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Status of the EMC3-EIRENE code

Physics
• standard fluid model for ions and electrons
• simplified fluid model for impurities
• kinetic model for neutral gas

Geometry
• fully 3D for plasma, divertor plates, baffles and wall
• ergodic and non-ergodic B-field configurations

Numerics in EMC3
• Monte Carlo technique on local field-aligned vectors, piecewise parallel 

integration for separation of the small ⊥ from the large II-transport (⊥/II~10-8)
• new Reversible Field Line Mapping (RFLM) technique,

Finite flux tube coordinates for B-field line interpolation

Applications
• W7-AS:              weakly ergodic,  routine 
• W7-X: weakly ergodic (D. Sharma)
• TEXTOR-DED: strongly ergodic (M. Kobayashi)

}Coupled self-consistently



• Drop of Tup(cross-B heat conduction)

• Momentum loss at low densities,
high temperatures
(cross-B diffusion)

• Downstream density never exceeds
upstream density, no high recycling

Code results
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confirmed by experiment

Transport:  island divertor vs. tokamak divertor
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Looking for transition condition

Code results

• High density needed to achieve
detachment (momentum loss)

• Jump of radiation level
(thermal instability)

• Jump of radiation zone towards 
separatrix (X-points) 
(flat radiation capability profile)

confirmed by experiment



Stable detachment

• no impurity accumulation 
under high density conditions
(reached in HDH regime)

Experimental observations:
• stable detachment only for

sufficiently large islands and
field line pitch ?

Conditions for a stable detachment



Detachment stability depends on island geometry
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Numerical results

EMC3/EIRENE

Detachment transition shifts to higher densities for smaller ∆x or larger Lc
so that the detachment range ∆nes becomes smaller
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∆x = 1.5 cm
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attached               detached, radiation outside separatrix inside core

∆x = 3.5 cm

Evolution of radiation through detachment
(code results)

increasing nes



inboard side radiation divertor radiation

Two different radiation patterns identified by EMC3
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Comparison to tokamak Marfes
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radiative condensation
toroidally, poloidally and
helically asymmetric

toroidally symmetric
poloidally asymmetric

Tokamaks W7AS

radiation zone moves to
X-point to form Marfe

Marfe moves through 
X-point

Marfe moves to inboard 
side inside separatrix

large islands and
field line pitch

stable path
RZ moves to the X-points
on the inboard side

small islands or
field line pitch

RZ moves to inboard side inside separatrx

unstable path

Radiation Zone (RZ) moves to the 
X-point close to the target 

RZ moves through
the X-point

radiation oscillation or collapse
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sensitivity of neutral screening to configuration, nes and Psol

Impact of radiation location on neutral screening

Divertor radiation → cold recycling zone → less efficient for neutral screening
‘less efficient’ means:  1) higher Γrecyc into core (smaller ∆X)

2)  more sensitive to change of  nes or Psol (radiation location),
i.e. larger          and  ∂Γrecyc
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a linear stability analysis

Second term is destabilizing as
↑∆ne → ↓∆PSOL →

∂ ∆ne/ ∂t ∼ ∆neSOL
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Instability driven by neutrals
A comprehensive stability study needs a core model 

coupled self-consistently!

↑ → ↑        → ↑Rcore → ↓Psol∆ne

positive feedback

Γrecyc
core

↑ core energy loss due to n0

• divertor radiation less efficient for 
neutral screening → larger growth 
rate of instability
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growth rate of instability ∝



Stabilization by decreasing edge density

• if Psol drops after the transition to 
detachment nes has to be decreased 
correspondingly  

• Stable only for sufficiently quick and strong drop of nes
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Steady state (stable detachment): This is seen in experiments!

↓ → ↓Redge → ↑Te,island → ↑n0-screening effic. →↓n es

Stabilization through ↓∆nes (edge parameter)
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IR measurement Energy deposition pattern onto divertor

First experiment

M. Kobayashi, 30th EPS St. Petersburg 2003
9th PET  San Diego 2003

First application to TEXTOR-DED



Conclusions

• EMC3-EIRENE treats self-consistently the plasma, impurities and neutral gas 
transports in 3D ergodic and non-ergodic edges including realistic divertor plates, 
baffles and wall. The code has been implemented on W7-X and TEXTOR-DED.

• The main differences in physics between the W7-AS island divertor and a tokamak
divertor are the geometry-related momentum loss, the absence of the high-recycling 
regime, the high separatrix density required for detachment transition (and for an 
effective pumping) and the weak efficiency of  neutral gas screening.      

• Detachment stability depends on island geometry 
* Stable detachment only possible for sufficiently large island and field-line pitch

Code results:

* Only two typical radiation patterns 
- inboard side radiation (large islands and field-line pitch)
- divertor radiation (small islands or field line pitch)

∗ Evolution of radiation through detachment similar to that of MARFEs in tokamaks
∗ Divertor radiation → cold islands → poor neutral screening
* Loss of neutral screening responsible for detachment instability 
* Stabilization by decreasing nes


