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From:  M. Zarnstorff and C. Hegna Ext. 3581

Subject:  Analytic Island Estimates Ver.  1

The purpose of this memo is to develop a strategy for estimating island widths in the NCSX
optimizers in order to discourage them and optimize for configurations with good flux surfaces.
Thus, the estimate need not be absolutely accurate but needs to have the correct parametric
dependencies.  In addition, for speed, it should be able to be evaluated using a VMEC
equilibrium, even though VMEC’s representation presumes good flux surface.

The analytic theory of island formation in stellarators has been extensively developed [1-5] and
has been recently summarized by Hegna [6] including results from his re-evaluation of pressure
driven islands in low-aspect ratio shaped tokamaks [7] including high-β effects.  The expression
for the saturated island width at a rational surface with mn /=ι  is

( ) 5.022 4/2/ vv wsCDDw +++= ,

where the width is in units of toroidal flux ψ , vw  is the ‘vacuum width’ in the absence of plasma

pressure,  1±=vs depending on whether the vacuum islands and the pressure driven islands are in

(or out) of phase[4], C represents the square of the island-width produced by the resonant
component of the Pfirsch-Schluter current, and D  gives the effective island width due to non-
linear flattening of pressure gradient modifying the Pfirsch-Schluter and bootstrap currents (the
Glasser and neoclassical tearing effects).  Note that in this memo we use the physical toroidal flux,
while [6] defines ψ  as the physical flux over π2 .  These terms are evaluated as

[ ] )/(1 ∆′−+= ∗
Rnc DDkD  , where RD  is the resistive interchange stability parameter,  ∆′  is the

tearing mode asymptotic matching parameter,
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bootJ   is the bootstrap current density, ψ∂∂= /' ,
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ψ∝r  is the minor radius, and mnε  is related to the Jacobian in Boozer coordinates by

( )[ ]∑ −+′= ϕθε inimVg mn exp1 .  The modified ∗
RD  is defined (as DR-dagger, not printable in

MSWord equation) in a recent memo from Hegna, attached.   This expression for w  is valid for
arbitrary plasma shapes, except that the expression for C  was derived at high aspect ratio.



The two constants have been evaluated by Hegna [8] as, approximately, 160 =k  and 3.61 =k .

Evaluation Strategy
VMEC cannot represent islands in its calculated equilibrium and should numerically infer a
resonant sheet current to close the island.   If  the parallel current density is expanded in a Fourier

series as ∑ −=⋅ )exp(/ 2 ϕθλ inimBBJ mn

rr
 in Boozer coordinates, then the sheet current term

will have the form )(ˆ
mnmn ψψδλ − [6].  In addition, if the resonant 0≠εmn  on a rational surface

there will be a diverging Pfirsch-Schluter current 1)/( −−ι∝ mn .  If VMEC calculated the currents
with sufficient accuracy, and we did a run with a high-enough radial resolution to distinguish the

mnλ̂  and divergent Pfirsch-Schluter components, we could calculate both C  and vw .  However,

discussions within the group (particularly with A.Boozer, D. Monticello, and A. Reiman) indicate
that this has not worked well in the past.  In this case, we need to calculate them separately.

Thus, to evaluate w  for NCSX using VMEC equilibria in the optimizer, I would propose the
following strategies:
• Evaluate mnε  and ∗

RD  using the JMC code and a full-β VMEC equilibrium.  Use the

calculated mnε  to evaluate C .  The JMC resistive interchange parameter RDS 2−= , where S
is the shear [9].  The derivation of the JMC resistive interchange expressions must be revisited
to see if it can be adapted to calculate ∗

RD .  Alternately,  if the optimizer can bring mnε  to

zero, then RR DD =∗ .

• Evaluate ncD  using standard axisymmetric expressions for BJ boot

rr
⋅ , or using a full 3D code

for less-symmetric cases.   The 
22 / ψ∇B  integral needed for ncD appears to already be

evaluated by the JMC code as 3K , only needing normalization to the total flux-squared.

• Since we probably cannot separately determine mnλ̂ in a finite β VMEC run, the present idea is

to calculate it from a separate pressure-less VMEC calculation with the same ι-profile and
boundary shape as the finite β case.  Following the analysis of [6],  the island width from this

current is )/(ˆ4 0
2 ι′∆′λµ=δ mnKw , where K  is defined in [6] page 3, which would be taken as

an approximation to 2
vw . Using a pressure-less run will avoid the complications of the

divergent Pfirsch-Schluter currents, but will miss any changes in the islands due to the
Shafranov shift and higher order modifications of the equilibrium.

A finite resolution VMEC run will not, typically, calculate the parallel current at a given
rational surface, but will have grid points spanning the rational surface.  The proposal is to
calculate the resonant mnλ current density in the zone covering the rational surface and assume

that it is all due to mnλ̂ .  This is equivalent to assuming that the entire jump in the resonant



mnB  on the finite VMEC grid is due to mnλ̂ .  VMEC will calculate a sheet current to close

both the vacuum island and the island due to the resonant Pfirsch-Schluter current (the C
term above). Careful benchmarking of pressure-less VMEC and PIES runs will be needed to

verify whether the VMEC mnλ̂  is correct.  The new VMEC may be needed to properly resolve

mnλ̂ .

• Approximate ∆′  by )2/(2 2
TBrm π− .  This standard approximation comes from a large

aspect ratio expansion and the definition of the physical toroidal flux ψ .

Optimization Strategy

Bthere are two reasonable optimization strategies:  (a) estimate w  as above and limit the sum of
all island widths to not exceed a certain fraction of the flux (previously agreed at 10%) at both
low and high-β, or (b)  limit particular characteristics of the islands as separate factors:

1. If 0>D , then the islands grow with p′ , without limit. This is the (observed) neoclassical
tearing instability in tokamaks and stellarators (recent LHD).  For standard aspect ratios,

ncD typically dominates RD .  However, at very low aspect ratio (i.e. STs) [10] or very low

bootstrap current, RD  can dominate.  This has already guided our focus to ‘reversed shear
configurations’.

2. For 0<D , then

• If  CD >>4/2 , which will occur at high p′ , the square-root can be expanded and

DCw /≈  which is independent of pressure and ∆′ !  This is the maximum island width

for any pressure (ignoring vacuum islands).  Thus, we can limit this ratio by insisting that
the sum over all (low order) rational surfaces is < 10% of the flux.

• If  CD <<2/ , then Cw ≈ and the island width grows as p′ .

3. Since we also need good surfaces in low pressure equilibria, limit the sum of all the vw  to less

than 10% of the flux.  If D < 0, the vw  contribution will decrease with pressure.

Conclusions
Using these expressions, the island widths should be calculable for VMEC equilibria and used for
optimization.  The optimizer should search for equilibria with acceptable total island widths at all
low-order rational surfaces.  This could be implemented in either of two ways:

• Limit the sum of calculated island widths over all the rational surfaces, over a range of  β
values from vacuum to high-β, or

• Optimize for 0<D , negligible DC / , and negligible δw  at each low-order rational.
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Evaluation of Interchange Parameters in Analytic Island Formulae

C. C. Hegna

This note is written to clarify the evaluation of the resistive interchange

parameters to be used in the analytic formulae for estimating island widths in

3-D MHD equilibria[1,2]. In particular, the issue to be addressed is how the

presence of the island resolves the singular P�rsch-Schl�uter currents which

in turn modi�es the expression for the resistive interchange parameters.

Singular currents which arise on the rational surfaces of 3-D equilibria

can be resolved by allowing a magnetic island to form. Analytic calculations

show that the island width can be self-consistently calculated and predicts

an island width w

w =
D

2
+

s
D2

4
+ jC + sw2

vj; (1)

where wv and s correspond to the amplitude and phase of the vacuum contri-
bution to the island and the terms C and D correspond to �nite � corrections
to the island width. Quantitative estimates for these terms are given in Refs.

(1) and (2). The term C is proportional to the resonant component of the
1=B2 spectrum which yields singular P�rsch- Schl�uter currents without the
island. The term D corresponds to neoclassical (Dnc) and resistive inter-
change (DRy) contributions to the island equation. What we address in the
following is the correct estimate for the interchange physics.

I. Resonant Components of DR

Using standard de�nitions with  the toroidal 
ux function, the resistive
interchange parameters as de�ned by Glasser et al[3] are given by

E =
p0V 0

�02
<
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jr j2
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I�0
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+ �0

< �B2 >

< B2 >
] (2)
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p02V 02
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�2B2

jr j2
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1
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(3)

H =
p0V 0

�0
[<

�B2

jr j2
> �

< �B2 >

< B2 >
<

B2

jr j2
>] (4)

where the parallel current is written

J �B

B2
= �( ) + p0� (5)
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and � is the P�rsch-Schl�uter coe�cient which in general has resonances at

rational surfaces, �mn � �mn=(� � n=m) where �mn is proportional to the

resonant amplitude of 1=B2.

What is shown in Ref. 4 is that by allowing for islands to form at the ra-

tional surfaces, the singularity is resolved. An island width is then calculated

which depends upon the interchange properties. The proper measure of the

resistive interchange quantities that pertain to the self-consistent island for-

mation problem is not quite the same as linear instability parameters given

in Eqs. (2)-(4). One needs to separate the contributions to � from resonant

and non-resonant components of the P�rsch-Schl�uter current.
We'll consider the formation of an island at the rational surface �o =

no=mo and denote a resonant angle � = mo� � no� where � and � are the
poloidal and toroidal angles. The overbar notation indicates an average over
toroidal angle at �xed �, � =

R
(d�=2�)�(�; �) and ~� = � � �, so that � is

the resonant component of the current at the rational surface.
We now introduce the quantities E0; F 0 and H 0 which are equivilant to

E;F and H except that the quantity � in Eqs. (2)-(4) is replaced by ~�.

E0 =
p0V 0

�02
<

B2

jr j2
> [�V 00 +

I�0

< B2 >
+ �0

< ~�B2 >
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F 0 =
p02V 02
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(7)

H 0 =
p0V 0

�0
[<

~�B2

jr j2
> �

< ~�B2 >

< B2 >
<

B2

jr j2
>]: (8)

The di�erence between E0; F 0;H 0 and E;F;H is the presence of the singular
currents at the rational surface. The well behaved quantities E0; F 0 and H 0

are to be used to measure the resistive interchange physics impact on the

saturated island width.

II. Resolved island currents

The relevant calcultion of the resolved current in the island region is given
in Ref. (4), denoted HB from now on. In particular, the parallel component

of the current J �B=B2 = Q is given in Eq. (49) of HB reproduced here

Q = h( �)� p0

N#� p0

N �p�� p0

N�
@A�

@x
; (9)
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where  � is the helical 
ux function, pN = pN ( �) is the pressure pro�le

in the island region, �p is the deviation in the pressure pro�le away from

the initial equilibrium, A� is the perturbed vector potential, x is the radial

deviation from the rational surface and h( �) is a function of the helical 
ux

function which is determined later in the calculation. The overline notation

indicates quantities which are functions of x and � alone. The quantity # is

the Jacobian in Boozer coordinates. Note that # can be expanded

# = �k#kcos(k�): (10)

The k = 0 component is independent of � and is proportional to V 0. The
k 6= 0 components describe the resonant components of the 1=B2 spectrum

at � = no=mo. The terms � = ~�2G � ~� ~G
2

=G and � = �~� ~G=G, (with G =
#B2=jr j2) are functions of various averages of the non-resonant components
of the P�rsch-Schl�uter currents. As with the Jacobian, these functions can
be expanded

� = �k�kcos(k�); (11)

� = �k�kcos(k�): (12)

The k = 0 components of the above corresponds to quantities that are present
in the expressions for E0, F 0 and H 0.

Equation (9) can be rewritten using the above

Q = h( �)� xp0

N (#
0

k=0 � p0

o�k=0)� p0

N�k=0
@A�

@x

�cos(�)p0

N (#k=1 + �p�k=1 + �k=1
@A�

@x
) + ::: (13)

where the ... terms are O[p0

N cos(2�)], O[p
0

Ncos(3�)] etc. The terms propor-

tional to the k = 0 terms correspond to the interchange parameters denoted

in E0, F 0 and H 0. The term proportional to cos(�) denote the parallel current
driven by resonant components of 1=B2 that are no longer singular due to the

island topology. In the small island ordering, �k=1 and �k=1 which accounts

for the island producing modi�cations to the spectrum are both smaller than

#k=1. In this limit, Eq. (13) becomes

Q = h(	�) +
p0

N �
0

p0

oG
[�0x(E0 + F 0) +H

@A�

@x
]� cos(�)p0

N#k=1; (14)
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which is equivilant to Eq. (5) of Ref. (1) if the proper de�nitions of E0, F 0

and H 0 are used.

The rest of the island evaluation follows as described in Refs. (1) and (3).

The proper measure of the resistive interchange quantity in the saturated

island equation is

DRy
0 =

E0 + F 0 +H 02

�s �H 0
(15)

where �s = 1=2 +
q
1=4 � E0 � F 0 �H 0 is the small Mercier limit. In the

small �, large aspect ratio limit, DRy
0 = E0 + F 0.
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