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e Isobe, M., “Experimental study on energetic ion behavior in
Compact Helical System(CHS)”
— Confinement of tangential NBI
— Diagnostic neutral beam study of loss cones
— Enhanced NBI losses from MHD activity
— ECH driven 1on tail formation
e Murakami, S., “Study of Magnetic Field Optimization Effect on
Energetic Particle Confinement in LHD”
— Plasma transport and energetic ion confinment in LHD with variable axis
shift
— Different optimizations for thermal transport (R = 3.53 m) and energetic
ions (R =3.6 m)
— Alpha losses suppressed in a reactor LHD to < 2%



Y. Nakamura - “Theoretical Study of the Bootstrap Current in Heliotron
J Plasmas”

— Uses VMEC2000 + SPBSC (bootstrap model with connection formulas)

— Finds agreement with Heliotron-J data as inner vertical field current is changed
(this varies bumpy component, iota, and vertical elongation)

S. Nishimura - “Neoclassical Transport in Advanced Helical Devices”

— Momentum conserving corrections to DKES allows calculation of: flows, viscosity,
bootstrap current (develops improved connection forumulas)

— Impurity transport -> applied to CHS
Y. Suzuki - “Application of 3D MHD Equilibrium codes to Helical system
Plasmas”

— MHD equilibrium studies/comparisons between VMEC/PIES/HINT

B. Blackwell - “Recent Results from the H-1 Heliac”

— New method for measuring flux surface quality: visible emission Doppler
spectroscopy

— Configurational effects on particle confinement and MHD fluctuations



Escaping fast ion diagnostic in CHS

» Two lost fast ion probes(LIP) based on a ZnS scintillator are installed in CHS to measure
spatial distribution of beam ion loss.

* LIP provides both information of pitch angle and energy of lost fast ions simultaneously.
* LIP is mainly used for study on effect of MHD on fast ion transport.
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FB type mode enhances beam ion loss to large R side

* In CHS, periodic recurrence of the fishbone(FB) type bursting mode have been
observed in co-injected NBI plasmas at B, of 0.95T.

» Beam ion loss to large R side are periodically enhanced while MHD activities occur
and coincides with the timing of fluctuation.

Beam ion loss to large R side detector
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Low freq. mode (~5kHz) enhances loss of counter-going beam ions
to small R side

* In order to look into interaction between MHD mode and counter-going beam ions,
Into co-injected NBI plasmas.
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 Bursting MHD activities are excited
by co-injected heating NB.

* First, high freq. mode(~30-40kHz)
appears and then switches to low freq.
mode(~3-5kHz).

» Barely counter-passing fast ions are
lost in the timing of low freq. mode
and their energy is about 10-15keV.

» Expulsion of fast ions to small R side
due to high freg. mode is not seen.

 Large R side probe does not detect
periodic loss during low freqg. mode.



B(m,n)

Mod-B Profile of LHD Configurations
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Neoclassical Transport Optimized Configuration

Neoclassical transport analysis (by DCOM) s. Murakami, et al., Nucl. Fusion 42 (2002) L19.
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+ We evaluate the neoclassical transport in inward shifted configurations by DCOM.
+ The optimum configuration at the 1/p regime => R =3.53m.

(B <2% inside r/a=0.8)

+ A strong inward shift of R, can diminish the NT to a level typical of so-called

"advanced stellarators''.
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R,, dependency (NDD-FNA)
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Comparisons with Simulation Results

The count rates are evaluated using a flux averaged beam ion distribution
by GNET simulation.

5 We can see the similar tendency of beam ion distributions.
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[ 2. Experimental observation of the bootstrap current in Heliotron J }

* Change of the direction of the bootstrap current was observed in H-J experiments
when the IV-coil current is varied.
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Bootstrap Current Coeffr cients (3)

Off- dlagonal coefficients N* (drrvmg force)
10 S

--0--0--0--O--0--C---0O--0-

102 +N (symmetric) & P -: e, axisymmetric
5+N "(total)
pe .__I\l_(ag/mmetric)
-
L]

)

: “o‘ i
:0 05 . +N ’ “O s
o (aﬁymme”'c) E v =10e3,30e3[T]

6 4n5 4nd 4n3 A2 1 0 1 -10 - wl wd al a1
\Y m

B=B[1-¢ cosOg+¢, cos(l3—nly )], 72, n=10, B=1T, y=0.15Tem, y/=0.4Tem, B ,=0,
B =4Tem are assumed. For various configurations with 0<¢, <0.1 and 0<g, <0.1, The
analytical expressions for the banana regime derived by Shaing, et al., show good
agreements with the numerical results. The effect of the local and global structure, with
different field strength variation(dB, &) and characteristic length(L ), are well separated.




Diffusions and flows including those of impurity
calculation with the parameters in CHS (N-1TB)
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Comparison between HINT and PIES codes

By calculation of HINT and PIES, ‘standard configuration’ of Heliotron J

has magnetic islands for finite beta equilibria (>0.5%). Both results are similar.
*Resonances 4/7 and 8/15
By =1.5% p=p1-sy *Phase
Details are slightly different
PIES .
HINT *[sland width

*Position of resonance 4/7
*Shape of surfaces

Why?

Difference of scheme
Difference of coordinates

Detailed comparison is required.




Application of HINT code to other configurations

MHD Equilibrium of double axes configuration in LHD (preliminary results)
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Properties of finite B equilibrium
*horizontal shift is very small but vertical shift from equatorial plane is large.
«X-point inside separatrix slightly moves outside of tours.
Structure of magnetic field lines outside separatrix is stochastic.

Horizontal elongated configurations are studied in progress.



Configuration Mapping in Plasma:
Visible Emission Doppler Spectroscopy

o “MOSS” Doppler spectrometer with 55 views - 2D imaging

e Time-resolved inversion

from a single shot, with
constraints

— e.g. magnetic surfaces

» Shot averaged inversion
with no flux surface
assumptions

vacuum
wall

800 mm

optical fibre bundles



Standard configuration
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Extreme test configuration — iota~3/2

"Tadpeole" Canfiguration. Reconstruction over 35.5mr Calculation
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