Finite Larmor Radius Stabilization of Ideal Ballooning Instabilities in 3-D plasmas

J. G. Wohlbier* and C. C. Hegna Department of Engineering Physics University of Wisconsin Madison, WI 53706-1609

*Los Alamos National Laboratory Los Alamos, NM

Stellarator Theory Teleconference University of Wisconsin-PPPL March 11, 2004

Motivation

- The nature of ideal MHD ballooning modes in 3-D systems differs qualitatively from ballooning modes in 2-D systems
 - Field-line dependence of ballooning mode eigenvalues
 - This typically corresponds to a global mode that is highly localized on the magnetic surface ~ Can nonideal physics (e. g. FLR physics) more easily stabilize these localized modes in 3-D relative to 2-D systems?
 - This work, include FLR effects in ballooning mode formalism of 3-D systems

Ideal MHD ordering and WKB-like formalism is used throughout

- For ideal MHD ballooning modes $(\omega^2 \rho \vec{I} + \vec{F}) \cdot \vec{\xi} = 0$
- Use large \mathbf{k}_{\perp} expansion

$$\xi(\vec{x}) = \hat{\xi}(\vec{x})e^{i\frac{S(\vec{x})}{\varepsilon}}$$
$$\vec{B} \cdot \frac{\nabla S}{-1} = \vec{B} \cdot k_{\perp} = 0$$

- $1/\epsilon \sim n$ ("infinite-n theory") large toroidal mode number
- Leading order solution leads to an ordinary differential equation for ξ^{ψ} along the field line, the ballooning equation

Ballooning equation

• Equation of motion to order $\mathcal{O}(\epsilon^{-1}),$ "ballooning equation"

$$(\mathbf{B}\cdot\nabla)\,\frac{|\mathbf{k}_{\perp}|^2}{B^2}\,(\mathbf{B}\cdot\nabla)\,\hat{\xi} - \frac{\mathbf{B}\times\kappa}{B^2}\cdot\mathbf{k}_{\perp}\frac{\mathbf{B}\times\nabla p_0}{B^2}\cdot\mathbf{k}_{\perp}\hat{\xi} = -\,\frac{|\mathbf{k}_{\perp}|^2}{v_A^2}\omega^2\hat{\xi}$$

• Solved along each field line for all k_{\perp} to find "most unstable" field line and orientation

$$\omega^2 = \lambda(\alpha, q, \theta_k)$$

where

Two-fluid physics brings in finite Larmor radius effects

• MHD equations modified by Hall-MHD terms in Ohm's law and gyroviscosity

$$\vec{E} + \vec{v} \times \vec{B} = \frac{1}{ne} (\vec{J} \times \vec{B} - \nabla p_e)$$

$$\rho(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v}) = \vec{J} \times \vec{B} - \nabla p - \nabla \cdot \Pi_i^{gv}$$

• Order such that FLR corrections enter

$$k_{\perp}\rho_i \sim \frac{\omega_{*i}}{\omega} \sim O(1),$$

$$\omega_{*i} = \vec{k} \cdot \vec{v}_{di} = \vec{k} \cdot \frac{\vec{B} \times \nabla p_i}{neB^2} = k_{\alpha} \Omega_{*i}$$

• Modified ballooning equation ⁷

$$(\vec{B} \cdot \nabla) \frac{|k_{\perp}|^{2}}{B^{2}} (\vec{B} \cdot \nabla) \hat{\xi} - \frac{\vec{B} \times \vec{\kappa}}{B^{2}} \cdot \vec{k}_{\perp} \frac{\vec{B} \times \nabla p}{B^{2}} \cdot \vec{k}_{\perp} \hat{\xi}$$
$$= -\frac{|k_{\perp}|^{2}}{B^{2}} \omega (\omega - k_{\alpha} \Omega_{*_{i}}) \hat{\xi}$$

Ideal and non-ideal equations

• Differ only in right hand sides

$$(\mathbf{B}\cdot\nabla)\frac{|\mathbf{k}_{\perp}|^{2}}{B^{2}}(\mathbf{B}\cdot\nabla)\hat{\xi} - \frac{\mathbf{B}\times\kappa}{B^{2}}\cdot\mathbf{k}_{\perp}\frac{\mathbf{B}\times\nabla p_{0}}{B^{2}}\cdot\mathbf{k}_{\perp}\hat{\xi} = -\frac{|\mathbf{k}_{\perp}|^{2}}{v_{A}^{2}}\omega^{2}\hat{\xi}$$

$$(\mathbf{B}\cdot\nabla)\frac{|\mathbf{k}_{\perp}|^{2}}{B^{2}}(\mathbf{B}\cdot\nabla)\hat{\xi} - \frac{\mathbf{B}\times\kappa}{B^{2}}\cdot\mathbf{k}_{\perp}\frac{\mathbf{B}\times\nabla p_{0}}{B^{2}}\cdot\mathbf{k}_{\perp}\hat{\xi} = -\frac{|\mathbf{k}_{\perp}|^{2}}{v_{A}^{2}}\omega(\omega - k_{\alpha}\Omega_{*i})\hat{\xi}$$

19

• Define

$$\Omega^2 = \omega(\omega - k_\alpha \Omega_{*i})$$

so BE eigenvalue problem same for ideal and non-ideal cases

$$\omega^2 = \lambda(\alpha, q, \theta_k)$$
$$\Omega^2 = \lambda(\alpha, q, \theta_k)$$

Semi-classical quantization

- Not all $\omega^2 = \lambda(\alpha, q, \theta_k)$ correspond to a "quantizable mode"
- To quantize apply "semi-classical methods" (i.e., classical methods used in solving Schrödinger equation) to ballooning modes [Dewar and Glasser, *Phys. Fluids* 26(10), p. 3038 (1983).]
 - \Rightarrow trace rays of constant ω^2
 - \Rightarrow compute action integrals
 - $\Rightarrow\,$ designate values of ω^2 that obey physical quantization rules as ''modes''

Rays of constant ω^2

• Rays of constant $\omega^2 = \lambda(\alpha, q, k_\alpha, k_q)$ obey

$$\dot{\alpha} = \frac{\partial \lambda}{\partial k_{\alpha}} \qquad \dot{k}_{\alpha} = -\frac{\partial \lambda}{\partial \alpha}$$
$$\dot{q} = \frac{\partial \lambda}{\partial k_{q}} \qquad \dot{k}_{\alpha} = -\frac{\partial \lambda}{\partial q}$$

• If system is *integrable*, phase space has torus structure

Action

- Let $\mathbf{q} = (\alpha, q)$ and $\mathbf{p} = (k_{\alpha}, k_q)$
- Chose a candidate "mode" by picking ω^2 and $(\mathbf{q}_0, \mathbf{p}_0)$, and consider the "action"

$$S = \int_{\mathbf{q}_0}^{\mathbf{q}} \mathbf{p} \cdot \mathbf{dq} = \int_{\mathbf{q}_0}^{\mathbf{q}} \nabla S \cdot \mathbf{dq}$$

around the α and q contours

Modes correspond to quantizable action integrals

• Action integrals of WKB trajectories are quantized $\frac{1}{2} \oint k \, d\alpha = (2n + 1)\pi$

$$- \oint_{\alpha} k_{\alpha} d\alpha = (2n_{\alpha} + 1)\pi$$
$$\frac{1}{\varepsilon} \oint_{\alpha} k_{q} dq = (2n_{q} + 1)\pi$$

• Quantizable trajectories are actual MHD modes of the system.

The inclusion of FLR physics in 2-D systems is straightforward

- In tokamaks, the $I_{\alpha} = \int k_{\alpha} d\alpha$ quantization is trivial ---toroidal mode number n is a good quantum number. Local eigenvalues are independent of field line label, $\alpha " k_{\alpha}$ is conserved along ray trajectories.
 - $\omega_i^* = k_{\alpha} (dp/d\psi)/ne = k_{\alpha} \Omega_{*i}$ is constant on WKB orbit equations. Hence, $\omega^2 = \lambda$ is conserved on WKB orbits and the frequency satisfies (Tang et al, 1980)

$$\omega = \frac{k_{\alpha}\Omega_{*i}}{2} \pm \sqrt{\frac{k_{\alpha}^2\Omega_{*i}^2 + 4\lambda}{2}}$$

– For unstable local eigenvalue $\lambda < 0$, stability is obtained if the criterion is satisfied

$$k_{\alpha}^2 \Omega_{*_i}^2 + 4\lambda > 0$$

In 3-D systems, the inclusion of FLR physics introduces complications

- In stellarators, local eigenvalues are generally functions of field lines, $\lambda = \lambda(\psi, \theta_k, \alpha) k_{\alpha}$ and λ are no longer constants on WKB rays. (Nevins and Pearlstein, '88)
- Only the α ray equation changes,

$$\dot{\Delta t} = \frac{\partial \lambda}{\partial k_{\alpha}} + \omega \Omega_{*i}$$

• Given unstable mode ($\lambda < 0$) described by particular values ($\alpha_0, q_0, k_{\alpha 0}, k_{q 0}$), if $k_{\alpha}^2 \Omega_{*i}^2 + 4\lambda > 0$

Mode is stabilized

3-d toy model

- Pick a "toy λ" to emulate what is seen in stellarator ballooning eigenvalue calculations (Hudson and Hegna PoP submitted)
 - \Rightarrow fast α dependence
 - \Rightarrow θ_0 line label, traces for different surfaces

$\lambda(\alpha, q, \theta_k)$

• λ must be periodic in θ_k and $\alpha + q\theta_k$

Ideal ray orbits lie on topological spheroids in phase space labeled by (q, θ_k, α)

FLR "stabilization"

• Ray equations for constant ω

$$\dot{\alpha} = \frac{\partial \lambda}{\partial k_{\alpha}} + \omega \Omega_{*i} \qquad \dot{k}_{\alpha} = -\frac{\partial \lambda}{\partial \alpha} \dot{q} = \frac{\partial \lambda}{\partial k_{q}} \qquad \dot{k}_{\alpha} = -\frac{\partial \lambda}{\partial q}$$

• For a stable mode require

$$k_{\alpha}^2 \Omega_{*i}^2 + 4\lambda \ge 0$$

where neither k_{α} nor λ are constant

 Choose same (α₀, q₀, k_{α0}, k_{q0}) with Ω_{*i} such that mode is marginally stable

The projection of the ray equations into $k_{\alpha} - \alpha$ space shows closed orbits - quantizable action

The projection of the ray equations into k_q-q space shows multiple "timescales"

Time scale separations typically allow for approximate integrability of the system

Summary

- Inclusion of FLR effects into ideal MHD ballooning modes discretizes the spectrum.
- The inclusion of FLR physics on ballooning stability is complicated by the non-constancy of $\omega_{*i} \sim k_{\alpha}$ along the ray equations ("n" is not a good quantum number.)
- FLR stabilization is given by the criterion

 $k_{\alpha}^2 \mid_{\max} \Omega_{*_i}^2 + 4\lambda_o > 0$

- $k_{\alpha}|_{max}$ corresponds to peak value on periodic ray orbit
- λ_{o} is the corresponding ideal MHD eigenvalue ($\lambda = \omega_{MHD}^{2}$).