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Stellarator B—limit Are Not Understood

- Tokamak B limit extensively studied: | fokamak = e

set by instabilities L (I\|/IA) | | |

— ldeal-like instabilities — disruptions | "

— Saturated instabilities: degraded 1
confinement 0

* Historically: stellarators designed T T T
using idealized criteria: Mercier criteria
and resistive-interchange stability.

» Stellarator  limits not yet observed o
— Heliotron-E and CHS achieved - Mirnov "_
B~2%, tranSpOI’t/power I|m|ted 0: | '|"I‘|r M L

— Recently, LHD achieved ~3.2%, i
transport/power limited A0
In both CHS and LHD, these plasmas Time (sec)
acyjolate Mercier criteria n="1 TR e



Wendelstein 7-AS
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2m, minorradiusa<0.16m,B<25T,

* 5 field periods, R

rotational transform 0.25 <1_, < 0.6
» Non-planar modular coils produce helical field

* TF coils, for adjusting rotational transform 1 and avoiding resonances

 Not shown: OH-transformer, vertical field coils

control coils (two per field period) for controlling edge islands
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Highest (B) = 3.4 % : Quiescent, Quasi-stationary

VY7-AIS ‘#I-SG?OSI | l l | | |

}-\\}erage Beta'l
R \

eB=009T,iota_,= 0.5, B,/<B>=0.026

ext

e Similar to High Density H-mode (HDH)

e Almost quiescent high-3 phase,
MHD-activity in early medium-f3 phase

e |5 =0, but there can be local currents

e In general, B not limited by any detected
MHD-activity.

e Duration of high-3 phase ~ 75 1,
quasi-stationary with density control
and low radiated power

o 7,/ 1 = 2-3 from impurity injection
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Pressure Driven Modes Observed, at Intermediate 3
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e Dominant mode m/n = 2/1.
e Does not inhibit access to higher 3! Why does it saturate at low level??
e Modes disappear at high B (due to inward shift of iota = 727?)
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Equilibrium Modeling and Analysis

Primary tool is free-boundary VMEC (courtesy of S. Hirshman, ORNL)

In order to match experimental boundary conditions and measurements,
the STELLOPT optimizer (which uses VMEC) has been extended
towards a proto-reconstruction code for 3D systems.

Computes maximum plasma volume constrained by PFCs
= B is a lower limit (volume might be reduced due to edge islands)

Can self-consistently fit to Thomson scattering data to determine
pressure profile shape

— Not fast. ~ 1 hour per case (parallel Power4)
due to using complete VMEC runs during fitting process
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Thomson Scattering Data Well Fit by
STELLOPT Pressure Profile

= Fit
35000 1 * Thomson data {
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« Thompson pressure profile mapped to equilibrium and
fit to 10" order polynomial in flux. One-sigma error-bars.
* Volume integrated pressure normalized to match diamagnetic measurement
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Linear Stability Calculations (CAS3D) Indicate
2/1 Should be Unstable, even at low (3 !

Mode Displacement & Perturbed Pressure 51755
9o edge iota and natural resonances
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 LHD observes saturated
m/n = 2/1 modes at moderate 3

— does not prevent access to

higher 3

« 2/1 mode disappears for > 2.3%

« Some correlation between
observed mode and theoretical
linear-stability threshold

* Typically, lower collisionality than

WT7AS

* Why do they saturate?
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B depends weakly on B in W/7AS

3.5

m - P'n' = 3.9 MW
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3 " Fixed plasma shape
25 Plasmas quiescent
< 2 No MHD Activity
N
S 15
1 _
0.5
0 ! ! ! ‘ ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14

Average B (T)

 Indicates energy confinement o« B'®! Much stronger than usual!
« AtB=0.9 T, <B>is almost independent of heating power!
Energy confinement oc P, 5/ |

« May indicate B is constrained, but what is mechanism?
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B May be Limited by Deterioration of Equilibrium

S :
| eq“"ﬂﬂt'f,f 09T
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Rotational transform (external)

e Constraint on highest-f may be due ‘equilibrium B-limit’
where axis shift ~ 72 of plasma minor radius ??

e |n previous calculations, this shift generated large equilibrium islands =
= confinement degradation

e Calculations underway to assess flux-surface deterioration
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Control Colls Designed to Control Edge Islands
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« Calculated vacuum flux surfaces
 For vacuum, maximum volume is obtained with |_.=-0.7kA
 Control coils designed to control island divertor
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B is sensitive to Control Coil Current
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« <B>=125T

» Low-[3 phase approximately agrees with vacuum calculations

* High 3 phase optimizes with much higher Control Coil Current
* Indicates the importance of islands to confinement.

* Preliminary PIES calculations: all mainly stochastic at high 8 ?
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Initial Non-Linear Two-Fluid Indicate
Possible Higher B-Limit for NCSX

Single Fluid (resis. MHD) Two Fluid

<B>=7%

Magnetic
Flux Surfaces

ExB Flow
Surfaces

L. Sugiyama, H. Strauss

* Preliminary M3D calculations. Fixed boundary.
« Two fluid: finite gyro-radius and self-generated flows stabilize equilibrium
» Does not include neoclassical effects yet. Should increase stabilization.
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Conclusions

* Quasi-stationary, quiescent plasmas with 3 > 3% easily produced in W7-AS.
Maximum 3 ~ 3.4%.

— Far above predicted linear stability limit to low-n ideal modes !

« Maximum B-value appears to be controlled by changes in confinement, not
strong MHD activity

— No pressure-limiting modes or disruptions observed
— What is limiting mechanism? flux-surface quality (‘equilibrium limit’)?

* Pressure driven MHD activity is sometimes observed
— Typically saturates at ~harmless level. \Why?

» Situation appears similar on LHD

* Preliminary two-fluid non-linear MHD calculations may indicate two-fluid
stabilization of NCSX at higher 8 values...?

* How to design future machines? What is maximum 7
— Tokamak criteria are not consistent with stellarator experiments !
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VMEC Agrees with SXR Tomography

Current-free plasmas
X-Ray Tomograms . Axis Shift (X-ray + VMEC)
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