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-Zonal flows (ZFs): primarily poloidal ExB flows due to a radially-
varying (m,n)=(0,0) potential ¢,(r,t), driven by the turbulent
nonlinearities in the kinetic equation:

(0, + Ho)5f(z,t) = —hfy — héf, with A = {, A}.

-Believed important in suppressing turbulence, hence anomalous
transport.

-ZF issues addressed here:
|.Shielding of ZFs.

ll.Longer-time evolution of ZFs.



|.Shielding of ZFs:

-Rosenbluth & Hinton[1] (PRL, '98) showed that in tokamaks, a (0,0)
nonlinear (nl) source S(t) would be shielded by the plasma, producing a ZF
amplitude k 2¢, = 411dp*Y/ D, with external charge density perturbation
dp¢ ~[dt S, and dielectric D(k,w) = (k. Ap)2g(k,w), with

g = k? pg? (1 +c,g%/g/"?) = k2 p,2 +F K ? p,2, c,=1.6, F,=(2/m) 2.

-The 1st term g9=k 2 pgi2 comes from the gyromotion-associated “classical”
polarization shielding & polarization current Jr9, and the 2" term g°= F, k 2 p, 2

(with p,? = p,? g?/e;) comes from an analogous bounce-associated
“neoclassical” (nc) polarization shielding & current JrP.

-Sugama & Watanabe[2] (PRL,’05, PoP,’06) did an analogous calculation for
stellarators, finding those same 2 shielding terms, but with gb of more
complicated form, due to the extra complexity of stellarator orbits & phase
space, plus an extra, drift-related term g¢= F,, with F =(2/1)¢,">=fraction of
helically-trapped particles (trapping index t=h).

As in [1], their calculation is collisionless, and does expansion of kinetic eqn
in py /L & bounce & drift-avging to compute of.

-Shaing[3] (PoP,’06), using “moments method” formulation of transport,
computed “t-dependent viscosity” in the 1/v regime, effectively obtaining g in
that higher- v regime.



-Here, we solve the same linear-response problem as [1,2], but using the action-angle
(aa) formalism (Kaufman[4], PF ('72)). This allows us to treat the complicated
magnetic geometries and particle orbits of tokamaks and stellarators, and the gyro,
bounce, and drift timescales 1, ; in @ more uniform manner, without having to do
expansions & avging of the kinetic equation as in [1-3], and to obtain more general,

transparent results for the dielectric D = 1+ X x..

-Method recovers expressions for drift contribution g9 in [2,3], & generalizes it
to wider range of physically important situations.

As noted in [2], in contrast to the gyro and bounce portions go°,

electrons as well as ions can contribute to g¢

-We then use this improved description of D to study the longer-timescale, diffusive
evolution of ZFs.



-Polarization shielding:
-Radial excursions on each of the 3 timescales enable particles to partially shield an

external potential.
T PR 4r8p, = —K* 7,09 =~ 9,476

gyro

bounce drift

Q,>>Q) >>0Q,



-Action-Angle (aa) Formalism:
-Reparametrize phase point z from more directly physical set (r,p) to
(0,J), with J £ the 3 action invariants of the unperturbed motion, and

0 = their conjugate angles.

-Collisionless (v=0) motion governed by a Hamiltonian H(z)=H,(J)+h(z,t),
with unperturbed & perturbing parts Hyand h = e d¢(r.t).

-In aa-variables, the particle motion is very simple:

6 = OyH = Q) + dyh ~ Q(J). (1a)
J = —9gh=—iY In(I,t)exp(il-0), (1b)
1

h(J) = (27)7 ¢ d@ exp(—il - )h(z) .

Then the Vlasov equation may be written
(8f + Hﬂ)gf(zﬂ t) = —aJ - anD + S(Ea t)jﬂ (2)
with Hy = {,Hy} = Q- Jg & specified source function S(z,1)f, = —{4f, h}

This gives  Go 0fi(d,w) =il- dy fola (T, w) + (T, 1 = 0) + Si(T, @) fo

with  Gy' = (—iw+il-Q + vy)



Then computing the density via
‘5105 fdzp X|Z)5f( ) — ‘5.-05,_4+B+C‘(X1W)

with charge density kernel p(x|z) = e¢,d(x — r(2)) , one finds
dpsalx,w) = /d}("ﬁ's[x, x', w)do(x',w) (3a)
Spspic(x,w) = (2m)° f dJ pr{X|J)GG[5fSI(J,t = 0) 4+ Sa(J,w) fs0] (3b)
1

and response kernel

Ko (x,x ,w) = (zw)3fdJZpr(x|J) L 9afs0 (x|T)

[ Q —w— i (4)
= KO+ () [ 3= )
with adiabatic term  K(x,x') = e,6(x — X) [ dzp(x|2)0u, f0
-For a local Maxwellian form fu(J) = - ﬂ"}*’} o7z expl=(Ho = €@)/T) (5)

one finds Ki(x,x') = —=1/(4mA}(x))d(x — x)



-Example: Slab geometry:

-Magnetic field: B = 20,4 = Vi x Vy, ¥ (x) = A, (z)

-Hamiltonian: Ho(r,p) = (p2 + p?)/(2M) + (py — Ay (2))*/(2M) + e®(z)
-Transform from (r,p) to aa variables:

8 =(0,,5,2).3 = (J, = (Mc/e)u,p, = &b = £4(3).p.)

-Using eikonal form for mode structure,
da(X) = G )f“ﬁ{pwﬁa( ), with 7, (x f dz' ky(2') + kyy + k,2], find

[ dx¢*(x)8psa(x) = — [ dazV'|py|* ( ) \s(k,w), with susceptibility

w—wl,
)(s(kaw) — (;‘“}"S) gs(k,l'.d)), gS(k’w) — 1 o Zgg<ffi(zg)w—l-ﬂ+;vf$},

where z, = kyp,and - Q = [, Q, + k,y + k,v..




-Toroidal geometry: Magnetic field given by:
B =Vy xV0+V({x V¢, =V x Va, a, =0 — (.
B(x) = B(r)[1 — e(r) cos @ — 8,(x) cos 1] én(r) = {0), no = ng{ — meb. (6)
-Specialize aa variables to
0 = (0,000, ~a,),F=(J, = (Mcje)p,Jy,Ja >~ (e/c))
-Using eikonal form for mode structure

ba(X) = @a(r) expina(x) na(x) = [["dr' k. (r") + mf + n(]

one obtains radiaIIy -local response equation:

a[c‘?fsl(t = 0)/ fs0 + Sa(w)]
Z)‘ Z WL Q+ivy) )

k*D(k,

with IQ_I Q, +IQ +I O

D(k,w) = 1+ %, xol(k,w), xslk,w) = (kX) g (k,w)) (8a)
_ . w — wi, (8b)
g(k,w) =1 - ;ua.awnzw ot

Using orbit description
r —rq = orld(6;) + 6r1®(8,) + 5?"{9][9§} ~ pgcos by + p, cost, + p, cos b,
obtain orbit-avging factor

d@ ” . _
Gla(']) = % (2?1‘)‘ 6—119 a(r) — f.ﬂg( )fgb( )f,gi( ) _I':“, with Zg,b,d = I(rlog,b,d (9b)

(9a)



Have z,, < 1,=, = >, in 0K o)

-For w >>Q), , integrand in (8b) about constant over |-range Aly ~ 2z,

over which integrand appreciable, so one can do summatlon using Z,J,z(z) =1
-For w<<Q,, sum dominated by l, =0 term. Thus, have limiting forms

gs(k,w) ~ 1 — Agy(by,b5), (w > Qy),
gs(k,w) >~ 1 — Aog(b,, by, by), (w < ).

(10)

where ﬁgd(z}g,bb,bd) = (f;ffff}, 1‘\05(&_@.,{}'5) = ﬁgd(bg,bb,bd = U) = (f;fg),
Ao(by) = Aop(by, by = 0) = (JE} = Ig(bg)e‘bﬂ,
Sova = Jo(Zgpa)s bg = kipjp, by = bng/(FfﬁtU ), ba = K par. por = vr/S
-Approximately evaluate A,y using expansion J, (z)~1-(z/2)":
ﬂgd(z}' bbabd} ~ 1 — %{ } e %( ) %{zﬁ} =1 — bg e Ficbbb e icdbds
with ¢, >~ 3v2/m >~ 1.4, ¢g >~ (15/2), F, = (2/7)\/ 26,
-Thus,
gs(k,w) ~ b, + Fiepby, = ¢7 + 9'51 (w > Qy), (11)
gs(k,w) ~ b, + Fiepby + Freqby = g7 + 9‘5 + Q‘fa (w <K Q).

10



-Notes on these results:

-While g 9° << g9®, can have g_¢ ~ g, because
while p, 2 <<p,,' , have pse~py .

-For v.>Q, (eg, in 1/ v —regime), successive | -peaks broaden until dominant Al =z
harmonics overlap, and again lose drift-avging contribution g9 to g.

-Goal of nc transport optimization is basically to reduce F, or p,~vg,/Q,, either by
decreasing vy, (eg, with QS designs), or by enhancing €, (eg, by operating at electron root).
See from g4 =~ F, (k. py)? that this is also has the effect of reducing the

drift-shielding g9, hence of enhancing the ZFs.

-Note correspondence between each polarization-shielding mechanism, and
A corresponding ‘branch’ of collisional transport:

Transport mech j: D! Polarization shielding gl
classical transport D9 gyro (classical) shielding g9
axisymnc “ Dbt bounce-nc shielding gbt
helically-sym nc “ Dbh bounce-nc shielding gbh
superbanana “ Ddh drift-nc shielding gbh
banana-drift ¢ Ddt drift-nc shielding gbt

DI =F, v; (Ar;) 2, g =F, (kAr,) 2 (12)

=g'/g’ z(DJ"/DJ’)(vfj/vfj.) 11



-Rel'n to Sugama & Watanabe[2] calculation:

They obtain g° ~F, , instead of g° = F, (k. p,)> above.

-Reason: Ordering or the kinetic eqn in [1,2] neglects Q,0, & . Thus, they
are working in the limit p, ®V,, /€, = 0. Inthat z, >« limit, above form
for A4 recovers this:

Agg = (1=by)[F, (1=by) + R (1-by) + F(I5)] (13)

z4—0

——=——(F,+k +F)-b, —Fb, - Fb,

Zd —>00

—=——(F, +F)-b, —Fb,

-Rel'n to Shaing[3] “t-dependent viscosity” calculation:

Uses moment-method formulation of transport, where I'" ~(B,-V-7).

Orders bounce-avged kineticeqn 9,6 f ~ —rd, f, + C4 1,

in 1/v and banana regimes in (1) (2) 3) (14)

“zero-frequency” limit (neglect (1)): Compute TI°,7 from standard

soln of,, ~to, f,/v, of (14), and B

“high-frequency” limit (neglect (3)): o ~fo f,/y ,where 0,0f —> yf

This result can be recovered from (Ig=0 , 1,=0, 1,=£1) limit of aa sol'n

of = Zéf,d exp(il,6,), taking w—iy: 4§f ~ %-U_;_:”&_jh/[ﬂd —i(y + wvp)]e? + ce.
Id

12



-Longer (diffusive) timescale ZF evolution:

-From surface-averaging Ampere’s law, one has 8t Er =—47) . (13a)
where E = <Vr : E>, and
J, =(Vr-J)=(4n)" 2O,E, +o(E, ~E,)+F, /B (13b)

Here, F = force exerted by turbulence normal to B in a surface (assumed random),
o =0 (nonambipolar particle transport flux), and ¥= dielectric shielding (as before).

Putting (1b) into (1a), one has a Langevin-like equation (here in w domain):
—loE(0)+ye(w)E(w) =Cs(w),  E=E -E, (14)

where y¢ (o) =4nc6/D(w), c(w) =- 4nF/B D, and D =1+ .
-For D(w)=D,, w-independent, becomes standard Langevin eqn

OEM)+7:E(t) =c, (D), (15)
res{oring term Induces difl‘ousion, with diff.coef
D, = [dr <c,(t)c,(t-7) >, (16)
0

13



-Probability distribution function p satifies

0, P(t) = 0g (Dg0e p+ ye EP),

resulting in

O, <E> =—yg <E>

1
Eat <E’> =D.-ye <E’>_.

-See here the balance between diffusion & the restoring toward E =E .

-In steady state, these give

P(E)= p,exp(-yE*/2D.), and <E’ > =Dg/ye.

(17)

(18)

(19)

(20)
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-Summary:
|.Shielding of ZFs:

-Have used aa-formalism to obtain succinct, generalized expressions for
polarization shielding function g=ge+g°+g? , valid for arbitrary p,, 4, or z,, 4.
Recovers results of previous work[2,3] in appropriate limits.

-In same limit z;<<1 taken for z,,, form for g¢ =F, (k Ar,) 2analogous to those
for gob .

-Each shielding mechanism [g) =F; (k Ar;) 2] corresponds to a collisional
transport mechanism: Di =F v, (Ar)) 2.

-Thus, as suggested in earlier work, neoclassically-optimized stellarators should have
less damping of ZFs, tending to also diminish turbulent transport.

ll.Longer-time evolution of ZFs:

-Governed by a Langevin-like equation for E=E_—E_ , resulting in
evolution equation for the pdf for E 0, p(t) =0¢ (D:0c p + 7 EP),

with diffusion coefficient Dg ~1/9* & restoring force y. ~1/¢

Making <E* > =D¢/y. ~1/9 decrease with increasing g.
15



END
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