STATUS OF THE 3-D EQUILIBRIUM RECONSTRUCTION PROJECT V3FIT

L.L. Lao for the V3FIT Team*

General Atomics, San Diego, CA, U.S.A.

National Stellarator Teleconference April 10, 2003

^{*}V3FIT Team: S.P. Hirshman and E.A. Lazarus Oak Ridge National Laboratory, L.L. Lao General Atomics, J.D. Hanson and S.F. Knowlton Auburn University

MOTIVATION

- Equilibrium reconstruction (ER) tools such as EFIT play a crucial role in the data analysis, control, and operation of tokamaks
 - Routinely used to support experiments
- U.S. fusion program is expanding its efforts in 3-D toroidal systems (NCSX, CTH, QPS), but no similar ER capability exists
- Previous NCSX study shows that active control of the helical field is required to maintain attractive quasi-symmetry and stability properties as the plasma pressure and current depart from vacuum
 - Need ER tools to support design of magnetic diagnostics
- These tools are also useful for analysis of departures from axisymmetry in tokamaks

$\begin{array}{l} \textbf{NSTX} \ \beta \ \textbf{Reconstructed} \\ \textbf{Magnetically Using EFIT} \end{array}$

Menard, IAEA 2002 Sabbagh, Nuc Fusion 2001

THE GOAL OF V3FIT IS TO BUILD A 3-D ER CODE TO SUPPORT STELLARATORS SIMILAR TO EFIT IN TOKAMAKS

- Collaboration project supported by DoE, presently includes GA, ORNL, and Auburn University
- Based on the efficient EFIT response function formalism
 - Lengthy calculations of inductance separated from rapid calculations of magnetic signals
- Presently efforts are concentrated on the VMEC equilibrium solver
- Two-phase approach
 - Phase 1: Develop 3-D response function formalism relating plasma and external current sources to measurements

Tools developed also useful to design of magnetic diagnostics for new stellarator devices

 Phase 2: Integrate the 3-D response functions with VMEC and development of regression algorithms to build V3FIT

V3FIT STATUS

- A 3-D response function approach has been formulated using magnetic reciprocity
- Two new codes V3RFUN / V3POST have been developed to provide an efficient tool for evaluation of magnetic diagnostics in 3-D toroidal system
 - Improved and numerically efficient Biot-Savart expression based on analytically simplified magnetic vector potential of current line-segment [1]
 - Have been benchmarked against EFIT DIII-D plasmas
 - Efforts underway to compare against the Wendelstein code DIAGNO for W7-AS cases. First comparisons show good agreement
 - Both are being applied to design NCSX and CTH magnetic diagnostics
 - A collaboration is underway to test the tools on the NIFS CHS stellarator
- Iteration schemes to integrate the response functions and VMEC and regression algorithms are being formulated to build V3FIT

TWO KEY EFIT FEATURES ARE RESPONSE FUNCTION APPROACH AND INTERLEAVE OF EQUILIBRIUM / FITTING

 Measurements directly related to the current sources through the Green/response functions G and the Picard's iteration scheme

$$C_{i}^{m+1}(\vec{r}) = G_{C_{i}}(\vec{r},\vec{r_{ej}})I_{ej} + dR dZ G_{C_{i}}(\vec{r},\vec{r})J_{\varphi}\left[R,\psi^{m}(\vec{r})\right]$$

Equilibrium and fitting iterations are interleaved

— Inverting Δ^* approximately conserving magnetic fluxes and fields

$$\begin{split} \psi &= \psi_{ext} + \psi_{P} \\ ^{*}\psi_{P}^{m\theta} &= -\mu_{0}RJ_{\varphi}(R,\psi^{m},\alpha), \psi^{m+1} = (1 - \vartheta)\psi^{m} + \vartheta\psi^{m\vartheta} \\ \psi_{ext}(\bar{r}) &= \int_{j} G_{\psi}(\bar{r},\bar{r}_{ej})I_{ej} \\ \bar{R}\,\bar{\alpha} &= \bar{M} \end{split}$$

 Non-linear optimization efficiently solved by transforming into a sequence of linear optimization problems

Lao, et sl Nuc. Fusion 25, 1611 (1985)

V3RFUN / V3POST ARE DEVELOPED TO PROVIDE AN EFFICIENT TOOL TO COMPUTE 3-D MAGNETIC RESPONSES

- Both codes have been written and tested
- V3RFUN computes and tabulates magnetic response functions for a given magnetic diagnostic set (lengthy calculations)
 - Magnetic probe and flux loop signal vectors \bar{S} are related to the current vectors through the response matrixes \bar{R}_{EXT}^{s} and \bar{R}_{S}^{PLA} by magnetic reciprocity

$$\overline{S} = \overline{\overline{R}}^{S}_{EXT} \overline{I}_{EXT} + \overline{\overline{R}}^{S}_{PLA} \overline{I}_{PLA} = \overline{\overline{R}}^{S}_{EXT} \overline{I}_{EXT} + \overline{\overline{R}}^{PLA}_{S} \overline{I}_{PLA}$$

— Response matrixes represented in cylindrical (R, ϕ , Z) coordinates

- V3POST evaluates magnetic responses for a given magnetic diagnostic set and for various plasma equilibria (*rapid calculations*)
 - VMEC equilibrium
 - Plasma current distribution represented in VMEC (s, u, v) coordinates
 - Bilinear interpolation to map plasma response to VMEC coordinates
- This formulation allows V3FIT to be built by extending the efficient EFIT response function approach to 3-D

V3RFUN / V3POST HAVE BEEN BENCHMARKED AGAINST EFIT DIII-D MAGNETIC RESPONSES

DIII-D external coil 6A. Flux loops PSI6A and PSF7FA

	PSI6A (Web/rad)	PSF7FA (Web/rad)
Analytic	-0.3384	-0.1386
V3POST	-0.3384	-0.1386
EFIT	-0.3362	-0.1375
Measured	-0.3373	-0.1401

• DIII-D AT equilibrium, plasma contribution

PLASMA	PSF5A (Wb)	PSI6A (Wb)	PSF9A (Wb)	MPI6FA322 (Tesla)
EFIT	0.62708	3.1785	1.3081	0.12635
V3POST	0.62868	3.1786	1.3106	0.12439
Difference (%)	0.25449	0.00259	0.19151	1.5578

 Comparison against DIAGNO 3-D W7-AS configuration underway. Initial results show good agreement

ON-GOING V3FIT TASKS AND PLAN

- Testing a surface formulation (virtual casing principle) for plasma response in V3POST
- Benchmark V3RFUN / V3POST against Wendelstein codes DIAGNO and MFBE
- Applications of V3RFUN / V3POST for design of magnetic diagnostics in NCSX and CTH
- Applications of V3RFUN / V3POST to study DIII-D error magnetic fields
- CTH (NIFS) collaboration to test V3RFUN / V3POST
- Develop numerical schemes to integrate the 3-D response functions into the VMEC equilibrium iteration procedure and explore regression algorithms
- Build a 3-D filament reconstruction code to test and explore 3-D equilibrium reconstruction issues (Lao / Zarnstoff)
 - Plasma current distributions represented using filaments

CHALLENGES

- VMEC is efficient but assumes nested flux surface. Effects of magnetic islands ? Magnetic stochasticity ?
- Direct equilibrium solver ?
- Need an efficient method to find magnetic surfaces if non-flux coordinates are used