

- expts. to elucidate "impurity-flushing" features of HDH
- comparison to ELM-free H-modes in tokamaks
- outlook

HDH/H*

EDA vs. HDH

WENDEL STEIN 7-49

The High Density H-Mode in Wendelstein 7-AS - history -

Operation with Divertor Modules over April 2001 - July 2002

High Density H-Mode (HDH) Discovered & Exploited

W7-AS Ceased Operation July 31, 2002

K. McCormick

-2-

-3-

W [kJ]

۲_{rad} [MW]

 H_{α} [a.u.]

0.2

0.4

0.6

Р

WENDEL STEIN 7-49

1.5

0.5

1

0

10

0

0.2

0

0.5

0

0

~2x increase in stored energy

The phase of high confinement

becomes longer.

Radiation remains stationary longer.

0 0

1

2

 $\overline{n}_{e} [10^{20} \text{ m}^{-3}]$

3

-4-

ISWS in HGW: September 24, 2003

n_e [10²⁰ m⁻³]

- The NC->HDH transition density increases with P_{nbi}
- τ_E increases sharply at the transition
- τ_{imp} decreases sharply at the transition, approaching τ_E at higher n_e
- τ_E is higher than conventional scalings in HDH-Mode

NC->HDH

The H-Mode is Attained by Increasing the Density NOT the Power

In contrast to tokamak scalings - higher power is detrimental to the H-mode.

Related to strong τ_E density scaling? $\tau_{LG} \sim 0.21 \ (n_e/P)^{0.6} B_t^{0.8} a^2 R t^{0.4}$

WENDEL STEIN 7-AS

NC vs. HDH

Stored Energy is lower in NC

-Separatrix density n_{es} is lower in NC - for the same line-averaged density

Prad increases in NC

Impurity line intensity increases in NC

HDH shows no evident ELM activity

HDH shows reduced MHD activity

Profile Development

Density, Temperature & Radiation Profiles

HDH/H*

But life is not that simple

IDD

K. McCormick

ELM-Free H-Modes (H*) also Exist on W7-AS ... which <u>suffer from Impurity Accumulation</u> ... with <u>otherwise similar global properties to HDH</u>

A Discharge has been Tailored to Study H* and HDH under the same conditions of heating and magnetic configuration ...for which a higher density is required to attain HDH:

> At beginning of discharge, under influence of gas puff even for $n_e < n_e^{th}$ ELM-Free H-Mode exists temporarily which also exhibits P_{rad} increase

ISWS in HGW: September 24, 2003

ISWS in HGW: September 24, 2003

H*/HDH

WENDEL STEIN 7-49

The spatial and temporal behavior of H*can be qualitatively modeled using the same assumptions as for HDH -> but without an enhanced diffusion in the gradient region <-

ISWS in HGW: September 24, 2003

ISWS in HGW: September 24, 2003

-17-

* I_{sat}(f<10kHz) fluctuations apparent in outer probe during HDH * No difference in inner probe.

Flux tube localization?

plateau

K. McCormick

-18-

WENDEL STEIN 7-4

SUMMARY

- of basic HDH features -

The Wendelstein 7-AS High Density H-Mode is an ELM-free H-mode

- has broad, flat ne-profiles with a steep ne-gradient at edge
- has parabolic-like Te-profiles
- collisionality: impurities in Pfirsch-Schlüter-, background plasma in plateau-regime
- with low impurity and high energy confinement times
- allows steady-state operation [stationary $n_e(t)$ and $P_{rad}(t)$] for $n_e \le 4.10^{20}/m^3$
- radiates outside the confinement region
 - ... up to 90% of the heating power
- exists above a power-dependent density threshold
- exists for detached plasma at target plates and up to density limit
- exists over large Bt range (0.9-2.5T)
- exists up to highest beta attained (3.4%)
- exists for hydrogen and deuterium plasmas, with "interesting differences"
- exists over a variety of magnetic configurations...<u>including limiter-plasmas</u> (high NBI)

HDH is robust but not understood,

The genesis of HDH is still unclear.

Ti - screening in the Pfirsch-Schlüter regime may be one (minor) factor. But, there is certainly more... => enhanced edge diffusion?

Some similarities to EDA H-mode of C-Mod (ELM-free, steady-state) - where a quasi-coherent mode is thought responsible for impurity flushing

but <u>so far no edge-localized transport indicators have been identified</u>:

Mirnov Coils RCP

- spatially swept to near separatrix & at the wall,
 - spatially swept to near separatrix to probe for Isat fluctuations

Reflectometer

Ηα

- to probe edge density fluctuations in regions at 6, 8,12.10¹⁹ m⁻³
- flux signals at target plate and midplane
- probes at TP Isat fluctuations at target plate

but data evaluation continues....

QC mode associated with steady-state EDA provides for enhanced impurity transport ELM-free -> no fluctuations => impurity accumulation and radiative collapse ELMs - increasing ne and Prad suggest transport mechanism different from EDA

Enhanced Dα (EDA) H-mode is ELM-free with no impurity accumulation - with high confinement - WENDEL STEIN 7-AS

EDA - HDH Comparisons

	EDA	<u>HDH</u>
understood?	getting close?	no
reactor-relevant	doubtful	LHD/W7X?
relevant physics?	yes	yes
sensitive to configuration?	yes	not very
capable of detached discharges?	no?	yes
fraction of Greenwald?	0.7	"2"
standard mode of operation	no	yes

ROBUST: HDH does not require extensive wall conditioning

- Boronization necessary at start
- but one "coating" is adequate for months of operation.
- Ten minutes He GDC at beginning of day
- is sufficient for an entire day of HDH discharges.

Where Do We Go from Here?

HDH - a Mode of the Past, or One for the Future?

2

3

W7-AS is now deactivated, but lots of data, remains to be evaluated.

Cooperation with LHD, now that higher power levels have been attained? Or, Heliotron J?

Studies of

- ELM-free H-modes

- ELMs

to compliment tokamak experience

no shear

no net current

radically different x-point structure

-24-

Where Do We Go from Here? -a beginning? -

K. McCormick is the stellarator representative to the ITPA task group: SOL/Divertor Physics

Different current, shear and magnetic field configurations will allow illumination of aspects of ITER-relevant physics... - ELM-free H-modes - or ELM studies

Complementary Workshop Contributions

-25-

W7-AS Summary

R. Jaenicke..."Summary of W7-AS Results After 14 Years...", Monday 09:00

W7-AS High Density Operation

S. Bäumel..."Investigation of Fluctuations in H*-HDH Regimes...", P.Mo12

W7-AS Divertor Experiments

R. König..."Divertors for Helical Devices...", Tuesday 10:15

W7-AS Divertor Experiments

P. Grigull..."Behavior of the W7-AS Island Divertor", Thursday 11:15

W7-AS Impurity Transport:

R. Burhenn ... "Impurity Transport in the W7-AS Stellarator", Thursday 12:15

W7-AS 3D Edge Transport Calculations with EMC3

Y. Feng..."Physics and Modelling of the W7-AS Island Divertor", Friday 10:15

W7-AS

- **Beta-Limit:** A.Weller... IAEA-CN-94/EX/S3-1, Lyon 2002 A.Weller... 30th EPS, St.Petersburg 2003
- HDH-Mode:
 P.Grigull...Plasma Phys. Control. Fusion 43 (2001) A175

 K.McCormick...Phys. Rev.Letters 89 (2002) 015001

 K.McCormick...J.Nucl.Mater. 313-316 (2002) 1131

Impurity Transport:

R. Burhenn... EPS, St. Petersburg 2003K. Ida...accepted for publishing in PPCF

Tokamak EDA H-Mode REFERENCES - a selection -

C-MOD EDA H-Mode

M.Greenwald...Plasma Phys. Control. Fusion 42 (2000) A263 J.A.Snipes...Plasma Phys. Control Fusion 43 (2001) L23 A.E.Hubbard...Physics of Plasmas 8 (2001) 2033 D.A.Mossessian...Plasma Phys. Control. Fusion 44 (2002) 423 A.Mazurenko...Phys. Rev. Letters 89 (2002) 225004

DIII-D EDA H-Mode

D.A.Mossessian, R.J.Groebner...Physics of Plasmas 10 (2003) 689

ASDEX-Up EDA H-Mode Attempt

W.Suttrop...A.Hubbard IAEA-CN-94/EX/P5-07, Lyon 2002

JET EDA H-Mode (the beginning)

G.Maddison...Plasma Phys. Control. Fusion 44 (2002) 1937

JFT-2M HRS H-Mode

K.Kamiya... IAEA-CN-94/EX/P2-05, Lyon 2002

Tokamak Quiescent H-Mode REFERENCES - a selection -

DIII-D QH-Mode

K.H. Burrell...Plasma Phys. Control. Fusion 44 (2002) A253

P.H. West...30th EPS, St. Petersburg, "Quiescent H-Mode...DIII-D..."

ASDEX-Up QH-Mode

W. Suttrop...Plasma Phys. Control. Fusion 45 (2003) 1399 http://www.iop.org/EJ/abstract/0741-3335/45/8/302
W. Suttrop...30th EPS, St. Petersburg, "ELM-free Stationary H-Modes..." http://eps2003.ioffe.ru/PDFS/P1_125.PDF

Isotope Effect: Wdia vs. ne for: Ho->H+ & Do->D+

ISWS in HGW: September 24, 2003

-reserve--

