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Recent Progress on QPS

D. A. Spong, D.J. Strickler, J. F. Lyon, M. J. Cole, B. E. Nelson,
A. S. Ware, D. E. Williamson

• Improved coil design (see recent Stellarator News article)
– New flux surface optimization target

– Reduced island size

– Invariance of surface shape with β
– Lower cost coils, developable coil winding surfaces

• Neoclassical viscosity/momentum conserving corrections
to DKES
– Recent formulation of H. Sugama, S. Nishimura, Phys. Plasmas 9,

4637 (2002).

– Viscosities depend on the 3 transport coefficients (D11, D13, D33)
already calculated by DKES

– QPS poliodal viscosity reduced by a factor of 4-6 over the
equivalent tokamak.

– Potential use as an optimization target
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Previous QPS modular coils (January, 2003)
32 winding packs, 4 distinct coils

Two winding packs are joined
by a structural ‘web’ - requiring
a single winding form
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“web coils” modular coils
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A re-configuration of the QPS modular coils - together with
changes in the COILOPT coil separation targets – has led

to a design with improved engineering feasibility and
reduced cost

• All modular coils are combined in pairs with
variable web

• Number of distinct winding form types reduced
from 4 to 3

• Number of winding packs decreased from 32 to
20

• Increase min. distance between ‘unpaired’ coils
from 9.6 to 13 cm

• Min. coil radius of curvature increased from 9.3
to > 12.2 cm

• Min. distance across the center of the torus
increased by 4 cm
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A re-configuration of QPS coils
reduces the number of modular
coil winding form types to 3
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A new vacuum field constraint in the STELLOPT / COILOPT

code has led to a robust class of Quasi-Poloidal compact
stellarator configurations

•  Previously, plasma surface shape/quality was only optimized at the full
design β
– No guarantee of good surfaces at low/intermediate β’s
– One could do the optimization at low β, but then would lose control over

ballooning stability
• Compromise: minimize the normal component of vacuum magnetic field

error χB  = wB|B·n||/|B| using the B field from the coils, but on the full-
pressure plasma boundary shape.

•  Forces vacuum surface to enclose similar volume as the full-pressure
plasma

•  Aspect ratio and shape are maintained as β is increased
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QPS magnetic surface quality improvement

Full-beta VMEC
plasma boundary

Coil winding
surface

Full β plasma boundary

and vacuum surfaces of
QPS PAC configuration

Full β plasma boundary

and vacuum surfaces of
new QPS configuration

before use of the vacuum
constraint

Full β plasma boundary

and vacuum surfaces of
new QPS configuration
after use of the vacuum

constraint
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• Recently Sugama, et al.1 have adapted the moment method of Hirshman and
Sigmar2 to stellarator transport in a way that connects to transport coefficients
provided by the DKES code

– Uses fluid momentum balance equations and friction-flow relations that
take into account momentum conservation

– Viscosity coefficients are obtained from the drift kinetic equation

• Uses l = 2 Legendre components of f (for which the test particle
component of the collision term dominates over the field component)

• Does not directly calculate Γ and Q from f because the field
component of the collision operator is more significant for these
moments

• Provides:

– A way to assess viscosities in low aspect ratio quasi-symmetric devices

– Momentum conserving corrections to DKES-based bootstrap currents,
particle and energy flows.

1H. Sugama, S. Nishimura, Phys. Plasmas 9, 4637 (2002).
2S. P. Hirshman, D. J. Sigmar, Nuclear Fusion 21, 1079 (1981).

Neoclassical viscous flow damping in QPS
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Relation of viscosities to DKES transport coefficients:

Viscous Forces  
B

B

where viscous stress tensor,  contravariant poloidal/toroidal flow velocities

     (the heat flux terms in the above equation have not been indicated for simplicity)
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We choose the following normalizations (following Sugama, et al.) for the viscosities :
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Equivalent Tokamak Viscosities
(poloidal damping dominates)

QPS Viscosities
(toroidal damping dominates)

Quasi-poloidal symmetry leads to a factor of 4 - 6
reduction in the poloidal viscosity (M’pp) over the

equivalent tokamak configuration (at Er = 0, ν/v = 0.01)
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Momentum conserving corrections to DKES
particle/energy transport coefficient:
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The parallel viscosity and
radial flows are given by:
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The formulation of Sugama, et al. is useful for the
post-processing of DKES transport coefficients:

• Lowered damping of poloidal flows should allow:
–  Generation of ambipolar transport-driven equilibrium poloidal ExB

sheared flows

– Generation of dynamical, Reynold’s stress driven sheared flows
possibly at lower power thresholds.

– Both effects can potentially aid in break-up of turbulent eddies
(predominantly 2D) allowing access to enhanced confinement
regimes

• Development of a poloidal viscosity optimization target

• Momentum conserving corrections to DKES particle/energy
transport and bootstrap current coefficients.


