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Outline
1.  On Basic Framework
 (1)  Comparison of two methods to clarify the validity of the 13M
       approximation for the flux surface averaged part
            〈B•∇•πa〉−〈na〉ea〈BE//〉=〈BF//a1〉, 〈B•∇•θa〉=〈BF//a2〉
         H.Sugama and S.Nishimura, to be published in Phys.Plasmas (2008),
                                                        NIFS report NIFS-885

 (2) The poloidally and toroidally varying part determining the impurity transport

2.  Neoclassical viscosity coefficients in NCSX and QPS
           S.Nishimura, D.R.Mikkelsen, D.A.Spong, et al., to be published in
                       Plasma Fusion Research (http://www.jspf.or.jp/PFR/)
      The boundary layer in v-space causing coupling effects between the bounce

averaged motion of ripple-trapped particles and the non-averaged motion of
untrapped particles (collisional entrapping/detrapping)

     → 1/ν1/2 diffusion, BS currents, rotations

 
bi!pa1

PS
= F
! a1

PS
, bi!"a1

PS
= F
! a2

PS



Outline (2)
3. An extension of the 1/ν regime theory to include⎟ m−qn⎢≈1 modes in
          B-field spectra.  [ B=Σ Bmn cos(mθ−nζ),  q: safety factor ]
     For future applications to the plasmas with MHD-activity-induced error fields.
     (1)  Physics in the vicinity of islands in helical/stellarator devices
     (2)  Rotational stabilization of RWM in tokamaks
          for e.g., a recent “NTV” experiment in NSTX

     (3)  Zonal flow in helical/stellarator devices
          (Sugama-Watanabe, 2005, Mynick-Boozer, 2007)

4.  Summary
       (a proposal of further collaborations with the US stellarator community)
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A roadmap toward the full neoclassical fluxes

DKES Analytical
ORNL, NIFS, 

Kyoto 

NIFS Kyoto

PPPL

bechmarking

B data of  LHD(N=10), H-J(N=4), NCSX(N=3), QPS(N=2)

!', "', B#(Boozer), B$(Boozer), Bmn 

+

bounce-

averaging 

codes

mono-energetic viscosity and diffusion coefficients M*, N*, L*

NEO, GIOTA, 

GSRAKE, 

FPSTEL, etc.

The flux surface averaged part of the moment equations

       %B•&•' a()naea%BE//( = %BF//a1(

       %B•&•# a( = %BF//a2(

2-ion-species (NIFS, 2003)

PENTA (ORNL, 2005)

multi-ion-species (2007?)

The poloidally and toroidally

varying part part of the 

moment equations

<u//aB>, JBS,

*abn, qabn

*aPS, qaPS

The future integrated simulation system

bechmarking

other kinetic codes in the U.S., or Japan

                   (tokamak)

na(r), Ta(r), +(r)

a=e), H+, D+, T+, 

   He+, He2+. ....

ambipolar condition

       ,e a*abn(Er)=0

ITC17/ISHW16 (2007) P2-017

H.Sugama and S.Nishimura, Phys.Plasmas 9, 4637 (2002)

ITC17/ISHW16 (2007) P2-018
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As a result of these generalization and comparison, we will show here the
validity of the 13M approximation in Sugama-Nishimura method in 2002,
and that it is more suitable for quasi-symmetric systems and tokamaks.

A comparison of two moment-equation methods
with generalizations by extending to

21M, 29M approximations
There are two analogous methods known:

  H.Sugama & S.Nishimura,  Phys. Plasmas 9 (2002)
  M.Taguchi,  Phys. Fluids B 4(1992)

   Both papers showed how to take account of collisional momentum
conservation (of the Landau collision term) in multi-species plasmas in
obtaining the transport coefficients from outputs of commonly used
numerical codes such as the DKES, in which the pitch-angle-scattering
collision model is used.
   However, it is still important to address the theoretical relation between
the methods as well as their accuracies from the viewpoint of practical
applications.



Applications of Sugama-Nishimura method

Geometrical factors
   for BS currents
[Nishimura, Sugama, 
et al. FST(2004)]

Spontaneous plasma flows 
    on the flux surfaces
   [Spong, PoP(2005)]

Radial electric fields in QPS
    [Spong, PoP(2005)]

These flows and electric fields are determined by
the radial gradients of pressures and temperatures.



Common basis of the two methods (Sugama-Nishimura, Taguchi)

Drift Kinetic Equation (DKE)

Collision
term

Legendre-Laguerre expansion of the distribution function Substitute

∫d3v moments
with weighting 
functions such as 
   vlLj

(l+1/2)

Relations of u||aj,  Γaj ( j = 0, 1, … , jmax), Xa1, Xa2, XE



Sugama-Nishimura Taguchi

Neoclassical transport matrix :
It expresses u||aj,  Γaj ( j = 0, 1, … ,  jmax)
as liner combinations of  Xa1, Xa2, XE.
jmax : maximum Laguerre order

Relations of u||aj,  Γaj ( j = 0, 1, … , jmax), Xa1, Xa2, XE

Moment Equations : Moment Equations :

Radial Transport Fluxes : Radial Transport Fluxes :



When solving the moment equations,

(1) By using numerical solutions of the approximated DKE (by the
DKES), we obtain “coefficients” in the moment equations. In
traditional moment equation approach (Hirshman-Sigmar, 1981,
Shaing-Callen, 1983), this kind of coefficients is called as “viscosity
coefficients”.

(2) The Sugama-Nishimura method and the Taguchi’s method use
different weighting functions.

           → They result in different moment equations.

jmax→∞    : Both methods are equivalent
finite jmax : They give different results.   (Which is more correct ?)

For arbitrary jmax≥1, Sugama-Nishimura method gives :
 (1) The intrinsic ambipolar condition in the symmetric limits
 (2) Transport coefficients satisfying the Onsager symmetry

 (But Taguchi’s method breaks these conditions in cases with finite jmax.)



Comparison of the two methods in applications for 
axisymmetric limit ∂B/∂ζ=0 (tokamaks)

The asymptotic banana regime viscosity coefficients can
exactly be obtained by analytical solutions.

poloidal particle
and heat flows

radial heat
diffusion

In this axisymmetric limit (tokamaks)
→ Sugama-Nishimura method coincides with Hirshman-Sigmar formulae

The neoclassical transport of ion
in a small mass ratio approximation.

C0θ, C1θ, Cq : numerical factor to be determined by the parallel force balance.



Poloidal flows and the radial heat diffusion in the banana regime

Dependence on   jmax=   1 (13M),  2 (21M),  3 (29M)

Poloidal particle flow Poloidal heat flow Radial heat diffusion

   ft  (= 1− fc ) : the fraction of trapped particles

In high aspcet ratio limits :
ft  = 1.46 ε1/2

Sugama-Nishimura (13M)

Rosenbluth et al. (variational)               0.48

Taughchi (13M)                                      0.748

S-N

S-NS-N

TaugchiTaugchi

Taugchi



In Sugama-Nishimura method:
 The j=0 moment coincides with the usual parallel force balance equation.
 For arbitrary jmax, the intrinsic ambipolarity                      is retained.

 In the axisymmetric limit the ion particle diffusion due to ion-ion collisions
 should be             .

        (Note that this small mass ratio approximation neglecting ion-electron collisions
            is only that for a test of the theories.)

Taguchi’s formulas given for stellarators:
  The intrinsic ambipolarity in the symmetric systems
  cannot be satisfied by finite  jmax values.

  → Incorrect finite ion diffusion is given
       in the small-mass ratio limit.

Incorrect ion diffusion C’Γ

The radial particle diffusion in the banana regime
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Summary of the comparison

  Two methods proposed for the neoclassical transport in helical/stellarator
devices (Sugama-Nishimura and Taguchi) are derived from common
identical basic equation with the momentum conserving collision operator.
They can be written for an arbitrary truncation number (jmax) of the
Laguerre expansion, even though the original papers described only the case
of retaining the first two terms in the expansion.

  Sugama-Nishimura method and Taguchi’s should lead to the same results
in the limit of jmax→∞. However, different results are given from these
methods for the finite value of jmax.

  Sugama-Nishimura method with arbitrary truncation numbers of jmax≥1
gives the intrinsically ambipolar particle fluxes in symmetric limits, and
transport coefficients with the Onsager symmetry.
   (→suitable for tokamaks and quasi-symmetric helical systems)

Ref:   Sugama & Nishimura, to be published in Phys. Plasmas (2008). 



Local structure of the flow pattern
before the flux surface averaging has a winding determined by

∇·(nau//a) = −∇·(nau⊥a)

Even though it is well known that the radial diffusions are dominated by the turbulent
transport, plasma flows along the flux surfaces will be determined by the neoclassical
processes. The momentum balance including friction forces for the flows determines
impurity accumulation and/or shielding.
In contrast to toroidally rotating tokamaks, however, this winding structure will not be
simply determined by the incompressible condition ∇·ua=0, ∇·qa=0.



l=0,1 and j=0,1,2 Legendre-Laguerre moments of DKE
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Particle and 
energy 
conservations

Parallel force
balances

It can be solved by a Fourier expansion method
for general toroidal configurations.



Numerical examples for the poloidally and toroidally
varying part of the moment equations

P-S diffusion coefficients
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B0=1T, χ'=0.15T•m, ψ'=0.4T•m, Bθ =0, Bζ =4T•m.

2 ion-species plasma H++Ne10+ with a ion density ratio corresponding to Zeff=5.74, Te= Ti=1keV.

13M approximation with energy scattering effects with Es=5kV/m
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M, N, L matrix and
flux surface averaged parts of the parallel momentum balance

determining 〈nau//aB〉, 〈q//aB〉 as the integration constants of
∇•(nau//a), ∇•q//a       (H.Sugama and S.Nishimura, Phys.Plasmas 9, 4637(2002))

a, b = e, D+, T+, He+, He2+, Li+, Li2+, Li3+, …
A non-diagonal coupling between particle species is introduced in this step.

Given by an approximated DKE
(numerically and/or analytically)
(with energy integrations)

combined with
the friction-flow relation

In symmetric cases
   Laj∝Naj∝Maj
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A Benchmarking Example in NCSX
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G(BS)≡−<B2>N*/M*

(1) The ripple-trapped/untrapped boundary layer, the distribution function is B•∇GXa ≠0. 
For this kind of distribution function components requiring treatments in the 3-D phase space 
(poloidal angle θ, toroidal angle ζ, pitch angle ξ,), the approximated analytical solutions 
must be used as effectively as possible. For the 1/ν1/2 diffusion [4], we have to consider 
procedures to use the analytical solutions and the numerical solutions for the bounce- or 
ripple-averaged parts B•∇(µ=const)GXa

(avg)=0 as complimentary methods.

(2) The N* given by the DKES transiently becomes larger at ν/v~10−3m−1 compared with 
the analytical formula. It is peculiar to the quasi-axisymmetric configurations where the 1/ν1/2 
component becomes comparable or dominates over the 1/ν component in the radial diffusion.



A benchmarking example in QPS
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NCSX QPS
LHD

<a> = 0.6 m
<R> = 3.6 m

By D.A.Spong, in 15th ISW 2005
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Effects of these ⎢mq−n⎥ ≈1 modes

For existing stellarator codes, the “full torus” calculation including this B-structure means:

(1) For variational methods (DKES):  It is substantially an increase of
                   toroidal Fourier mode range for B and the distribution function.
             LHD: ×10,   W7X: ×5,   HSX: ×4,   NCSX: ×3,   QPS: ×2

(2) For field line integral methods (NEO):
         It will require the trace of the field line for the infinite length.

(1) In both of tokamaks and stellarators:
   The bounce center of toroidally trapped particles drift across the flux surfaces.
    The theory for tokamaks by K.C.Shaing, et al.,
     PRL 87, 245003 (2001), PoP 9, 3470 (2002), PoP 9, 4633 (2002),
     PoP 10, 1443 (2003), PoP 10, 4728 (2003), PoP 11, 625 (2004), PoP 11, 5525 (2004),
     PoP 12, 072523 (2005), PoP 13, 022501 (2006), PoP 14, 024501 (2007)
   His theory had recently been tested in NSTX experiments.
      W.Zhu, S.A.Sabbagh, R.E.Bell, et al., PRL 96, 22002 (2006)

(2) For ripple trapped particles
      in stellarators
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The role in the rotations
and calculating method

An equivalence of the [Ma, Na, La] matrices with the poloidal and 
toroidal viscosities in toroidal momentum balance analysis in 
the tokamak experiments.

H.Sugama and S.Nishimura, 
Phys.Plasmas 9, 4637(2002)
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Formulas for components due to
non-bounce averaged motions

These are applicable for arbitrary Bmn spectra even when including the MHD-activity-
induced error field with⎟m−qn⎢≈1. (Note that m−qn=0 of 1/B2 in the Boozer and
of B2 in the Hamada coordinates are forbidden.)
In contrast to them, the formulas relating to the bounce averaged motions (L*(−1),
L*(−1/2), N*(boundary)) assuming Nq−L>>1 must be extended to include the⎟m−qn⎢≈1 modes.
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The analytical method for stellarators
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Bounce averaged DKE for 
the toroidally trapped particles (1/ν)

By integrating it,

The integral period length for is determined by B/B0=1+εT(θB)+εH(θB)
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(Since the contributions of⎟m−qn⎢>>1 modes become small in this integral,
 modes of⎟m−qn⎢>Nq−L>>1 can be omitted. )
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Though this integral can only be obtained numerically, this estimation is still
easier than applications of existing methods for stellarators (DKES, NEO).



Summary
•  The basic framework proposed by us is most favorable for studies of

tokamaks with the MHD-activity-induced error fields and quasi-
symmetric helical systems.

•   Not only existing numerical tools for stellarators can obtain the
required viscosity coefficients, but also simple analytical
approximations for the DKE can be used for this purpose.

   Tests of these analytical formulas are being carried out in various
helical/stellarator configurations.

•   For the test of an extension to include the MHD-activity-induced
error fields in the analytical formula for the 1/ν regime of stellarators,
low aspect stellarator configurations with few toroidal periods seem
to  be favorable as the first step, in viewpoint of the toroidal Fourier
mode range of the DKES. This extension will be useful for studies of
physics in the vicinity of islands in helical/stellarator devices.


