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• Recent stellarator optimizations make cross-field
neoclassical losses << anomalous losses

• Ripple reduction, quasi-symmetry, isodynamicity,
omnigeneity

• However, within these devices a variety of parallel
momentum transport characteristics are present

• poloidal/toroidal velocity shearing
• two-dimensional flow structure within magnetic surfaces

Plasma flow properties provide an
additional dimension to the stellarator

transport optimization problem



Plasma flow characteristics vary significantly across
stellarator configurations - opens opportunities for a

range of physics issues to be explored:
• Relevance to turbulence suppression/enhanced confinement regimes

• Experiments/simulations show importance of E x B shearing

• Reduced neoclassical viscosity lowers zonal flow electric field damping rate
K. C. Shaing, Phys. Plasmas 12, (2005) 082508

• Magnetic perturbations shielding - island suppression
• Toroidal flows shield resonant magnetic perturbations at rational surfaces

A. Reiman, M. Zarnstorff, et al., Nuc. Fusion 45, (2005) 360

• Possible source of “self-healing” mechanism in tokamaks
• Impurity accumulation/shielding analysis

S. Nishimura, H. Sugama, Fusion Science and Tech. 46 (2004) 77

• New hidden variable in the international stellarator transport scaling database?
•  Productive area for experiment/theory comparison

•  stellarator analog of NCLASS code
• Improved bootstrap current/ambipolar electric field analysis
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   Reference: K. C. Shaing, J. D. Callen, Phys.Fluids 26, (1983) 3315.

Stellarator flow damping:
• weights viscous stress-tensor components differently than

cross-field transport
• removes linear dependencies (from symmetry-breaking effects)



 Advances in stellarator optimization have allowed the
design of 3D configurations with magnetic structures that
approximate: straight helix/tokamak/connected mirrors:
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|B| ~ |B|(mθ - nζ)
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|B| ~ |B|(ζ)



In addition, LHD and W7-X achieve closed drift surfaces
by inward shifts (LHD) and finite plasma β effects (W7-X)
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•  Based on anisotropic pressure moment of distribution function
rather than momentum or particle moments
– Less affected by neglect of field particle collisions on test particles

• Viscosities incorporate all needed kinetic information
– Momentum balance invoked at macroscopic level rather than kinetic level
– Multiple species can be more readily decoupled

• Recent work has related viscosities to Drift Kinetic Equation
Solver (DKES) transport coefficients
– Moments method, viscosities related to D11 D31, D33
       M. Taguchi, Phys. Fluids B4 (1992) 3638
      H. Sugama, S. Nishimura, Phys. of Plasmas 9 (2002) 4637
– DKES: D11 (diffusion of n,T), D13 (bootstrap current), D33 (resistivity

enhancement)
       W. I.Van Rij and S. P. Hirshman, Phys. Fluids B, 1, 563 (1989)

• Implemented into a suite of codes that generate the transport
coefficient database, perform velocity convolutions, find
ambipolar roots, and calculate flow components
– D. A. Spong, Phys. Plasmas 12 (2005) 056114
– D. A. Spong, S.P. Hirshman, et al., Nuclear Fusion 45 (2005) 918

Development of stellarator moments methods



 

     
r
B !

r
" !

t
#

a( ) $ n
a
e
a
BE

||
= BF

||a1

     
r
B !

r
" !

t
%

a( ) = BF
||a2

Moments Method Closures for Stellarators
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The parallel viscous stresses, particle and heat flows are treated as
fluxes conjugate to the forces of parallel momentum, parallel heat
flow, and gradients of density, temperature and potential:
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• Analysis of Sugama and Nishimura related monoenergetic forms of
     the M, N, L viscosity coefficients to DKES transport coefficients
• Combining the above relation with the parallel momentum balances
     and friction-flow relations

Leads to coupled equations that can be solved for <u||aB>, <q||aB>, Γa, Qa
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Using solutions for an electron/ion plasma,
the self-consistent electric fields, bootstrap
currents and parallel flows can be obtained

(Appendix C - H. Sugama, S. Nishimura, Phys. Plasmas 9 (2002) 4637)

Radial particle flows required for ambipolar condition        self-consistent
energy fluxes and bootstrap currents

Parallel mass and energy flows:



flux
surface 1

flux
surface 2

flux
surface 3

flux
surface 4

flux
surface n. . .

processor 1 processor 2 processor 3 processor 4 processor n

DKES Transport coefficient
Code: D11, D13, D33

(functions of ψ, ν/v, Er/v)

results vs. ψ, ν/v, Er/v 
concatenated together

DKES results supplemented
at low/high collisionalities
using asymptotic forms

Energy integrations, parallel force balance
relations, ambipolarity condition solved, profiles
obtained for: Er, Γi, Γe, qi, qe, <uθ

i>, <uζ
i>, JE

BS

Parallel Environment for Neoclassical Transport Analysis (PENTA)

• delta-f Monte Carlo
• superbanana effects (i.e.,

limits on 1/ν regime)
• better connection formulas
• DKES extensions
• convergence studies
• Eθ effects
• Magnetic islands

Work in progress:
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The neoclassical theory provides <u||B> and the
ambipolar electric field Es (from solving Γi = Γe). The

final term needed is U, the Pfirsch-Schlüter flow.
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<U2> can be obtained by:

-solving this equation directly (with damping
to resolve singularities at rational surfaces)

- matching to high collisionality DKES
coefficient: <U2> = 1.5D11v/ν (for large ν)
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The flow model will be applied to two parameter ranges
with radially continuous/stable electric field roots

• ECH regime:
– n(0) = 2.5 × 1019 m-3,

Te(0) = 1.5 keV, Ti(0) = 0.2 keV

• ICH regime
– n(0) = 8 × 1019 m-3, Te(0) = 0.5

keV, Ti(0) = 0.3 keV

Roots chosen to give stable restoring
force for electric field perturbations
through:
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Electric field profiles for ICH (ion root) and ECH
(electron root) cases
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ECH Regime

The neoclassical parallel flow velocity can vary significantly
among configurations. The lowest levels are present in W7-X.

Higher u|| flows characterize HSX/NCSX

ICH regime
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2D flow variation within a flux surface:

• Visualization of flows in real (Cartesian space)
• Indicates flow shearing (geodesic) within a flux surface over shorter

connection lengths than for a tokamak
– Could impact ballooning, interchange stability, microturbulence

• Implies need for multipoint experimental measurements and/or theoretical
modeling support
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HSX 2D-flow streamlines

|B| variation



LHD 2D-flow streamlines

|B| variation



|B| variation

W7-X 2D-flow streamlines



QPS 2D-flow streamlines

|B| variation



|B| variation

NCSX 2D-flow streamlines



Plasma flow velocity - averages

• Components taken:

• Reduction to 1D - flux surface average:

• Due to 1/B2 variation of Jacobian, averages will be influenced by
whether ∝1/B (E×B, diamagnetic) or ∝B (neo. Parallel, PfirshSchlüter)
terms dominate
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Comparison of flux-averaged toroidal flow components
(contra-variant) among devices indicates NCSX and

HSX have the largest toroidal flows

ICH parametersECH parameters
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ICH parameters

Comparison of flux-averaged poloidal flow
components (contra-variant) among devices indicates

QPS has largest poloidal flows

ECH parameters
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Comparison of shearing rates from ambient flows with
ITG growth rates:

γITG = (CS/ LT)(LT/R)µ

where 0 < µ < 1, CS = sound speed
from J. W. Connor, et al., Nuclear Fusion 44 (2004) R1

Recent stellarator DTEM-ITG
growth rates

from G. Rewoldt, L.-P. Ku, W. M. 
Tang, PPPL-4082, June, 2005
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Transport barrier condition: shearing rate > γITG

Even without external
torque, QPS, NCSX,
LHD, W7-X shearing
rates can exceed
γDTEM-ITG at edge region
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Flow variations within flux surfaces can also
impact MHD ballooning/interchange thresholds:
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QPS-ICH

Er is modified by parallel momentum source
(40 keV H0 beam, F||

(i,e) = 0.1, 0.2, 0.5, 0.7 Nt/m3)

NCSX-ICH
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Same viscosity coefficients that
relate gradients in n, T, φ  to u||
also imply that changes in u||
modify Γ.



Conclusions
• A self-consistent ambipolar model has been developed for

the calculation of flow profiles in stellarators

– Ambipolar electric field solution with viscous effects

– Predicts profiles of Er, <u||>, <uθ>, and <uζ>; 2D flow variations

• Magnetic field structure influences flows in quasi–symmetric

stellarators

– QPS: poloidal flows dominate over toroidal flows

– W7-X: poloidal flows dominate, but flows reduced from other systems

– NCSX: toroidal flows dominate except near the edge

– HSX: flows are dominantly helical/toroidal

– LHD: toroidal flows dominate for ICH case, poloidal flows for ECH case



Conclusions (contd.)
• Ambient flow shearing rates approach levels that could

suppress turbulence

– ITG, ballooning

– Further stellarator-specific turbulence work needed, but with 2D
neoclassical flow fields

– Collaborations initiated with LHD, HSX to further apply model and look
for correlations with confinement data

• The sensitivity of flow properties to magnetic structure is an
opportunity for stellarators

– Experimental tests of flow damping in different directions

– Possible new hidden variable in confinement scaling data
– Stellarator optimizations/flexibility studies -> should use E × B shear (turbulence

suppression to complement neoclassical transport reduction


