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Stellarators & Tokamaks: Key characteristics

V

 Both: toroidal toroidal magnetic confinement configurations,
- Tokamaks: Axisymmetric Stellarators: fully 3D shaped
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Stellarators & Tokamaks: Key characteristics

- Tokamaks: Rotational transform (iota = 1/g ) or Bp produced by
plasma toroidal current
— Control g-profile & shear via current
— Sustain configuration using external current drive,
& high-bootstrap currents

- Stellarators: Most or all of the rotational transform due to 3D shape,
not plasma current

— Control magnetic rotational transform & shear from external coils

— No need for current drive to sustain configuration. Naturally
compatible with steady state.

- Stellarators are typically disruption free
Equilibrium is not lost due to changes in pressure or current.
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Stellarators & Tokamaks: design flexibility

» Tokamaks: ~4 snape paramerters 10r design
- Stellarators: ~40 shape parameters

— Can control more aspects of physics in stellarator design
(e.g. reversed shear, higher stability limits)

— Lack of symmetry direction => must design more aspects of

h Ssics In stellarators
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Stellarator Flux Surfaces May Be Open
Sensitive to Resonant Perturbations
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W7-AS control coil current scan, vacuum

Stellarators have vacuum flux surfaces

Similar sensitivity in tokamaks, but no vacuum equilibrium

Use trim coils in both configurations to control field-error effects
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Stellarator Flux Surface Topology
Can change with Plasma Pressure

* Plasma-pressure generated currents
(diamagnetic, Pfirsch-Schluter, bootstrap)
can produce resonant perturbations,
changing flux surface topology

« Similar to effect of pressure-generated
currents on tokamak equilibrium shape,
iIncluding equilibrium limits. Tokamak only
has n=0.

« Change in topology can modify plasma
confinement and pressure profile

« Theoretically, finite plasma equilibrium

Islands have the same physics as NTMs in
tokamaks, just €2=0.
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Tokamak Operating Limits Set by Instabilities

Tokamak

» Tokamak f limit extensively studied:
set by instabilities
— ldeal-like instabilities — disruptions

— Saturated instabilities: degraded
confinement

* Density limits, g-limits also given by
instabilities

* Also see NTM saturation of
confinement; fish-bones, etc.
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WT7AS: (B) = 3.4 % : Quiescent, Quasi-stationary
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*B=09T,iota, = 0.5

* Almost quiescent high- 3 phase,
MHD-activity in early medium-f
phase

* In general,  not limited by any
detected MHD-activity.

* [, =0, but there can be local
currents

* Similar to High Density H-mode
(HDH)

e Similar $>3.4% plasmas
achieved with B = 0.9 — 1.1 T with
either NBI-alone, or combined
NBI + OXB ECH heating.

* Much higher than predicted
limit ~ 2%



W7-AS: (p)> 3.2% maintained for > 100 t¢
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* Peak <f> = 3.5%

- High-3 maintained as long
as heating maintained, up to
power handling limit of PFCs.

* (B)-peak = (p)-flat-top-avg
=> very stationary plasmas

* No disruptions

* Duration and f not limited
by onset of observable MHD

What limits the observed
value?



W7-AS Operating Range much larger than

Tokamaks
Hugill-Diagram for W7-AS high-p cases Normalized Beta vs. Greenwald Factor
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Using equivalent toroidal current that produces same edge iota

Limits not due to MHD instabilities. Density limited by radiative recombination
High-p is reached with high density (favourable density scaling in W7-AS)
Almost all W7-AS high-f3 data points beyond operational limits of tokamaks

High density favorable for divertor; control of fast-particle instabilties



MHD Activity is Sometimes Observed

m=2, n=1 pressure driven modes.
Sometimes also m=3 or 5
Does not strongly affect confinement (usually)

Alfvenic instabilities at low density

(2,1) tearing modes with significant |, <0
(increasing iota) and tokamak-like shear

High n instabilities at very low T,
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Observed Mode Structure Corresponds to Near-Edge lota (VMEC)
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Perturbed X-Ray
-\ Emissivity (Tomog.)

Mirnov-Ampl.
Polar Diagram
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* In both cases, MHD observed transiently during pressure rise.
Edge iota drops as f increases, due to equilibrium deformation.

e Strong ballooning effect at outboard side in X-ray and magnetic data



Linear Stability Calculations (CAS3D) Indicate
2/1 Should be Unstable

Mode Displacement & Perturbed Pressure 51755
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Low-mode Number MHD Is Very Sensitive

to Edge lota During Flat-top
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« Strong MHD activity only in
narrow ranges of external iota
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T * Equilibrium fitting indicates
strong MHD occurs when

- Mirnov Ampl. ! edge iota ~ 0.5 or 0.6
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Significant 1.<0 makes Tearing Modes at iota=1/2

iota increased by OI-II-CLllrrelnt
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Significant 1.>0 appears Tearing-stable

iota decreased by OH-current

3- L
o Average Beta #B2D8 | . |, > 0 decreases iota,
— reduces tokamak-like shear,

™ " makes flat or reversed shear
10— i
< i L« lota and shear decrease reduces
s L confinement and B

0] f
400{ SX-Temp. L+ No tearing modes observed for

|, > 0, even when crossing
iota=1/2 or 1/3 ! Possibly
indicating neoclassical-tearing
stabilization

- As T, drops < 200eV, see high-
mode number MHD activity.
“Low T, instability”
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Equilibrium Reconstruction Required

Need to reconstruct self-consistent equilibrium for further analysis:
pressure and iota profiles, plasma shape

* Available data:
— 45 point single-time Thompson scattering system
assume p; = p,, due to very high density = short equilibration time
— 19 magnetic measurements, R~
including: . A\
segmented Rogowski,
flux loops,
diamagnetic loops

o
P

pressure profile and 2 moments of current profile.

« Adapted STELLOPT design-optimization code to be a free-boundary
equilibrium reconstruction code
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Magnetic Diagnostics are Sensitive to Current

F Model: uniform Zeff

Fit
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Relative Current Magnitude
« Small, but significant current inferred from equilibrium fit.
Estimated uncertainty of magnitude approx. = 20% from Rogowski segments

 Fitted current is larger (in outer region) than model calculations of net current
from beam + bootstrap + compensating Ohmic currents. Calculated currents

Inconsistent with magnetic measurements.
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Reconstructed Self-Consistent Equilibrium
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« Reconstructed equilibrium of $=3.4% plasma

» Lower central iota, flatter profile
* Central =8.0%
» Edge pressure pedestal: present in many (but not all) high-  plasmas
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B depends weakly on Pz at low B

*» 4—[3 = 3%
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- <B>=09T, B,/<B>=0.021
* Indicates T x P075 for these plasmas! Much stronger than typical!
May indicate some limiting mechanism at high
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