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Stellarators & Tokamaks: Key characteristics

•  Both: toroidal toroidal magnetic confinement configurations,
•  Tokamaks:  Axisymmetric           Stellarators:  fully 3D shaped
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Stellarators & Tokamaks: Key characteristics

•  Tokamaks:  Rotational transform (iota = 1/q ) or Bp produced by
                       plasma toroidal current
→ Control q-profile & shear via current
→ Sustain configuration using external current drive,
                                       & high-bootstrap currents

•  Stellarators:  Most or all of the rotational transform due to 3D shape,
   not plasma current
→ Control magnetic rotational transform & shear from external coils
→ No need for current drive to sustain configuration.  Naturally
    compatible with steady state.

•  Stellarators are typically disruption free
   Equilibrium is not lost due to changes in pressure or current.
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Stellarators & Tokamaks: design flexibility

• Tokamaks:  ~4 shape parameters for design
• Stellarators:  ~40 shape parameters

→ Can control more aspects of physics in stellarator design
    (e.g. reversed shear, higher stability limits)
→ Lack of symmetry direction => must design more aspects of
physics in stellarators
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Stellarator Flux Surfaces May Be OpenStellarator Flux Surfaces May Be Open
Sensitive to Resonant PerturbationsSensitive to Resonant Perturbations

separatrix

•  W7-AS control coil current scan, vacuum
•  Stellarators have vacuum flux surfaces
•  Similar sensitivity in tokamaks, but no vacuum equilibrium
•  Use trim coils in both configurations to control field-error effects
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Stellarator Flux Surface Topology
Can change with Plasma Pressure

ICC/IM = 0.15
〈β〉 = 2.0%

ICC/IM = 0.15
〈β〉 = 2.7%

•  Plasma-pressure generated currents
(diamagnetic, Pfirsch-Schluter, bootstrap)
can produce resonant perturbations,
changing flux surface topology

•  Similar to effect of pressure-generated
currents on tokamak equilibrium shape,
including equilibrium limits.  Tokamak only
has n=0.

•  Change in topology can modify plasma
confinement and pressure profile

•  Theoretically, finite plasma equilibrium
islands have the same physics as NTMs in
tokamaks, just  Ω=0.

VMEC
boundary
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Tokamak Operating Limits Set by Instabilities
• Tokamak β limit extensively studied:
     set by instabilities

– Ideal-like instabilities → disruptions
– Saturated instabilities: degraded
   confinement

• Density limits, q-limits also given by
instabilities

• Also see NTM saturation of
confinement; fish-bones, etc. 10
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W7AS:  〈β〉 ≈ 3.4 % : Quiescent, Quasi-stationary
• B = 0.9 T, iotavac ≈  0.5
• Almost quiescent high- β phase,
  MHD-activity in early medium-β
  phase

• In general, β not limited by any
detected MHD-activity.

• IP = 0, but there can be local
currents

• Similar to High Density H-mode
(HDH)

•  Similar β>3.4% plasmas
achieved with B = 0.9 – 1.1 T with
either NBI-alone, or combined
NBI + OXB ECH heating.

•  Much higher than predicted β
limit ~ 2%

54022
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W7-AS:  〈β〉 > 3.2% maintained for > 100 τE

• Peak <β> = 3.5%

• High-β maintained as long
as heating maintained, up to
power handling limit of PFCs.

• 〈β〉-peak ≈ 〈β〉-flat-top-avg
  ⇒ very stationary plasmas

• No disruptions

• Duration and β not limited
by onset of observable MHD

What limits the observed β
value?
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W7-AS Operating Range much larger thanW7-AS Operating Range much larger than
TokamaksTokamaks

•  Using equivalent toroidal current that produces same edge iota
•  Limits not due to MHD instabilities.  Density limited by radiative recombination
•  High-β is reached with high density  (favourable density scaling in W7-AS)
•  Almost all W7-AS high-β data points beyond operational limits of tokamaks
•  High density favorable for divertor; control of fast-particle instabilties
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MHD Activity is Sometimes Observed

• m=2, n=1 pressure driven modes.
    Sometimes also m=3 or 5
    Does not strongly affect confinement (usually)

• Alfvenic instabilities at low density

• (2,1) tearing modes with  significant IP < 0
    (increasing iota) and tokamak-like shear

• High n instabilities at very low Te
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Observed Mode Structure Corresponds to Near-Edge Iota (VMEC)Observed Mode Structure Corresponds to Near-Edge Iota (VMEC)

Perturbed X-Ray
Emissivity (Tomog.)

Mirnov-Ampl.
 Polar Diagram 

• In both cases, MHD observed transiently during pressure rise.  
   Edge iota drops as β increases, due to equilibrium deformation.
• Strong ballooning effect at outboard side in X-ray and magnetic data
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Linear Stability Calculations (CAS3D) Indicate
2/1 Should be Unstable

External global modes,
most unstable at low β

          −  C. Nuhrenberg

Mode Displacement & Perturbed Pressure 51755
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Low-mode Number MHD Is Very Sensitive
to Edge Iota During Flat-top

•  Controlled iota scan,
   varying ITF / IM, fixed B, PNB

•  Flattop phase

•  Strong MHD clearly degrades
   confinement

•  Strong MHD activity only in
   narrow ranges of external iota

•  Equilibrium fitting indicates
   strong MHD occurs when
   edge iota ≈ 0.5 or 0.6
   (m/n=2/1 or 5/3)

•  Strong MHD easily avoided
   by ~4% change in TF current
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Significant IP<0 makes Tearing Modes at iota=1/2
iota increased by OH-current

X-Ray Tomo.

• IP < 0 increases iota,
  increases tokamak-like shear

• Iota and shear increase, improves
  confinement and β

•  When iota=1/2 crossed near edge
   ⇒ tearing mode triggered
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iota decreased by OH-current
• IP > 0 decreases iota,
  reduces tokamak-like shear,
  makes flat or reversed shear

• Iota and shear decrease reduces
  confinement and β

•  No tearing modes observed for
   IP > 0, even when crossing
   iota=1/2 or 1/3 !  Possibly
   indicating neoclassical-tearing
   stabilization

•  As Te drops < 200eV, see high-
   mode number MHD activity.
   “Low Te instability”

Significant IP>0 appears Tearing-stable
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Equilibrium Reconstruction Required
Need to reconstruct self-consistent equilibrium for further analysis:
     pressure and iota profiles, plasma shape

•  Available data:
– 45 point single-time Thompson scattering system
   assume pi = pe, due to very high density ⇒ short equilibration time
– 19 magnetic measurements,
    including:
    segmented Rogowski,
    flux loops,
    diamagnetic loops

•  From SVD analysis: magnetic measurements sensitive to 3 moments of
   pressure profile and 2 moments of current profile.

•  Adapted STELLOPT design-optimization code to be a free-boundary
   equilibrium reconstruction code
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Magnetic Diagnostics are Sensitive to Current
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•  Small, but significant current inferred from equilibrium fit.
   Estimated uncertainty of magnitude approx. ± 20% from Rogowski segments
•  Three moments used to fit current profile,
    higher order moments used to force j(a)=0
•  Fitted current is larger (in outer region) than model calculations of net current
   from beam + bootstrap + compensating Ohmic currents.  Calculated currents
   inconsistent with magnetic measurements.
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Reconstructed Self-Consistent Equilibrium
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• Reconstructed equilibrium of β=3.4% plasma
• Lower central iota, flatter profile
• Central β=8.0%
• Edge pressure pedestal: present in many (but not all) high- β plasmas

p iota
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β depends weakly on PNB at low B

•  <B> = 0.9 T,  Bz / <B> = 0.021
•  Indicates  τE ∝ P-0.75, for these plasmas!  Much stronger than typical!
   May indicate some limiting mechanism at high β
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