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Equilibrium Reconstruction
• Use measured diagnostic signals to determine

current and pressure profiles, and hence the MHD
equilibrium configuration.

• Diagnostics
– Magnetic Diagnostics: magnetic  probes, flux loops,

saddle coils, Rogowski coils etc.
– Microwave Interferometry and Polarimetry
– Thomson Scattering
– Motional Stark Effect
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Equilibrium Reconstruction
• A classic Inverse Problem

– Forward problem, determine signals, given parameters.
Known Function S(p)

– We know (observe) the signals. What are the parameters?
Determine Inverse Function p(S)

– Use Maximum Likelihood / Least Squares.

• Axisymmetric: EFIT Code.
– EFIT is tightly coupled - the least squares iterations

proceed at the same time as the equilibrium iterations.

• Non-axisymmetric: V3FIT Code.
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V3FIT Code Design Goals
• V3FIT will execute fast enough so that reconstructions can be done

between shots.
– Implies tightly coupled equilibrium and reconstruction iterations.

• V3FIT will be flexible, easy to understand, maintain, and modify.
– V3FIT will be written in Fortran 95.
– V3FIT must be written in a modular fashion, with clear and consistent

data flow.
• The initial working version of V3FIT will use VMEC as the

equilibrium solver, and it will have magnetic diagnostics as the
primary signal.

• V3FIT will be designed with future enhancements in mind. Future
enhancements include:
– Adding new diagnostics and signals
– Changing  the equilibrium solver
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V3FIT: Variables
• X: Equilibrium state. (Quantities that change with each

equilibration step.)
– In VMEC, X = (Rmn, Zmn, λmn).
– No implication that X corresponds to a converged equilibrium.

• f: MHD forces. Very small in equilibrium.
• p: parameters. Input for Equilibrium Solver. np of them.

– The parameters are what the Equilibrium Reconstruction will
determine.

– Pressure profile (VMEC: parameterized as power series in s.)
– Either iota or current profile

• Iota profile (VMEC: Uses iota profile when ncur = 0.)
• Current profile (VMEC: Uses current profile when ncur = 1.)

–  External currents (free-boundary)
– Outer surface shape (fixed-boundary)
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V3FIT: Variables (cont.)

• D: Diagnostics, data that comes from an experiment.
– Magnetic diagnostics
– Microwave Interferometry - Polarimetry
– Motional Stark Effect, Thompson Scattering...

• S: Signals, either computed from a model [SM(p,X)] or
observed (computed from diagnostics) [SO(p,D) ]. nS of
them.
– To reconstruct an equilibrium we minimize the mismatch between

observed and equilibrium signals.
– Computing SM(p,X) is the forward problem.
– Often, the observed signal will be the diagnostic itself,
SO(p,D) = D. This is the case for magnetic diagnostics.
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V3FIT: The Inverse Problem
• ASSUMPTION - Gaussian Errors

– The probability of observations S0 is  proportional to:

– For actual observations SO(p,D),  we reinterpret the above
probability distribution to be the probability of the parameters p.

• Maximum likelihood, -> least squares.
– The most likely value of the parameter vector p will be where the

Gaussian distribution function is a maximum.
– Therefore, to find the most likely value of p, we minimize chi-

squared:
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V3FIT: Two Level Optimizer
• Upper Level : Reconstruction - change p

– Minimize chi-squared by varying p
– p: estimate < 100 parameters
– S: estimate about 200 signals
– Computing the Jacobian is feasible
– Try standard methods (Levenberg-Marquardt) for optimization.
– Hope that upper and lower level proceed to convergence at the same time.

• Lower Level: Equilibration - change X
– Equilibrium Solver (VMEC, or another solver)
– Minimize f by varying X (for slowly varying p)
– X: (100 modes)(100 Radial)(R,Z,λ) = 30,000
– f: ~ same number as for X, = 30,000
– Hessian df/dX very large (~109 elements), time consuming to compute.

 => have to be clever (hence VMEC).
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V3FIT Flow Chart

• Lots of possibilities for the "Compute Delta-p"
step.

– Jacobian estimation in here
– Algorithm for Delta-P

• Will need to experiment with how much to
iterate equilibrium solver in steps 2 and 5.

• Steps 4 and 5 may be combined: Add Delta-p
slowly, over the course of many equilibrium
iterations.
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V3FIT - VMEC Interface Schematic

• Interaction will occur ONLY through the eq_interface module and the runvmec
subroutine.

• V3FIT needs to have access to the object files of the equilibrium solver.

Rest of V3FIT

Module eq_interface

Subroutine runvmec

Rest of VMEC

~~~ V3FIT - VMEC Boundary
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Modules for Derived Types
• Derived types are implemented in modules (generally with names

ending in T)
• The derived types reflect the structure of the problem.
• All have subroutines to construct, destroy, and assign derived types.
• Module bsc - Biot-Savart Coil

– Derived type bsc_coil - a magnetic field coil
– Derived type bsc_coilcoll - a collection of bsc_coil
– Subroutines to compute A, B, gradients of B, magnetic flux through a

coil, rotate and shift a coil
• Module diagnostic_T

– Derived type diagnostic_desc - describe a diagnostic
– Derived type diagnostic_data - carry the diagnostic values

• Module signal_T
– Derived type signal_desc - describe a signal
– Derived type signal_data - carry the signal values
– Derived type signal_mrf - Magnetic Response Function
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Modules for Derived Types
• Module eq - Equilibrium

– Derived type eq_param_fix - Fixed parameters of the equilibrium solver
• Logical switches
• Array dimensions
• Numbers of modes
• Convergence, iteration parameters

– Derived type eq_param_var - Variable parameters of the equilibrium
solver

– Derived type eq_state - Equilibrium state, the X variables
– Derived type eq_aux_n - Variables computable from the state

• Module model - The model
– Right now, just contains a pointer to an eq_state
– Later may need to add on electron density, information about vacuum

vessel (for eddy currents), etc.
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Other Modules
• Module eq_interface - Interface with the equilibrium code (VMEC)

– Subroutine eq_init_file
• Read a namelist input file, and initialize the equilibrium code.
• Construct an eq_param_fix, eq_param_var, and eq_state.

– Subroutine eq_init_structure
• Input an eq_param_fix, eq_param_var, and eq_state
• Initialize the equilibrium code
• (Not yet implemented)

– Subroutine eq_step
• Iterate an eq_state for some number of equilibrium iterations

• Module signal_model - Computations that need both a signal and a
model
– Subroutine signal_model_compute

• Computes the solution to the forword problem, SM(p,X)
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Forward Problem - Magnetic Diagnostics

• Compute the magnetic flux through a diagnostic coil
– Have to integrate over all the source currents.
– Currents in field generating coils - effectively need mutual

inductances
– Currents in plasma - have to integrate over plasma volume

• Implemented in earlier codes V3RFUN and V3POST
• V3RFUN and V3POST being used to design magnetic

diagnostic for NCSX
• Sections of code from V3POST reused in V3FIT
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Forward Problem - Microwave
Interferometry and Polarimetry

• Signal for Interferometry is phase change along path of
microwave - proportional to the electron density

• Signal for Polarimetry is the change in the angle  of
polarization of the microwave - proportional to the
electron density times the parallel magnetic field.

• Coding for solution to forward problem is in progress.
• Will be implemented in existing structure of V3FIT
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Status

• V3FIT structural coding  is complete
• Modules for Derived Types coded, tested
• Interface with VMEC works.
• Implementation of microwave interferometry-polarimetry

in progress
• Next TO DO item - coding of reconstruction algorithm



Extra slides follow
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V3FIT: Variables (cont.)
• Why is there a distinction between Diagnostics (D) and

observed Signals (SO)?
– Because for some diagnostics, we can't compute what we expect

the diagnostic to be, using the MHD equilibrium information.
– Example of when an observed signal is NOT the diagnostic:

• Consider Te data along a chord through the plasma. The values of Te
along the chord are the diagnostic.

• We can't compute the Te measurements we expect from p and X, so
can't consider the Te values as a signal.

• However, we can use the Te data to constrain the flux surface
geometry so that Te is a flux surface quantity.

• If λ is a parameter along a chord through the plasma, then an
appropriate signal would be λouter(λinner), suitably discretized.

• We can calculate both an observed signal SO(D) from the Te
diagnostic, and an equilibrium signal SE(p,X) from the equilibrium
state.
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Correlations between Observations
• The covariance operator C:

– Diagonal elements are the variances of the signals:
– Off-diagonal elements contain information about the correlations

between the signals.
– No correlations between the different signals - set the rij to 0.
– Note how the covariance operator takes care of the differing

dimensions of the signals.
– Given a probability density f(x), the mean is:
– The Covariance is (in component notation):

– The normalized Gaussian probability density:

has mean x0 and covariance C.
– Even for a linear problem, the correlations can change the most

likely parameter value.
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Normalized Variables
• Normalize the parameters and the signals:

• Error:

• chi-squared:

• weights

• Jacobian:

• Gradient:
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Minimization
• Following Numerical Recipes, 2nd edition, section 15.5.

• Following NR and everybody else, drop the second derivative term in
alpha.
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Minimization (continued)

• Two Algorithms
1) Steepest Descent - go downhill fast.  Implies

2) Hit minimum when gradient is zero,

Set gradient to zero, solve:
• Levenberg -Marquardt:  Clever way to interpolate between these two

algorithms.

–  λ small, solving for gradient = 0.
–  λ large, matrix diagonally dominant, steepest descent-like step.
– More signals than parameters, use SVD to get approximate inverse.

• Levenberg - Marquardt step (in λ -> 0 limit) with SVD minimizes

– np equations, np deviations    . Expect zero minimum.
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Jacobian Calculation and Update
• Consider three types of Jacobian calculations.

– Separately computable (I don't like this phrase. Got a better one?)
– Finite Difference
– Broyden Update

• Illustrative Example. Split the parameter vector into pieces.

– aec - all external currents (helical coils,  VF coils, correction coils, etc.)
– acp - current profile parameters
– app - pressure profile parameters
– aother - other parameters
–          - unit vector in kth slot of external current portion of the a vector.
– Current, pressure profiles are function of the VMEC radial variable s.

– g, h are basis functions for profiles. l(k) and m(k) convert index values.
– Assume Signals are magnetic diagnostics.
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Jacobian - continued
• The magnetic diagnostic signals are linear in the currents.
• For external current parameters:

– Doesn't depend on approach to equilibrium. Compute once, and don't
update.

• For the current profile parameters:

– Depends on flux surface shape. Update as the equilibrium iteration
proceeds.

• These two are examples of what I call "Separately Computable"
Jacobian elements. We use physical knowledge about how the
signals depend on the parameters.
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Jacobian - Finite Difference

• Define the iteration operator T for the equilibrium solver:
– Takes a state X0 and iterates it with the equilibrium solver m times, using the

normalized parameters a.
–  Tm(a,X0)=Xm

•  Jacobian:

– m = 0: fixed geometry. (Probably won't work for pressure profile parameters.)
– m ≥ 1: allows geometry to change.
– m -> Infinity: Using fully converged equilibria to compute Jacobian. Implemented

with STELLOPT.
•   How important is accuracy of signal computation?
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Jacobian - Broyden Update
• Assume we started at parameter values an, with computed signals
yM(an, X(an)). A new set of parameters an+1 are computed, and
equilibrium X's iterated some more toward convergence, and new
signal yM(an+1, X(an+1)) computed. We would like to update the
Jacobian Jn we computed earlier, so that it will satisfy:

• The new Jacobian gets the most recent change correct.
• Best way to do this is the Broyden update:

• Root find with Broyden update - similar to secant method in one
dimension.
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VMEC Flow Diagram

READIN
read in namelist

read mgrid file

FUNCT3D

computes MHD forces

for snap-shot R,Z,L values

EVOLVE

time step R,Z,L

toward equilibrium

EQSOLVE
time step control

allocate, initialize arrays

FIXARAY
initialize fixed array

RUNVMEC
controls vmec run

Program VMEC

Main Program


