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-Zonal flows (ZFs): primarily poloidal ExB flows due to a radially-
varying (m,n)=(0,0) potential φZ(r,t), driven by the turbulent 
nonlinearities in the kinetic equation:

-Believed important in suppressing turbulence, hence anomalous 
transport.

-ZF issues addressed here:

I.Shielding of ZFs.

II.Longer-time evolution of ZFs.
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I.Shielding of ZFs:

-Rosenbluth & Hinton[1] (PRL, ’98) showed that in tokamaks, a  (0,0) 
nonlinear (nl) source S(t) would be shielded by the plasma, producing a ZF 
amplitude kr

2φZ = 4πδρxt/ D,  with external charge density perturbation       
δρxt ~∫dt S,   and dielectric D(k,ω) = (kr λD)-2g(k,ω),   with                                      
g ≈ kr

2 ρgi
2 (1 + cbq2/εt

1/2) ≈ kr
2 ρgi

2 +Ft kr
2 ρbi

2,        cb=1.6, Ft ≈(2/π) εt
1/2.

-The 1st term gg≡kr
2 ρgi

2  comes from the gyromotion-associated “classical”
polarization shielding & polarization current Jpg, and the 2nd term gb ≈ Ft kr

2 ρbi
2 

(with ρbi
2 = ρgi

2 q2/εt) comes from an analogous  bounce-associated 
“neoclassical” (nc) polarization shielding & current Jpb.  

-Sugama & Watanabe[2] (PRL,’05,  PoP,’06) did an analogous calculation for 
stellarators, finding those same 2 shielding terms, but with gb of more 
complicated form, due to the extra complexity of stellarator orbits & phase 
space, plus an extra, drift-related term gd ≈ Fh, with Fh ≈(2/π)εh

1/2=fraction of 
helically-trapped particles  (trapping index τ=h).  

As in [1],  their calculation is collisionless, and does expansion of kinetic eqn
in ρg,b/L & bounce & drift-avging to compute δf. 
-Shaing[3] (PoP,’06), using “moments method” formulation of transport, 
computed “t-dependent viscosity” in the 1/ν regime, effectively obtaining g in 
that higher- ν regime.
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-Here, we solve the same linear-response problem as [1,2], but using the action-angle
(aa) formalism (Kaufman[4], PF (’72)). This allows us to treat the complicated
magnetic geometries and particle orbits of tokamaks and stellarators, and the gyro, 
bounce, and drift timescales τg,b,d in a more uniform manner, without having to do 
expansions & avging of the kinetic equation as in [1-3], and to obtain more general,
transparent results for the dielectric D = 1+ Σs χs.

-Method recovers expressions for drift contribution gd in [2,3],  & generalizes it
to wider range of physically important situations.
As noted in [2], in contrast to the gyro and bounce portions gg,b, 
electrons as well as ions can contribute to gd

-We then use this improved description of D to study the longer-timescale, diffusive 
evolution of ZFs. 
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-Polarization shielding:
-Radial excursions on each of the 3 timescales enable particles to partially shield an
external potential.

δφλδφχπδρ 224 −−=−≈ ssss gk

gg V Ω= ⊥ /ρ

φ1 φ2 

Er bBtb V Ω= /ρ
Er

dBtd V Ω= /ρ

Er

gyro
bounce drift

dbg Ω>>Ω>>Ω



-Action-Angle (aa) Formalism:
-Reparametrize phase point z from more directly physical set (r,p) to 
(θ,J), with J ≡ the 3 action invariants of the unperturbed motion, and
θ ≡ their conjugate angles. 
-Collisionless (ν=0) motion governed by a Hamiltonian H(z)=H0(J)+h(z,t),
with  unperturbed & perturbing parts  H0 and  h = e δφ(r,t).
-In aa-variables, the particle motion is very simple:

(1a)

(1b)

Then the Vlasov equation may be written

(2)

with                                           & specified source function

This gives 

with . 6



Then computing the density via 

with  charge density kernel                                     ,   one finds

(3a)

(3b)

and response kernel

with adiabatic term

-For a local Maxwellian form (5)

one finds

(4)
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-Example: Slab geometry:

-Using eikonal form for mode structure,

-Transform from (r,p) to aa variables:

8



9

-Toroidal geometry:   Magnetic field given by:

-Specialize aa variables to

-Using eikonal form for mode structure,

one obtains radially-local response equation:

Using orbit description

with

with

obtain orbit-avging factor

dbgrdbg kz ,,,, ρ≡

(6)

(8a)

(7)

(8b)

(9a)

(9b)

,Ω ddbbgg lll Ω+Ω+Ω≡⋅l



-Have                                               in
-For               ,  integrand in (8b) about constant over ld-range
over which integrand appreciable, so one can do summation, using
-For                , sum dominated by                term.  Thus, have limiting forms 

dΩ>>ω dd zl ~∆
1)(2 =Σ zJll

dΩ<<ω 0=dl

(10)

).,( ωkgs

where

-Approximately evaluate         using expansiond0Λ

where

:)2/(1)( 2
0 zzJ −≈

-Thus,
(11)
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-Notes on these results:

-While ge
g,b << gi

g,b , can have ge
d ~ gi

d , because 
while ρg,b

e << ρ g,b
i , have ρd

e ~ ρd
i .

-For νf ≥Ωd, (eg,  in 1/ ν –regime), successive ld-peaks broaden  until dominant ∆ld≈zd
harmonics overlap, and again lose drift-avging contribution gd to g.

-Goal of nc transport optimization is basically to reduce Fh or ρd ≈vBt/ Ωd , either by 
decreasing vBt (eg, with QS designs), or by enhancing Ωd (eg, by operating at electron root).
See from gd ≈ Fh (kr ρd)2 that this is also has the effect of reducing the 
drift-shielding gd , hence of enhancing the ZFs.

-Note correspondence between each polarization-shielding mechanism, and
A corresponding ‘branch’ of collisional transport:
Transport mech j: Dj Polarization shielding gj

classical transport Dg gyro (classical) shielding gg

axisym nc “ Dbt bounce-nc shielding gbt

helically-sym nc “ Dbh bounce-nc shielding gbh

superbanana “ Ddh drift-nc shielding gbh

banana-drift       “ Ddt drift-nc shielding gbt

Dj ≈Fj νf (∆rj) 2 , gj ≈Fj (kr∆rj) 2

)/)(/(/ '
''

fjfj
jjjj DDgg νν≈⇒

(12)



-Rel’n to Sugama & Watanabe[2] calculation:
They obtain               ,  instead of                         above.
-Reason:  Ordering or the kinetic eqn in [1,2] neglects                  .   Thus, they
are working in the limit                               .   In that                    limit, above form
for Λ0d recovers this:

-Rel’n to Shaing[3] “t-dependent viscosity” calculation:
Uses moment-method formulation of transport, where                       . 
Orders bounce-avged kinetic eqn
in 1/ν and banana regimes in
“zero-frequency” limit (neglect (1)):     Compute                 from standard
soln of (14), and 
“high-frequency” limit (neglect (3)):                              , where                     
This result can be recovered from (lg=0 , lb=0, ld=±1) limit of aa sol’n

,   taking ω→iγ :

h
d Fg ≈ 2)( drh

d kFg ρ≈
f

dd δθ∂Ω
∞→Ω≈ dBtd V /ρ ∞→dz

btgtp
z

dhbtghtp
z

hdhbtbppgd

bFbFF

bFbFbFFF

JFbFbFb

d

d

−−+⎯⎯ →⎯

−−−++⎯⎯ →⎯

〉〈+−+−−≈Λ

∞→

→

)(

)(

])1()1()[1(
0

2
0

〉⋅∇⋅〈Γ πtt
s B~

hr frf νδ ν /0/1 ∂≈ &
πt,sΓ

(13)

(14)

γδ /0frf rt ∂≈ & fft γδδ →∂

(1)         (2)          (3)

)exp( dd
l

l ilff
d

d
θδδ ∑=
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-Longer (diffusive) timescale ZF evolution:

-From surface-averaging Ampere’s law, one has   (13a)

where                                    and

(13b)

rrt JE π4−=∂

,ErEr

r
⋅∇≡

BFEEEJrJ Sarrtr /)()4( 1 +−+∂=⋅∇≡ − σχπ
r

Here,  FS≡ force exerted by turbulence normal to B in a surface (assumed random),
σ ≡∂Er(nonambipolar particle transport flux), and χ≡ dielectric shielding (as before).

Putting (1b)  into (1a), one has a Langevin-like equation (here in ω domain):
),()()()( ωωωγωω SE cEEi =+− (14)

where γE (ω) ≡4πσ/D(ω), cS(ω) ≡- 4πFS/B D,  and D ≡1+ χ .
-For D(ω)=D0 ω-independent, becomes standard Langevin eqn

),()()( tctEtE SEt =+∂ γ (15)

Induces diffusion, with diff.coefrestoring term

ar EEE −≡

pssE tctcdD >−<≡ ∫
∞

)()(
0

ττ (16)
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-Probability distribution function p satifies

),()( EppDtp EEEEt γ+∂∂=∂

resulting in

pEpt EE ><−=><∂

(17)

γ (18)

.
2
1 22

pEEpt EDE ><−=><∂ γ

-See here the balance between diffusion & the restoring toward Er=Ea.
-In steady state,  these give

and),2/exp()( 2
0 EE DEpEp γ−= ./2

EEp DE γ=><

(19)

(20)
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-Summary:
I.Shielding of ZFs:

-Have used aa-formalism to obtain succinct, generalized expressions for 
polarization shielding function g=gg+gb+gd , valid for arbitrary ρg,b,d , or zg,b,d . 
Recovers   results of previous work[2,3] in appropriate limits. 

-In same limit zd<<1 taken for zg,b , form for gd ≈Fh (kr∆rd) 2 analogous to those 
for gg,b .

-Each shielding mechanism [gj ≈Fj (kr∆rj) 2] corresponds to a collisional
transport mechanism:  Dj ≈Fj νf (∆rj) 2 .

-Thus, as suggested in earlier work, neoclassically-optimized stellarators should have 
less damping of ZFs, tending to also diminish turbulent transport.

II.Longer-time evolution of ZFs:

-Governed by a Langevin-like equation for                        , resulting in 
evolution equation for the pdf for E

with diffusion coefficient                        & restoring force 

Making                                            decrease with increasing g.

ar EEE −≡
),()( EppDtp EEEEt γ+∂∂=∂

2/1~ gDE gE /1~γ
gDE EEp /1~/2 γ=><
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END


