pdf	95-A5000P	95-D1004.pdf	95-D1005.pdf	95-D1006.pdf	95-D1007.pdf	95-D1008.pdf	95-D1009.pdf	95-D1010.pdf	95-D1011.pdf	
	95-D1012.pdf	95-D1013.pdf	95-D1014.pdf	95-D1403.pdf	95-D1601.pdf	95-D2001.pdf	95-D2003.pdf	95-D2004.pdf	95-D2007.pdf	95-D2008.pdf	
	95-D2009.pdf	95-D2010.pdf	95-D2011.pdf	95-D2012.pdf	95-D2101.pdf	95-D2102.pdf	95-D2103.pdf	95-D2104.pdf	95-D2106.pdf	95-D2107.pdf	
	95-D2108.pdf	Relea	sed di	rgs &	docs o	on cen	tral da	atabas	e. 2601.pdf	95-D3202.pdf	

Coil Factory Equipment

5 Magnet Coil Winding Lines with In-line Tape Wrapping & Sand Blasting (optional).

Coil Factory Equipment

• 7 Vacuum Impregnation Chambers up to 4m dia x 8m long. High current power supplies for ohmic heating.

• Autoclave 4m dia x 6m long. Pressure to 6 bar, temp^{re} to 200°C.

Yoke Lamination Punching

200 tonne sheet feed press.

200 tonne coil feed press.

Yoke Lamination Stacking

Location & compression fixture for bonding Stabolit 70 steel laminations (2 curing ovens in background.)

MACHINE SHOP PLANT LIST

MACHINE TOOL			Axes in m	m		
		Х	Y	Z	А	В
COLCHESTER CENTRE LATHE AND TOOLING	Manual	850	n/a	1600		
HARDINDGE TOOL ROOM CENTRE LATHE AND TOOLING 15YRS	Manual	200	n/a	600		
4/10 PROTURN CNC CENTRE LATHE	Programable	350	n/a	1250		
CUT OFF CIRCULAR SAW	Manual	1250	n/a	300		
UNIVERSAL MILL 3 AXIS	Manual	750	250	350		
UNIVERSAL MILL 3 AXIS	Manual	750	250	350		
UNIVERSAL MILL 3 AXIS	Programable	750	250	250		
MACHINING CENTRE YANG 4 AXIS	CNC. Probing	1000	450	400	Int' Axis	
HITACHI VA40 VERTICAL MACHINING CENTRE 4 AXIS	CNC	800	400	300		
HITACHI VA50 VERTICAL MACHINING CENTRE 4 AXIS	CNC.	1000	500	400	Int' Axis	
HITACHI VA65 + TOOLING 4 AXIS	CNC.	1200	650	550	Int' Axis	
TOS KURIM UNIVERSAL MILL 5 AXIS	CNC. Probing	6000	1250	1500	Full Axis	Full Axis
BUTLER ELGA MILL UNIVERSAL M/C CENTRE 5 AXIS	CNC.	6000	1250	1950	Full Axis	Manual

Machining

5 Axis CNC Mill. Table length 8m. X = 6m, Y = 1m, Z = 1.5mAccuracy better than 10 µm for all axes. (Certificates available on request)

Measurement

3 AXIS CMM X = 3200mm Y = 1300mm Z = 1000mm Resolution 1 μm Accuracy 40 μm

PROCESS CONTROL

• TRAVELLERS USED TO INSTRUCT OPERATORS.

441.QY.Iss8

Pleiades PH Gradient Coil, Final Assembly

925.QY.las 6

Pleiades PH Gradient Coil, Final Assembly Test Document

7.4 Wrap the Z tail with Vidatape AS, and pack the outside edge with Vidatape AS. Mark out a centre line on each of the outer most conficat coll eye tails, using a sorbe. Carefully lower the mould over the assembly and once the blocks are being held in place by the mould, out and remove the elastic band and continue to lower the mould. Align the mould on both split lines by shining a torch in the slot and viewing the scribed lines on the coll tails. Apply extra RTV at the split line. Progressively clamp the mould halves together from both sides, ensuring it does not notate away from the scribed line location. When the mould is closed, check the fit of the removable Ø 10 mm dowel in the keyway slot on the Crown and that the mould located correctly on the Crown. Floure 20

Figure 20.

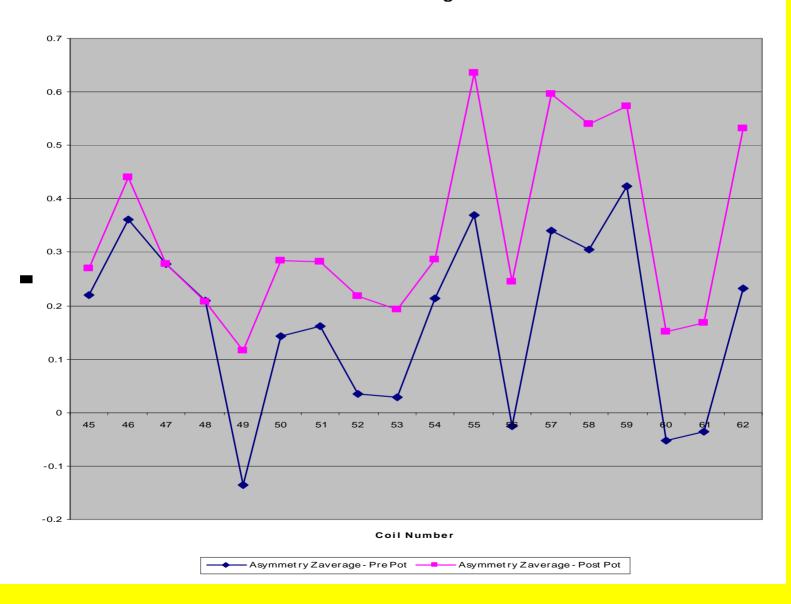
CONFIDENTIAL

liss 6

These pages to be photocopied and sent with coll

12 MECHANICAL INSPECTION

12.1 Perform the following mechanical inspections using the CMM and gauges. Dimensions as taken from drawing 55-A1100


Drawing		Pass / Fall							
Dimensión	0°		90°	180°	2	270°			
172.5mm MAX							Pass / Fail		
157.5± 0.2mm							Pass / Fail		
202.8 ± 0.5mm	Х-	X+	Y-	Y+	Z-	Z+			
Use Pedestal Gauge							Pass / Fail		
376.0 max					Pass / Fail				
Ø 224± 0.5mm							Pass / Fail		
Ø 229.8+0 -0.3mm		Use Gauge							
Ø 870 ± 0.5mm									
Ø 226.5± 0.5mm		Use Gauge							
Ø 278± 0.5mm									
Dowel – Key ± 0.25mm									
Conical surface« 0.5mm from gauge			Use (Sauge			Pass / Fail		
	23.3°		55°	83.4°	1	13.3°			
Support mount assembly locations							Pass / Fail		
± 0.15*	145°	1	73.4°	203.3°	2	235°			
(Anti-clockwise from							Pass / Fail		
dowel-key slot)	263.4	. 1	293.3°	325°	3	53.4°			
							Pass / Fail		
Power Connectors Location		Use (Sauge (v	vith key f	fitted)		Pass / Fail		
Sign & Date									

CONFIDENTIAL

L____

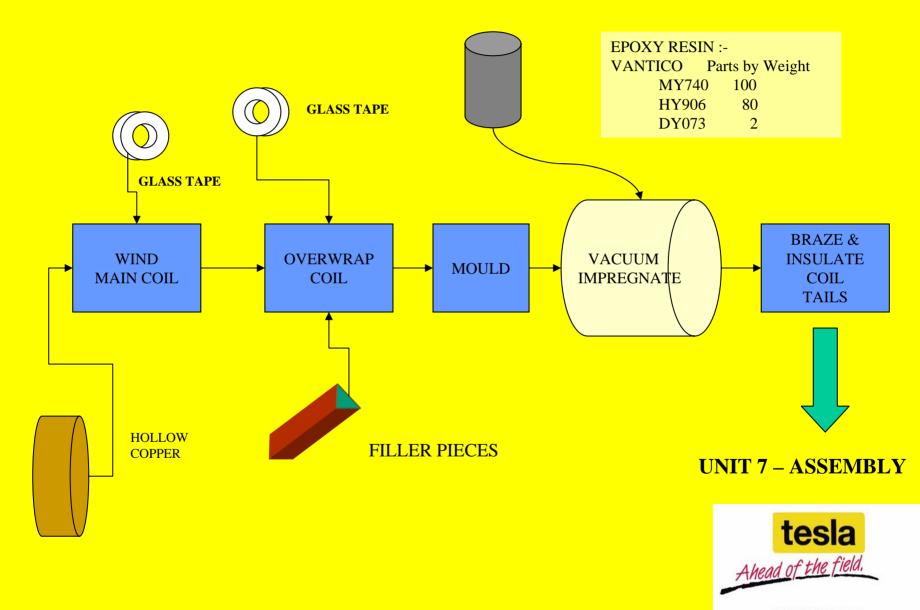
PROCESS CONTROL

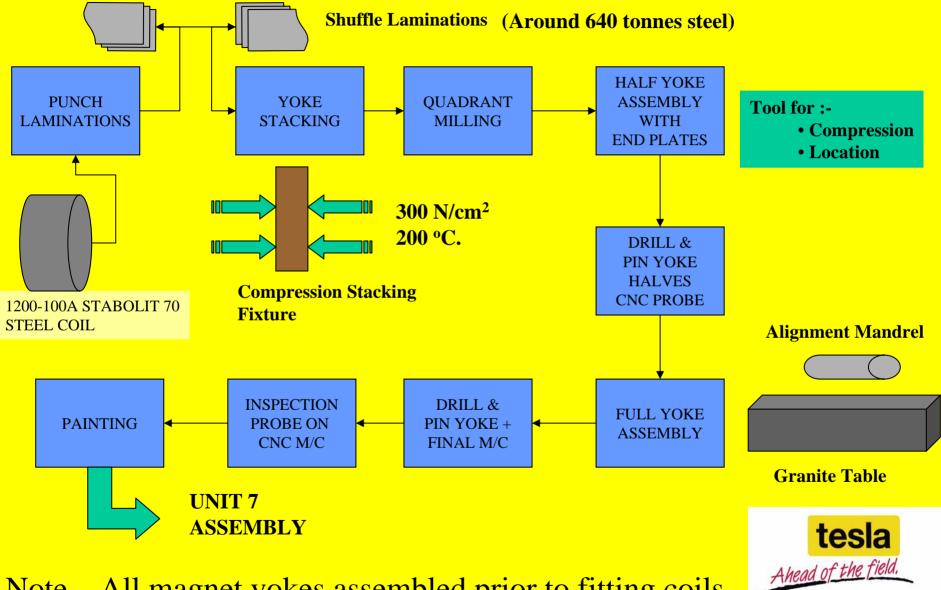

PH Coil Z Average

Typical Electromagnets made by Tesla.

<u>CERN</u> LEP Sextupole Magnets – 550 off

Mitsubishi Heavy Electric


Proton Therapy Quadrupole Magnets 139 off


Brookhaven National Lab SNS Quadrupole Magnets 59 off

QUADRUPOLE COIL WORKFLOW DIAGRAM

QUADRUPOLE YOKE WORKFLOW DIAGRAM

Note – All magnet yokes assembled prior to fitting coils.

QUADRUPOLE MAGNET WORKFLOW DIAGRAM

COILS from Unit 3 Factory PIECE PARTS FINAL ASS'Y FIT COILS **FIXINGS** PACK, TEST INTO YOKE diamond DESPATCH HOSES

YOKES from Unit 4 Factory

Production Control System

• ERP system called "efacs" used by Tesla.

- Bills of Material.
- Purchasing database.
- Stock control.
- Accounts. Invoicing.
- Sales orders.
- Cost control.
- Can use customer part numbers.
- Fully networked.

TESLA ENGINEERING LTD EFACS MAIN MENU

1. PARTS MASTER

- 2. BILL OF MATERIALS
- 3. ROUTING
- 4. RESOURCES
- 5. WORK IN PROGRESS
- 6. MATERIAL REQUIREMENTS PLANNING 14. ELECTRONIC MAIL
- 7. SALES ORDER PROCESSING 15. FAX LINKS
- 8. PURCHASE ORDER PROCESSING 16. TELNET SERVICES

ID : steveb Steve Bates AREA : /u/efacs/efacs

- 9. VENDOR RATING
- 10. STOCK CONTROL
- 11. FINANCIAL SUITE
- 12. SYSTEM MANAGEMENT
- 13. USER GUIDE

Press 'W' for help. Enter selection : 1

Main EFACS Menu

Sample BOM

Page : 1 -

BILL OF MATERIALS DETAILS TESLA ENGINEERING LTD Based on CURRENT COSTS as of 11/08/04

Level	Part	Nethod	Issue	Sequence	P/11	Qty	uon	Description
.1	4522 131 80021		1		X	1.0000	EACH	GRADIENT COIL LC-TNF2
2	19-A1100		5	00005	X	1.0000	EACH	INTERFACE DRAHING.
2	19-A5000		4	00010	Ĭ	1.0000	EACH	OUTLET MANIFOLD.
3	12-05 00 6		5	1010	Ĭ	3.0000	EACH	HATER CONNECTION
4	12-D5006R01	N/A	2	1010	Р	0. 1050	MTR	5/8" X 10 SHG 316 ST STL TUBE.
3	19-05 00 1		1	1030	Ĭ	1.0000	EACH	MANIFOLD
4	19-D5 00 1R01	N/A	1	1010	Р	1.0000	EACH	30MM X SQUARE BOX X 3MM HALL 316 ST STL CUT TO 92 MM LONG.
3	19-05 00 2	N/A	1	1040	Р	1.0000	EACH	END CAP 29 X 29 X 500 THK & 16.300 HOLE THRO, ST/STL 316L.
3	19-D500 3	N/A	1	1050	Р	1.0000	EACH	END CAP 29 X 29 X 500 THK ST/STL 316L. IGNORE DRG 400 THI
3	19-D5 00 4	N/A	2	1060	Р	1.0000	EACH	SUPPORT PLATE, 75 X 68 X 2001 THK 316 ST STL PROFILE.
3	19-05 00 5	N/A	2	1070	Р	1.0000	EACH	OUTLET TUBE 16 MM DIA X 1.5 MM HALL X 38 MM LONG 316 ST S
3	19-D5 00 6	N/A	2	1080	Р	1.0000	EACH	CLEVIS PIN 6 MM DIA HITH LOH HEAD A4 & NO CROSS HOLE.
2	19 - 85100		4	00020	Ĭ	1.0000	EACH	INLET MANIFOLD.
3	12-D5006		5	1010	Ĭ	4.0000	EACH	HATER CONNECTION

EFACS	REPORT:	<u>Firs</u> i	<mark>t P</mark> reviou	ıs <mark>k</mark> ext	<mark>L</mark> ast	<mark>G</mark> oto <mark>I</mark> ode	<mark>l</mark> utput <mark>E</mark> xit	Goods Received		
RECEIP	TS by PURC	HASE	ORDER NO	11	/08/04	11 :07: 33	TESLA ENGINEER	ING LTD	Page : 1	
po num	PO NUMBER 68795 SUPPLIER ISOLA COMP									
GRN	Date Recd	Iten	Quantity	UOM	State	Part Nunber	Description		Advice Note	
215257	26/03/04 Total	1	1280.0 1280.0	EACH	DONE	26-A1000P41	FR4 STRIP 1M	M THK X 9 MM X 1 MTR LONG.	31171	
214584	12/03/04 Total	2	36 0.0 360.0	EACH	DONE	19-02505	INNER Z HIND	ING COMB	31133	
215611	05/04/04 Total	3	36 0.0 360.0	EACH	DONE	19-02505	INNER Z HIND	ING COMB	31137	
217080	17/05/04 Total	4	36 0.0 360.0	EACH	DONE	19-02505	INNER Z HIND	ING COMB	31138	
214507	12/03/04 Total	5	280.0 280.0	EACH	DONE	19-D1 00 2	SPACER BLOCK	•	31133	
216030	16/04/04	6	280.0	EACH	DONE	19-D1002	spacer block		31137	

EFACS REPORT: <u>First</u> Previous <mark>M</mark> ext Last <mark>G</mark> oto	<mark>t</mark> ode <mark>Q</mark> utput <mark>E</mark> xit Sa	ales Order	Paqe : 1
Sales Orders By Custoner Criteria selection : Custoner <elekta>, Between <b< td=""><td>/01/03>, and <99/99/99>, Out</td><td>11/08/04 tstanding <n></n></td><td>11:11</td></b<></elekta>	/01/03>, and <99/99/99>, Out	11/08/04 tstanding <n></n>	11:11
Order Horks Order Or nunber Iten Order date Part nunber quant	· · · · · · · · · · · · · · · · · · ·	te Status Value	Custoner order nunber Descript
Custoner: ELEKTAELEKTA LINITEDAckaddress: 1 : LINAC HOUSE, FLENING MAY, CRAME		rrency : # POUNDS STI	ERLING
5542 1 AC46 28/06/04 N/A 1.	00	35 NS 24472.00	LF05908 ALIGNMEI
5542 2 AC46 28/06/04 N/A 10.	00 0.0000 EACH 25/01/0	35 NS 3550.00	LF05908 MAGNETI
Total sales order	value for custoner ELEKTA (I	address 1) 28022.00	

Total sales order value 28022.00

<u>E</u> dit <u>V</u> iew F <u>a</u> vorites <u>T</u> ools <u>H</u> elp				
ess 🙋 http://192.168.0.242/Time-Cost_Reports/timeanalysis.asp	?TPtn=AC29&UPtn=&APtn=&EPtn=&SWee	k=200431&EWeek=200433&Report	=Y&Ob1=Task&Ob2=Act&Ob3=Name	• 6
Back 👻 🔿 🖉 👔 🚮 🛛 🥘 Search 🛛 🙀 Favorites 🔇 Hi	story 🛛 🛃 🕶 🐨 🕶 📄			
Eycos - meet you there				
FimeT&A™ You are currently logged in as Bates,St	eve		Help	Menu
Works Order AC29		Available	Selected	
A patinitu		Criteria	Criteria	
Activity		>>>	Works Order	
Unit			Activity	
Employee		Unit	Employee	
		Week		
Start 01/08/2004 💌	End 15/08/2004 💌	INGER		
	Run Report			
Labour Time Logging				
200000 1000 208800				
Works Order	Time Analysis Activity Code	Name	Hours Booked	
AC29	ACTIVITY CODE AL2	Hatchard, Alan	5:45	
		Leisk,Simon	55:15	
		Rhoder, Michael	16:45	
		Wake,Daniel	8:30	
Total Hours for AL2			86:15	
	AS2	Cain,Paul	67:15	
		Eden,Charles Elphick,James	82:45 17:00	
		Etherington,Gary	81:15	
		Foster,John	5:45	
		Harris,David	15:00	
		Hatchard, Alan	7:00	
		Leisk,Simon	27:45	
		Long, Michael	98:30	
		Musk, Thomas	26:15	
		Rhoder,Michael	51:30	
		Strukelj,Sam	12:00	
		Wake,Daniel	68:15	
Total Hours for AS2	100		560:15	
	AS3	Ashton,Graham	43:00 85:30	
		Farrow,Ian	85:30	