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We consider how transport changes in
toroidal devices when one superposes on
the background magnetic field B a specified
spectrum {¢.} of electrostic (ES) modes,
representing turbulence, or an externally-
applied E-field.

-2 intuitive pictures for the effect:
(1)Additive (superposition) picture:
Commonly assumed that total diffusion
coefficient D is a sum of neoclassical and
anomalous contributions,

D=Donc+Dan )
eg, with D*" ~ |¢| (strong turbulence),
D*" ~ |@|? (weak turbulence, quasilinear

theory, some ripple transport).

(2) ver picture:

One might instead expect the fluctuations
to enhance the total effective
collisionality ver =Vv+Vvy, over the purely
collisional rate v, shortening the
decorrelation time.



Configurations:

-We study the transport in 3

configurations:
(1) 7g1l tok = tokamak obtained from 7ql

by taking all Fourier components By, of
magnetic field strength =0 for n#0.

-Plot B(6, () and B(along field line):

Fig.1
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(2)7g1l = one variant of the
quasiaxisymmetric stellarator LI383, on
which NCSX is based.

Fig.2




(3)27j = conventional (m,n)=(2,6)
stellarator.
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-Ambipolar electric field E, :

E, = ‘ar(Po , ©o = Og(1l- U/UY,)= aE(l_r2/a2) .



Perturbing Spectra:

-All configs have g € [2.53, 1.51]
~[5/2,3/2].

-Spectrum S1: Model turbulence with a
small spectrum of low-n modes with
dwm=m/n in this range:
m/n={3/2,5/3,2/1,4/2,6/3,5/2}, with
drift-wave (DW)-1like frequencies,

Wmn = Oy W/ (1+ki%0%)

amplitudes eQuwm/E1=8.2A.,()), with E;=1 keV,
max (A, () ) =1, 4,=107° 0./ (1+ki°0”), with
Oy, Ox multiplicative parameters,
scanned in numerical studies.
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-Spectrum S2: As S1, but take all n=0.

-Spectrum S2 has larger k|| = larger E|| =
enhanced capacity to break bounce-action
Jp,, energy E, and so enhance vgs.

-S2 models externally-applied RF fields,
such as employed on the Saturn
stellarator[l] to detrap electrons[l]:

[1] V.S. Voitsenya, et al., Sov.J.Plasma Phys. 3, 659
(1977) .
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FIG. 4. The ratio T/ 7y as a function of the cenwal frequency f =Yy
(f; + f); ARy, isthecalculated range of reflection frequencies for the locals
ized elecwons found from Fig. L

-More recently, some numerical studies have
considered possible applications of
externally-applied fields,

detrapping electrons to control E,, [2]
entrapping ions for impurity removal[3].

[2]Motojima, Shishkin, et al, Nucl.Fusion (2000).
[3]Antufyev, Shishkin, Fusion Science & Tech (2004).



Simulations:

-With background fields B(x), use GC code
ORBIT to integrate the orbits of N
particles, taking a monoenergetic
distribution of hydrogen ions with energy
Eo= 1 keV, launched halfway out
[r/a=(y/y.)’?1in a machine with major
radius Re=1 m, with B, (=|B| on axis of 3
Tesla.

-Compute diffusion coef D from

D=< (0r;) */2 T;i>,

where <F>=N, 'X;F; is an avg over all N,
particles, Or;=r;-<r>, and T; is the run time
for particle i, the smaller of its

confinement time and a max run time T.
-Take N,=3000, unless otherwise noted.



(1) Take radial ambipolar field E, =0, &
spectrum S1:

-Scan in collisionality v:

4 D(cm?/s) v neo(cm™)
#10
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-Banana -> plateau regimes appear in
7ql tok.

-7gl manifests modest 1/v regime,
coalescing with 7gql tok curve at
higher n..

-27j shows appreciable 1/v regime, as
one expects for its much larger
ripple.



-Scan in pert amplitude o,:

-Choose ng= 107/cm’®, bit below onset
of 1/v regime in Fig.5.
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-Effect of o, on tokamak consistent
with both superposition and ver
pictures.

-Less effect on stellarator 277 on
avg, consistent with ver picture. Also,
shows more structure than for tokamak.
-Subtracting off o,=0 contribution
(from Fig.5h) :
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-Scan in frequency (0,) :

<10 D[2dp,28g,280] v wmlt
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-Agaln subtracting off o,=0
contribution:
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-7ql1 tok has single central peak of

halfwidth d0,=.03.
-7ql roughly follows 7gl tok curve, plus

additional structure at larger 0.
-277 manifests 2 significant features:

13 3
ne= 10"/cm’,
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(a) The structure seen in 7gl is more
pronounced in 27j, and shows a succession

of peaks, with rough spacing Ad,=.08.
(b) For some 0, the DW spectrum can REDUCE
D[277] below its 0p=0 wvalue.
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(2)Now, compare E,=0 and E,#0, with spectra
S1,S2. Focus on 277 henceforth:

-Scan in v:

« 10 D[33a,34+] v dens
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-Frequency scan (0,) :

D[33d,e, 34d,w] v wmlt
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-Spectrum S2 produces larger effect than
S1, as expected.

-For 0z=0 (puts ions in 1/v regime), see
D" <0

-For 0z=0.6 (puts ions in lower-v
“superbanana regime”), see D* >0

-Both results what expect for spectrum
enhancing ver.
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Some Theory:

-Kinetic eqgn: (9.+Lyg)f = Cf, | (1)
with Hamiltonian H(z)=Ho+H;, Lg=2 9;,

z={z'} (i=1-6) =parametrizing phase-space,
Ho=unperturbed H, given by background B(x),
and Hi=Y,e@nCoSNm ~ Oa, M=(m,n), nNgx=ndi-mo-myt.

-Neoclassical theory follows from (1) with
Hi~0np — O.

-Magnetic field: B=VOXVO+V{xVy = VaxVy, (2)
with o = (-gf.

-Parametrize z: Start with

z= (0, (e/c)Vy;s,p||=Mv||;0g,T=(Mc/e)u), (3a)
with s=distance along B, (04,J4) = gyro-phase

& action. Transform (s,p||) to (Oy, Jyp) =
bounce-phase & action:

z=(0,J), 0=(a,0,,04), JT=(p=(e/c)Vy, Ty, Ig) (3b)
-For H,;#0,
Jp=-0gpH1=-1%) n1pHi nexp i (leB-wut), (4a)
E =0H;=-1X; n0OxHi nexp i (le0-m,t), (4b)
with Fourier amplitudes Hi ,(J),
J=(pa,Jo, Jg) , 0=(7,05,05), 1=(1,,1p, 1) .

-Diffusion coef D(J) in J-space due to Hj,
D(J)= Xi,,117m0 (LeQ-y,) |Hy,n(JT) |°. (5)
with Q(J) EaJ:[_IO E(QOLIQ]OI Qg) ’ 1E(1O€l 1bl lg) .
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For these ®,, have 14=0, lyg—ny,, and
1,=0,%1,%2, .. (6a)

-Expect appreciable effect when resonance
condition of phase le0-wm,t met:

0=d; (1le0-mw,t)= 1leQ-®, , (6b)

-Projections of D(J) yield expressions for
the various effects noted above, eg,

-contrib to radial diffusion from eTEQﬁP:
D'"=e".D.e"=%; a0, md (LeQ-y) |Hy n(J) |2,

-energy scattering from e®=d;H,=Q: (7a)
D**=e”.D.e"=X1, 0,0 (1eQ-wy,) |Hy o (J) |* , (7b)

-pitch-angle scattering from e’=0d;J:
D=e’.D.e’=%; ;1,°0 (10Q-y,) |Hy, o (T) |° (7¢)

~ Van
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-Preliminary eval’ns

of this:
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-Assuming D~ 1/vgr ,
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compare Dnu,, with
analytic expectation:
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Summary:

-A perturbing ES spectrum affects radial
transport differently for tokamaks and
stellarators. However, for both, the
spectrum produces an effective
collisionality Ver =V+Van, which enters
differently into the radial transport.

-Since D ~ Ve =V+V,, 1n tokamaks, the
superposition picture D=D""+D®" is also
consistent with the v.f picture.

-D*" in stellarators displays a more complex

dependence, exhibiting an oscillatory

structure as a function of mode frequency w

out to larger values of w.

-For some v and w, the fluctuations can
REDUCE D below D", contrary to the
superposition intuition, but consistent

with the v.f expectation in the 1/v regime.

-An analytic theory for v.s has been

developed, providing a prediction for ves,
and better understanding of the numerical

results.
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