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Motivation

The nature of ideal MHD ballooning modes in 3-D
systems differs qualitatively from ballooning modes in 2-D
systems
— Field-line dependence of ballooning mode eigenvalues
— This typically corresponds to a global mode that is
highly localized on the magnetic surface ~ Can
nonideal physics (e. g. FLR physics) more easily
stabilize these localized modes in 3-D relative to 2-D
systems?
— This work, include FLR effects in ballooning mode
formalism of 3-D systems



Ideal MHD ordering and WKB-like formalism is
used throughout

For ideal MHD ballooning modes
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1/e ~n (“infinite-n theory”) large toroidal mode number

Leading order solution leads to an ordinary differential
equation for £¥ along the field line, the ballooning equation




Ballooning equation

e Equation of motion to order O(ec 1), “ballooning equation”
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e Solved along each field line for all k| to find “most unstable™ field
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Two-fluid physics brings in finite Larmor radius
effects

MHD equations modified by Hall-MHD terms in Ohm’s law and
gyroviscosity
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Ideal and non-ideal equations

e Differ only in right hand sides
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Semi-classical quantization

e Not all w? = \(a, q,0}) correspond to a “quantizable mode”

e To quantize apply “semi-classical methods” (i.e., classical
methods used in solving Schrodinger equation) to ballooning
modes [Dewar and Glasser, Phys. Fluids 26(10), p. 3038 (1983).]

= trace rays of constant w?

— compute action integrals

— designate values of w? that obey physical quantization rules as

"modes’



Rays of constant w?

e Rays of constant w? = (o, q, ka, ky) obey
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e |f system is integrable, phase space has torus structure




Action

o Let = (o, q) and p = (ka. k)

e Chose a candidate “mode” by picking w? and (qq, po). and

consider the “action”
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Modes correspond to quantizable action integrals

Action integrals of WKB trajectories are quantized
Pk da=(en, + 17
8 (04
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;(j}kqdq:(an )7z

Quantizable trajectories are actual MHD modes of the
system.



The inclusion of FLR physics in 2-D systems Is
straightforward

 Intokamaks, the I, = [k, do quantization is trivial ---
toroidal mode number n is a good quantum number. Local
eigenvalues are independent of field line label, o " Kk, IS
conserved along ray trajectories.
- o; = k, (dp/dy)/ne =k, Q. is constant on WKB orbit
equations. Hence, ®?= A is conserved on WKB orbits
and the frequency satisfies (Tang et al, 1980)
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— For unstable local eigenvalue A < 0, stability is obtained

If the criterion 1s satisfied
k“QZ +44>0
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In 3-D systems, the inclusion of FLR physics
Introduces complications

 In stellarators, local eigenvalues are generally functions of
field lines, A = A(y, 6,, a) --- kK and A are no longer
constants on WKB rays. (Nevins and Pearlstein, ‘88)

* Only the a ray equation changes,
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e Given unstable mode (A < 0) described by particular values
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3-d toy model

e Pick a "toy A" to emulate what is seen in stellarator ballooning
eigenvalue calculations (Hudson and Hegna PoP submitted)

— fast «v dependence
= H line label, traces for different surfaces
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)\((ff q. 9?{)

e A\ must be periodic in ;. and a + ¢,

Ma,q,0,) = A+ B(q—qy)? + Ccosmb, + Dcosn(a+ q¢by)
a = 0.097

= 1.3
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Ideal ray orbits lie on topological spheroids Iin
phase space labeled by (q,6,,a)




FLR “stabilization”

e Ray equations for constant w
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e For a stable mode require
IQ . 2 F
E202 4+ 4\ > 0

where neither k., nor A are constant

e Choose same (aq, go, ka0, kqo) with €2.; such that mode is

marginally stable



The projection of the ray equations into k —a
space shows closed orbits - quantizable action
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The projection of the ray equations into k,—q

“timescales”
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Time scale separations typically allow for

ty of the system
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Summary

 Inclusion of FLR effects into ideal MHD ballooning modes
discretizes the spectrum.

e The inclusion of FLR physics on ballooning stability is
complicated by the non-constancy of w.; ~ k, along the
ray equations (“n” Is not a good quantum number.)

* FLR stabilization is given by the criterion
KZ | €% +44,>0

a |max

- k_|max COrresponds to peak value on periodic ray orbit
— A, Is the corresponding ideal MHD eigenvalue (A =
OMHD)-



