Influence of pressure-gradient, shear
on ballooning stability

® a semi-analytic expression determining the influence of
pressure-gradient and average shear on ballooning
stability Is determined

= this equation provides the marginal stability diagrams
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The ballooning equation takes the form...
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the local shear, and variations in the local shear
caused by profile variations will play an important role



The pressure-gradient & shear are varied

first-order change in p(y) =PV W)+ Sp(y)
pressure and transform () = O (w)+ 1 Si(y)
where y = £ —¥b
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The coordinate response & perturbed
ballooning equation are determined

# the coordinates are varied to preserve MHD equilibrium

X(1,0,) =X (,0,8) + u XV (y,6,¢)
®# [t is the only the local shear which is affected to zero-order

s=s +(1+D,)st'+ DS p'
# The perturbed ballooning equation takes the form
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The coefficients are :
SP=P. 5p+P. 61+ Py (p) + Py Sp'ot'+ P, (61)°,
6Q=Q, 6p+Q, 61'+Qyp (5p)° +Qp 5p'5t'+Q,,: (617,



Eigenvalue perturbation theory Is
applicable

The perturbed eigenvalue / eigenfunction has the form :

SA=Ay OP+ A, Ot'+ Ay (6P) + Ay, SP'S1'+ A (1) + ho. ..
05 =E&p OP'+E, 01+ &y, (5p')° +&p OP'O1+ S, (O )% + h.o. +..
expressions for 1st derivatives are obtained :
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the variation in eigenfunction is determined by an operator (matrix) inversion
[0,P0, +Q—-AR]S, = 4,RE-[0,P,0, +Q, — AR, ]S
and 2nd order (and 3rd, 4th, . . . ) derivatives are similarly obtained
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Theory determines . . ..
If increasing p’is stabilizing or destabilizing;
If a second stable region is likely to exist
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a 2nd stable region is likely to exist



Quasi-poloidal (m3b15) configuration

® guasi-poloidal configuration
studied by Ware et al. has
strong second stable region

® solid curve is stability
boundary determined by
exactly re-solving ballooning
equation on grid 200x200

m dotted curve from analytic
expression — single
eigenfunction calculation
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LHD has second stable region near core

# LHD

® solid line is exact calculation;
that Is, solving the perturbed
eigenvalue equation exactly
on a grid 200x200

m dotted curve from analytic
expression; requires only one |
ballooning calculation. 0.00 ~0.63 ~1.26
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® solid line is exact calculation; uol
that Is, solving the perturbed
eigenvalue equation exactly
on a grid 200x200

~ =20

m dotted curve from analytic
expression; requires only one | |
ballooning calculation. 0.00 ~1.98 S




Usefulness of profile-variation method Is
verified by equilibrium reconstruction
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A sequence of equilibria,
with Increasing pressure,
is constructed. i ]
] ] ) | e + +++++H - - - === ==
Though the geometry is changing, ? g '
the marginal stability diagram ?:
IS a good predictor of stability limits & *._ / |
The equilibrium is indicated with
+ If unstable
. 0 \ | '
— If stable 0.00 ~1.50 ~3.00



