Physics and Modeling of the W7-AS Island Divertor

Y.Feng, F.Sardei, P.Grigull, K.McCormick, J.Kisslinger, L.Giannone, Y.Igitkhanov, D.Reiter, T.Bindemannm H.Ehmler, R.König, N.Ramasubramanian, E.Pasch, H.Thomsen

• **Status of the EMC3-EIRENE code**

- **W7-AS island divertor physics**
	- -Major results and present understanding
	- -Recent results
	- * Geometry-related detachment stability
	- * Dynamic behavior of edge radiation
	- * Efficiency of neutral gas screening and its impact on detachment stability
- **First application on TEXTOR-DED**
- **Summary**

Physics

- standard fluid model for ions and electrons
- simplified fluid model for impurities
- kinetic model for neutral gas

}**Coupled self-consistently**

Geometry

- fully 3D for plasma, divertor plates, baffles and wall
- ergodic and non-ergodic B-field configurations

Numerics in EMC3

- Monte Carlo technique on local field-aligned vectors, piecewise parallel integration for separation of the small \perp from the large II-transport (\perp /II~10⁻⁸)
- new Reversible Field Line Mapping (RFLM) technique, Finite flux tube coordinates for B-field line interpolation

Applications

- \bullet W7-AS: weakly ergodic, routine
- \bullet W7-X: weakly ergodic (D. Sharma)
- TEXTOR-DED: strongly ergodic (M. Kobayashi)

Transport: island divertor vs. tokamak divertor

Code results

- Drop of $T_{\rm up}$ (cross-B heat conduction)
- Downstream density never exceeds upstream density, no high recycling
- Momentum loss at low densities, high temperatures (cross-B diffusion)

confirmed by experiment

Looking for transition condition

Code results

- **High density needed to achieve detachment (momentum loss)**
- **Jump of radiation level (thermal instability)**
- **Jump of radiation zone towards separatrix (X-points) (flat radiation capability profile)**

confirmed by experiment

Conditions for a stable detachment

• no impurity accumulation under high density conditions (reached in HDH regime)

Experimental observations:

• stable detachment only for sufficiently large islands and field line pitch ?

Detachment stability depends on island geometry

IPP

Numerical results

Detachment transition shifts to higher densities for smaller Δ **x** or larger L_c **so that the detachment range** ∆**nes becomes smaller**

Evolution of radiation through detachment

Two different radiation patterns identified by EMC3

increasing n_e

increasing

Tokamaks

toroidally symmetric poloidally asymmetric **radiative condensation**

W7AS

toroidally, poloidally and helically asymmetric

radiation zone moves to X-point to form Marfe

Radiation **Z**one (RZ) moves to the X-point close to the target

small islands orfield line pitch **unstable path**

RZ moves through the X-point

large islands and field line pitch **stable path**

RZ moves to the X-points

on the inboard side

Marfe moves through X-point

Marfe moves to inboard side inside separatrix

radiative and MHD disruption

RZ moves to inboard side inside separatrx

radiation oscillation or collapse

Impact of radiation location on neutral screening

sensitivity of neutral screening to configuration, $\rm n_{es}$ and $\rm P_{sol}$

Divertor radiation \rightarrow cold recycling zone \rightarrow less efficient for neutral screening 'less efficient' means: 1) higher Γ_{reccc} into core (smaller ΔX) 2) more sensitive to change of n_{es} or P_{sol} (radiation location), <u>i.e. larger ∂Γ</u> **∂Γ**_{recyc} and $\frac{\partial \Gamma}{\partial \mathbf{n}}$ _{es}

A comprehensive stability study needs a core model coupled self-consistently!

a linear stability analysis

$$
\frac{\partial \Delta n_e}{\partial t} = \frac{1}{A_s \lambda_0} \Delta \Gamma_{recyc}^{core} - D \frac{\Delta n_e}{\lambda_0^2}
$$

(note that the change of Γ_{recyc}^{core} from transport with the time scale λ_0^2 / D the edge is much faster than core

$$
\frac{\partial \Delta n_e}{\partial t} \propto \Delta \Gamma_{recyc}^{core} = \frac{\partial \Gamma_{recyc}^{core}}{\partial n_{es}} \Delta n_{es} + \frac{\partial \Gamma_{recyc}^{core}}{\partial P_{SOL}} \Delta P_{SOL}
$$

Second term is destabilizing as

$$
\uparrow_{\Delta n_e} \to \downarrow_{\Delta P_{SOL}} \to
$$

$$
\partial \Delta n_e / \partial t \sim \left| \frac{\partial \Gamma_{recyc}^{core}}{\partial P_{s o L}} \right| \Delta n_e
$$

• **divertor radiation less efficient for neutral screening** → **larger growth rate of instability**

Stabilization through ↓∆n_{es} (edge parameter)

 \downarrow n_{es} \rightarrow \downarrow R_{edge} \rightarrow \uparrow T_{e,island} \rightarrow \uparrow n₀-screening effic. \rightarrow \downarrow T_{recyc}

• Stable only for sufficiently quick and strong drop of n_{es}

• if P_{sol} drops after the transition to detachment n_{es} has to be decreased correspondingly

- EMC3-EIRENE treats self-consistently the plasma, impurities and neutral gas transports in 3D ergodic and non-ergodic edges including realistic divertor plates, baffles and wall. The code has been implemented on W7-X and TEXTOR-DED.
- The main differences in physics between the W7-AS island divertor and a tokamak divertor are the geometry-related momentum loss, the absence of the high-recycling regime, the high separatrix density required for detachment transition (and for an effective pumping) and the weak efficiency of neutral gas screening.
- Detachment stability depends on island geometry
	- *** Stable detachment only possible for sufficiently large island and field-line pitch

Code results:

- * Only two typical radiation patterns
	- inboard side radiation (large islands and field-line pitch)
	- divertor radiation (small islands or field line pitch)
- [∗]Evolution of radiation through detachment similar to that of MARFEs in tokamaks
- ∗ Divertor radiation → cold islands [→] poor neutral screening
- * Loss of neutral screening responsible for detachment instability
- $*$ Stabilization by decreasing n_{es}