Ray tracing for ballooning modes in quasi-symmetric devices

A. S. Ware *University of Montana* 9/8/2005

Collaborators: E. Mondloch, *University of Montana* R. Sanchez, D. A. Spong, D. del-Castillo-Negrete, *ORNL*

September 8, 2005

Overview

 Using COBRAVMEC to solve the ballooning equation

Range of parameters in ballooning space

Ray equations

Integrating the ray equations

Results for two configurations

►QPS, NCSX, (still working on HSX)

Solving the ballooning eigenvalue equation

We use COBRAVMEC to solve the ideal MHD ballooning equation

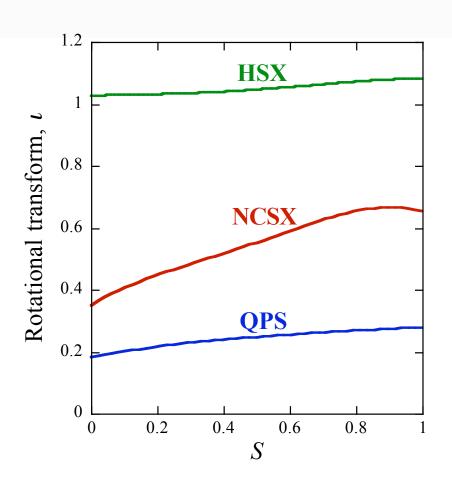
Siven a VMEC equilibrium (wout file), COBRAVMEC obtains the MHD eigenvalue as a function of the normalized flux, *S*, the field line label, $\alpha = q\theta - \zeta$, and the ballooning parameter, $\theta_k = k_a/k_{\alpha}$.

$$\frac{\partial}{\partial \theta} \left[c_1(\theta \mid S, \theta_k, \alpha) \frac{\partial \hat{\xi}}{\partial \theta} \right] + c_2(\theta \mid S, \theta_k, \alpha) \hat{\xi} + \lambda c_3(\theta \mid S, \theta_k, \alpha) \hat{\xi} = 0$$

To obtain:
$$\lambda = \lambda(S, \alpha, \theta_k)$$

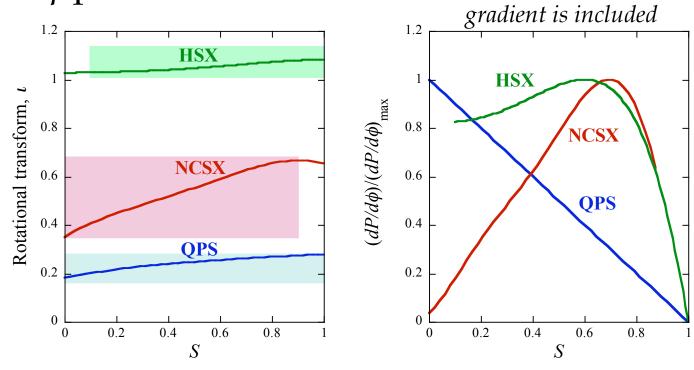
Issue concerning using the safety factor as the radial coordinate

- For ray tracing, it is useful to use the safety factor, *q*, as the radial coordinate
 - ➤ For monotonic *q*-profiles this is not an issue (QPS)
 - For profiles with shear reversals (NCSX and HSX) this proves difficult for interpolation



Issue concerning using the safety factor as the radial coordinate

For now, we are using ray tracing only over the portion of flux surfaces with a monotonic *q*-profile *Region of max pressure*



The Ray Equations

Dewar and Glassers ray tracing theory can be used to obtain information about the global eigenmodes

$$\begin{split} \lambda &= \lambda \left(q, \alpha, \theta_k \right) \\ \dot{q} &= \frac{\partial \lambda}{\partial k_q}, \quad \dot{\alpha} = \frac{\partial \lambda}{\partial k_\alpha}, \quad \dot{k}_q = -\frac{\partial \lambda}{\partial q}, \quad \dot{k}_\alpha = -\frac{\partial \lambda}{\partial \alpha} \end{split}$$

Using the values of λ on a 49x49x91 grid in (q,θ_k,α), we integrate the ray equations
► Range for θ_k is 0 to π and for α is 0 to 2π

Results for three quasi-symmetric stellarators

- All of the unstable ballooning modes that we have examined for QPS, NCSX, and HSX, are localized in ballooning space
- We have also examined some rays for configurations for which the 3-dimensional shaping has been reduced

Transition from 2D to 3D: The "equivalent" tokamak

• Let *v* represent an artificial parameter used to transform a fixed boundary from axisymmetric to nonaxisymmetric

$$R(\theta, \zeta) = \sum_{m} R_{bc}(m, 0) \cos(m\theta) + v \sum_{m, n \neq 0} R_{bc}(m, n) \cos(m\theta - n\zeta)$$

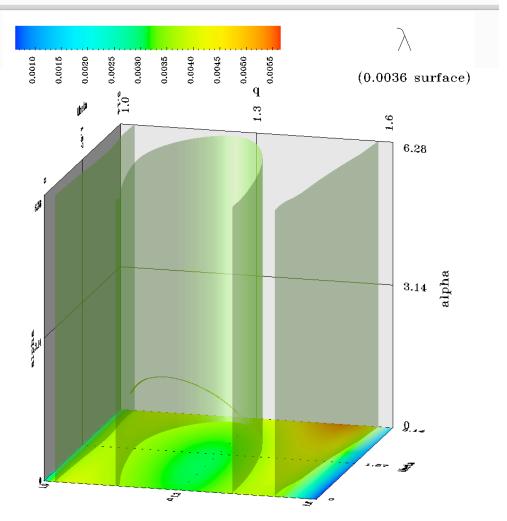
$$Z(\theta,\zeta) = \sum_{m} Z_{bs}(m,0) \sin(m\theta) + v \sum_{m,n\neq 0} Z_{bs}(m,n) \sin(m\theta - n\zeta)$$

 $\sim v = 0$ is the "equivalent" tokamak case

- ► v = 1 is the QPS (or NCSX or HSX) case
- Use VMEC to calculate equilibria for $0 \le v \le 1$, keeping ι and |B| fixed

QPS at β = 2.5%

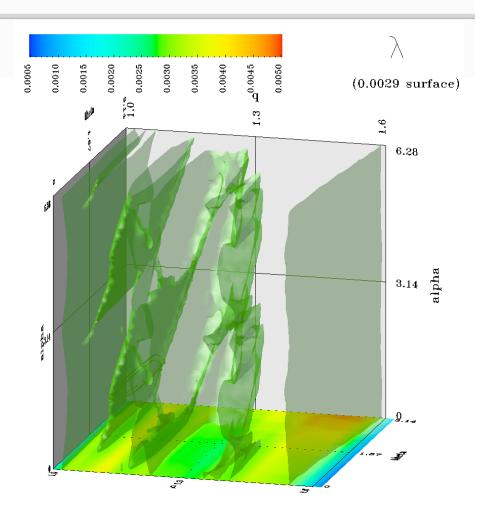
- The equivalent tokamak case (i.e., *v*=0)
 - All surfaces are stable
 - Surfaces of constant λ are independent of α
 - A constant λ surface and a ray on that surface are shown



QPS at β = 2.5%

• Moderate shaping (*v*=0.25)

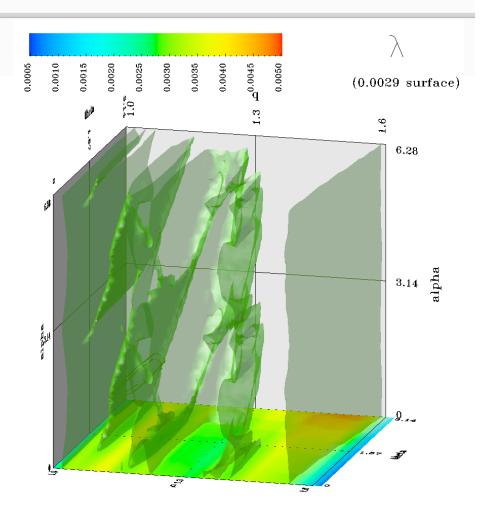
- All surfaces are still stable
- Surfaces of constant λ are extended along (but not independent of) α
- A constant λ surface and a ray on that surface are shown



QPS at β = 2.5%

• Moderate shaping (*v*=0.25)

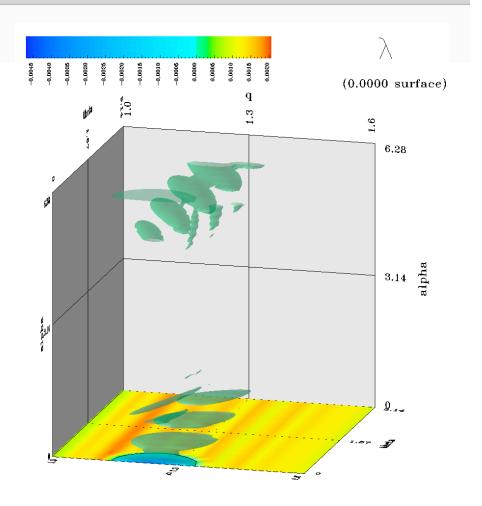
- All surfaces are still stable
- Surfaces of constant λ are extended along (but not independent of) α
- A constant λ surface and a ray on that surface are shown



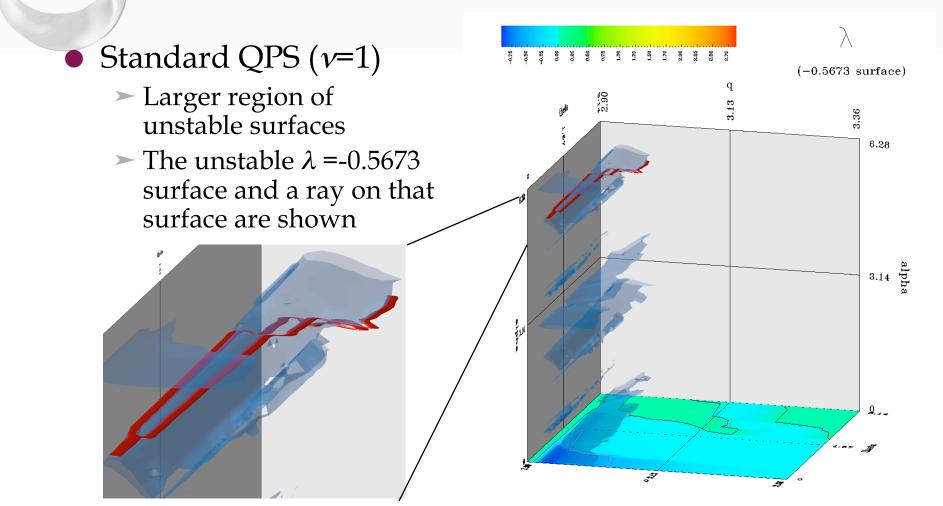
QPS at β = 2.04%

• Standard QPS (*v*=1)

- Localized region of weakly unstable surfaces
- Surfaces of constant λ are localized to a small range in α
- The marginal stable λ surface is shown



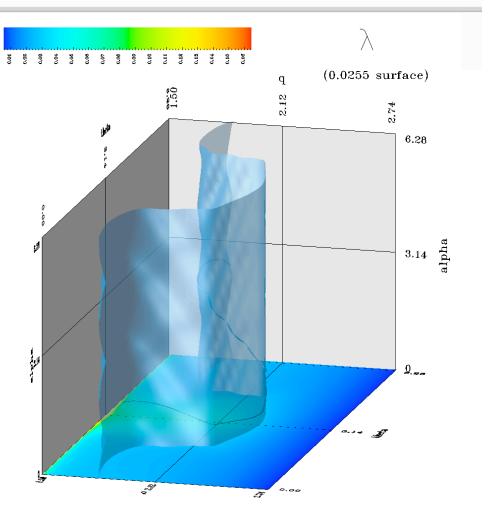
QPS at β = 4.0%



September 8, 2005

NCSX at β = 4.88%

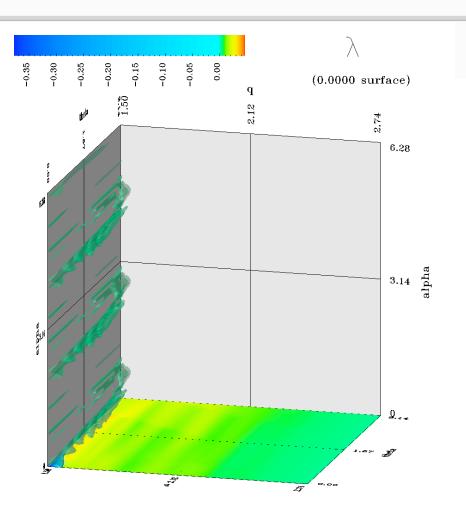
- Weakly shaped (*v*=0.05)
 - ➤ All surfaces are stable
 - Surfaces of constant λ are still bumpy and extended in α
 - ► Range in θ_k is now 0 to 2π
 - A stable λ shown along with a ray on that surface



NCSX at β = 4.88%

• Standard NCSX (v=1)

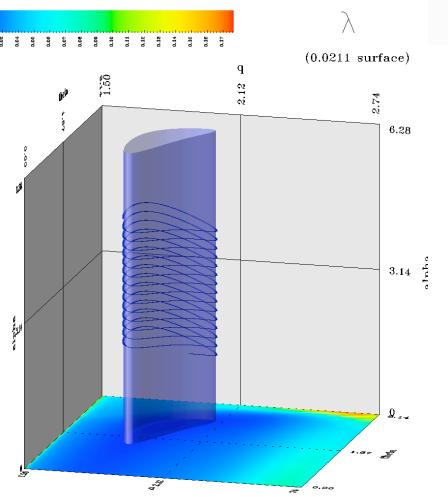
- Localized regions of instability
- Surfaces of constant λ are localized in α
- ► Range in θ_k is now 0 to 2π
- The marginal stability surface is shown
- Region of instability localized to the edge (lowest *q* values)



NCSX at $\beta = 5\%$ with a $p = p_0(1 - S)^2$ profile

"Tokamak" case (v=0)
No unstable regions
Standard cylindrical

type rays



NCSX at $\beta = 5\%$ with a $p = p_0(1 - S)^2$ profile

- ➤ Larger unstable regions
- ► Regions of instability localized in α

