The effect on neoclassical transport of a fluctuating electrostatic (ES) spectrum

H.E. Mynick, PPPL, A.H. Boozer, Columbia U.

Stellarator theory teleconference, Sept.23, 2004

We consider how transport changes in toroidal devices when one superposes on the background magnetic field **B** a specified spectrum $\{\phi_k\}$ of electrostic (**ES**) modes, representing turbulence, or an externally-applied **E**-field.

```
-2 intuitive pictures for the effect:

(1) Additive (superposition) picture:

Commonly assumed that total diffusion

coefficient D is a sum of neoclassical and

anomalous contributions,

D=D_0^{nc}+D^{an},

eg, with D^{an} \sim |\phi| (strong turbulence),

D^{an} \sim |\phi|^2 (weak turbulence, quasilinear

theory, some ripple transport).

(2) v_{ef} picture:

One might instead expect the fluctuations

to enhance the total effective

collisionality v_{ef} = v + v_{an} over the purely

collisional rate v, shortening the

decorrelation time.
```

Configurations:

-We study the transport in 3 configurations: (1)7q1_tok = tokamak obtained from 7q1 by taking all Fourier components B_{mn} of magnetic field strength =0 for $n\neq 0$.

(3)27j = conventional (m,n) = (2,6) stellarator.

-Ambipolar electric field E_r :

 $E_r = -\partial_r \phi_0 \ , \ \phi_0 = \alpha_E \left(1 - \psi/\psi_a\right) \approx \alpha_E \left(1 - r^2/a^2\right) \, .$

Perturbing Spectra:

-All configs have q \in [2.53, 1.51] \approx [5/2,3/2]. -Spectrum S1: Model turbulence with a small spectrum of low-n modes with $q_{mn}\equiv m/n$ in this range: $m/n=\{3/2,5/3,2/1,4/2,6/3,5/2\}$, with drift-wave (DW)-like frequencies, $\omega_{mn} = \alpha_{\omega} \omega_{*k}/(1+k_{\perp}^2\rho^2)$, amplitudes $e\phi_{mn}/E_1 = \hat{a}_m A_m(\psi)$, with $E_1 \equiv 1$ keV, $max(A_m(\psi))=1$, $\hat{a}_m \equiv 10^{-3} \alpha_A/(1+k_{\perp}^2\rho^2)$, with α_{ω} , α_A multiplicative parameters, scanned in numerical studies.

-Spectrum S2: As S1, but take all n=0.

-Spectrum S2 has larger $k_{||} \Rightarrow$ larger $E_{||} \Rightarrow$ enhanced capacity to break bounce-action J_b , energy E, and so enhance v_{ef} .

-S2 models externally-applied RF fields, such as employed on the Saturn stellarator[1] to detrap electrons[1]:

[1] V.S. Voitsenya, et al., *Sov.J.Plasma Phys.* **3**, 659 (1977).

FIG. 4. The ratio τ / τ_0 as a function of the central frequency $f = 1/2 \cdot (f_1 + f_2)$; Δf_0 is the calculated range of reflection frequencies for the localized electrons found from Fig. 1.

-More recently, some numerical studies have considered possible applications of externally-applied fields, detrapping electrons to control E_r , [2] entrapping ions for impurity removal[3].

```
[2] Motojima, Shishkin, et al, Nucl.Fusion (2000).[3] Antufyev, Shishkin, Fusion Science & Tech (2004).
```

Simulations:

-With background fields ${\bf B}({\bf x})$, use GC code ORBIT to integrate the orbits of N_p particles, taking a monoenergetic distribution of hydrogen ions with energy $E_0=$ 1 keV, launched halfway out $[r/a{=}(\psi/\psi_a)^{1/2}]$ in a machine with major radius $R_0{=}1$ m, with B_0 $(=|{\bf B}|$ on axis of 3 Tesla.

-Compute diffusion coef D from D=<(δr_i) ²/2 τ_i >, where <F>= $N_p^{-1}\Sigma_i F_i$ is an avg over all N_p particles, $\delta r_i = r_i - \langle r \rangle$, and τ_i is the run time for particle i, the smaller of its confinement time and a max run time T. -Take N_p =3000, unless otherwise noted. (1) Take radial ambipolar field $E_r = 0$, & spectrum **S1**:

-Scan in collisionality v:

-Banana -> plateau regimes appear in **7q1_tok**.

-7q1 manifests modest 1/v regime, coalescing with 7q1_tok curve at higher n_{e0} .

-27j shows appreciable 1/v regime, as one expects for its much larger ripple.

-Scan in pert amplitude α_A : -Choose $n_{e0} = 10^{13}/\text{cm}^3$, bit below onset of $1/\nu$ regime in Fig.5.

-Effect of $\alpha_{\rm A}$ on tokamak consistent with both superposition and $\nu_{\rm ef}$ pictures.

-Less effect on stellarator 27j on avg, consistent with v_{ef} picture. Also, shows more structure than for tokamak. -Subtracting off $\alpha_{A}=0$ contribution (from Fig.5):

9

-Scan in frequency (α_{ω}) :

-Again subtracting off $\alpha_{A=0}$ contribution:

-7q1_tok has single central peak of halfwidth $\delta \alpha_{\omega} \approx .03$. -7q1 roughly follows 7q1_tok curve, plus additional structure at larger α_{ω} . -27j manifests 2 significant features: (a) The structure seen in 7q1 is more pronounced in 27j, and shows a succession of peaks, with rough spacing $\Delta \alpha_{\omega} \approx .08$. (b) For some α_{ω} , the DW spectrum can REDUCE D[27j] below its $\alpha_{A}=0$ value. (2) Now, compare $E_r=0$ and $E_r\neq 0$, with spectra **S1,S2**. Focus on **27j** henceforth:

-Scan in v:

-Frequency scan (α_{ω}) :

-Spectrum **S2** produces larger effect than **S1**, as expected.

-For $\alpha_{\rm E}{=}0$ (puts ions in $1/\nu$ regime), see D^{\rm an} <0 . -For $\alpha_{\rm E}{=}0.6$ (puts ions in lower- ν "superbanana regime"), see D^{\rm an} >0 .

-Both results what expect for spectrum enhancing $\nu_{\text{ef}}.$

Some Theory:

-Kinetic eqn: $(\partial_t + L_H) f = Cf$, (1) with Hamiltonian $H(\mathbf{z}) = H_0 + H_1$, $L_H \equiv \dot{z}^i \partial_i$, $\mathbf{z} \equiv \{z^i\} (i=1-6)$ =parametrizing phase-space, $H_0 \equiv$ unperturbed H, given by background $B(\mathbf{x})$, and $H_1 = \Sigma_m e \phi_m \cos \eta_m \sim \alpha_A$, $\mathbf{m} \equiv (m, n)$, $\eta_m \equiv n\zeta - m\theta - \omega_m t$.

-Neoclassical theory follows from (1) with $H_1 \sim \alpha_A \rightarrow 0$. -Magnetic field: $\mathbf{B} = \nabla \Phi \times \nabla \theta + \nabla \zeta \times \nabla \psi = \nabla \alpha \times \nabla \psi$, (2) with $\alpha \equiv \zeta - q\theta$. -Parametrize \mathbf{z} : Start with $\mathbf{z} = (\alpha, (e/c)\psi; s, p_{||} \equiv Mv_{||}; \theta_g, J_g \equiv (Mc/e)\mu)$, (3a) with s=distance along \mathbf{B} , $(\theta_g, J_g) = gyro$ -phase & action. Transform $(s, p_{||})$ to $(\theta_b, J_b) =$ bounce-phase & action: $\mathbf{z} = (\theta, \mathbf{J})$, $\theta = (\overline{\alpha}, \theta_b, \theta_g)$, $\mathbf{J} = (p_\alpha \equiv (e/c)\overline{\psi}, J_b, J_g)$ (3b) -For $H_1 \neq 0$,

$$\dot{J}_{b} = -\partial_{\theta b} H_{1} = -i\Sigma_{1,m} l_{b} H_{1,m} \exp i(1 \bullet \theta - \omega_{m} t), \qquad (4a)$$

$$\begin{split} \dot{\mathbf{E}} &= \partial_{t} \mathbf{H}_{1} = -i \Sigma_{1,m} \omega_{m} \mathbf{H}_{1,m} \exp i(\mathbf{l} \bullet \theta - \omega_{m} t), \quad (4b) \\ \text{with Fourier amplitudes } \mathbf{H}_{1,m}(\mathbf{J}), \\ \mathbf{J} &\equiv (\mathbf{p}_{\alpha}, \mathbf{J}_{b}, \mathbf{J}_{g}), \quad \boldsymbol{\theta} &\equiv (\overline{\alpha}, \theta_{b}, \theta_{g}), \quad \mathbf{l} &\equiv (\mathbf{l}_{\alpha}, \mathbf{l}_{b}, \mathbf{l}_{g}). \end{split}$$

-Diffusion coef $\mathbf{D}(\mathbf{J})$ in \mathbf{J} -space due to H_1 , $\mathbf{D}(\mathbf{J}) = \sum_{1,m} \mathbf{l} \mathbf{l} \pi \delta(\mathbf{l} \bullet \mathbf{\Omega} - \boldsymbol{\omega}_m) | H_{1,m}(\mathbf{J}) |^2$. (5) with $\mathbf{\Omega}(\mathbf{J}) \equiv \partial_{\mathbf{J}} H_0 \equiv (\Omega_{\alpha}, \Omega_{\mathrm{b}}, \Omega_{\mathrm{g}})$, $\mathbf{l} \equiv (\mathbf{l}_{\alpha}, \mathbf{l}_{\mathrm{b}}, \mathbf{l}_{\mathrm{g}})$. For these ω_m , have $l_g=0$, $l_{\alpha} \rightarrow n_{\alpha}$, and $l_b=0,\pm 1,\pm 2,\ldots$ (6a) -Expect appreciable effect when resonance condition of phase $\mathbf{1} \cdot \mathbf{\theta} - \omega_m \mathbf{t}$ met: $0=d_t (\mathbf{1} \cdot \mathbf{\theta} - \omega_m \mathbf{t}) = \mathbf{1} \cdot \mathbf{\Omega} - \omega_m$, (6b)

-Projections of $\mathbf{D}(\mathbf{J})$ yield expressions for the various effects noted above, eg, -contrib to radial diffusion from $\mathbf{e}^{\Psi} \equiv \partial_{\mathbf{J}} \Psi$: $D^{\Psi\Psi} = \mathbf{e}^{\Psi} \cdot \mathbf{D} \cdot \mathbf{e}^{\Psi} = \Sigma_{1,m} n_{\alpha}^{2} \pi \delta (\mathbf{1} \bullet \mathbf{\Omega} - \omega_{m}) | \mathbf{H}_{1,m}(\mathbf{J}) |^{2}$, -energy scattering from $\mathbf{e}^{E} \equiv \partial_{\mathbf{J}} \mathbf{H}_{0} = \mathbf{\Omega}$: (7a) $D^{EE} = \mathbf{e}^{E} \cdot \mathbf{D} \cdot \mathbf{e}^{E} = \Sigma_{1,m} \omega_{m}^{2} \pi \delta (\mathbf{1} \bullet \mathbf{\Omega} - \omega_{m}) | \mathbf{H}_{1,m}(\mathbf{J}) |^{2}$, (7b) -pitch-angle scattering from $\mathbf{e}^{J} \equiv \partial_{J} \mathbf{J}$: $D^{JJ} = \mathbf{e}^{J} \cdot \mathbf{D} \cdot \mathbf{e}^{J} = \Sigma_{1,m} \mathbf{1}_{b}^{2} \pi \delta (\mathbf{1} \bullet \mathbf{\Omega} - \omega_{m}) | \mathbf{H}_{1,m}(\mathbf{J}) |^{2}$ (7c) ~ V_{an} .

-Assuming D~ $1/\nu_{\text{ef}}$, compare D_{num} with analytic expectation:

Summary:

-A perturbing ES spectrum affects radial transport differently for tokamaks and stellarators. However, for both, the spectrum produces an effective collisionality $v_{ef} = v + v_{an}$, which enters differently into the radial transport.

-Since D ~ $v_{ef} = v + v_{an}$ in tokamaks, the superposition picture $D=D^{nc}+D^{an}$ is also consistent with the v_{ef} picture.

-D^{an} in stellarators displays a more complex dependence, exhibiting an oscillatory structure as a function of mode frequency ω out to larger values of ω .

-For some ν and ω , the fluctuations can REDUCE D below D^{nc}, contrary to the superposition intuition, but consistent with the ν_{ef} expectation in the $1/\nu$ regime.

-An analytic theory for ν_{ef} has been developed, providing a prediction for ν_{ef} , and better understanding of the numerical results.