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A. Introduction

Ilon Joseph and Allen Boozer (J&B), using near axis expansion and quasi-symmetry
constraint, concluded that significant amount of rotational transform may be generated by
the helical excursion of the magnetic axis.  They showed that (1) for a 3-period
configuration, the minor radius of axis excursion, a, relative to the major radius, should
be less than 0.1;  (2) the transform generated by the axis helical excursion increases
quadratically with a; and  (3) for an excursion minor radius half of the critical value, the
largest transform occurs when the near axis ellipticity approaches 3.  The achievable
transform is as high as 0.52. Our earlier attempt to increase the on-axis rotational
transform by means of axis wobble alone, however, failed to raise the on-axis transform
to > 0.3.  Thus, our results are not entirely consistent with the analytic calculations,
although we recognize the fact that the configurations used in our study were complex
and that there was no effort made to re-optimize the configurations to be quasi-
symmetric. In addition, we observed that the resulting configurations became much less
stable to MHD modes, both local and global, owing in part to the deterioration of the
magnetic well.

To understand the amount of transform that can be generated by helical excursion of the
axis and by rotating an ellipse, we carried out a series of numerical calculations using a
simple model stellarator in which the ellipicity and axis excursion were varied
independently without requiring quasi-symmetry. We only limited the maximum axis
excursion to less than 10% of the major radius, which is the critical value as asserted in
J&B’s work. Although this kind of rotational transform data must exist, it is
straightforward to generate them by a series of VMEC calculations.

B.  Model Stellarator

We use the following representation for the boundary of our model stellarator,

R Z+ = − +∑i e eiu
m n

imu inv∆ ,   ,                                                                                           (1)

where R, Z and φ=v/N are cylindrical coordinates about the principal axis of the
stellarator, N is the number of field periods, and m, n are the poloidal and toroidal mode
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numbers, respectively.  In the simplest configuration, we retain only four terms: ∆1,0, the
major radius; ∆0,0, the minor radius; ∆2,1, the helical twist generating l=2 transform; and
∆1,1, the axis excursion. In a more familiar Fourier notation:

R N N= + + − +∆ ∆ ∆ ∆1 0 0 0 2 1 1 1, , , ,cos cos( ) cosθ θ φ φ                                                      (2)

Z N N= − − −∆ ∆ ∆0 0 2 1 1 1, , ,sin sin( ) sinθ θ φ φ                                                                  (3)

We normalize ∆0,0 to 1, so that ∆1,0  is the aspect ratio, A. Also, we use N=3 throughout
the study. This simple stellarator closely resembles the one studied by J&B.

To study the effects of higher order plasma shaping on rotational transform, we also add
axisymmetric elongation, ∆2 , 0 , and triangularity terms: ∆ 3 , 0 , ∆-1,0 ( axisymmetric
components), and ∆ -1,-1 and ∆3,1 (helical components) to the simple model above.

We note that the “effective” helical excursion of the axis determined by equilibrium
calculations is somewhat different from ∆1,1, particularly if there are higher order shaping
terms.  Nevertheless, they are proportional to each other.

C. Rotational Transform ( ι )

C.1  ι  versus ellipticity and axis excursion.

In Fig. 1, we plot ι on the axis as a function of normalized axis excursion, ∆1,1/∆1,0 , for
three ellipses corresponding to ellipticities 1.7, 3.0 and 7.0, respectively, at A=3.  In Fig.
2, we plot ι  at the plasma boundary of the same three ellipses.  For lower ellipticities, the
helical excursion of the axis is more effective to generate transform, but to raise ι  above
0.5 wobbling the axis alone is insufficient. On the other hand, for ellipticities large
enough to generate high transform axis wobble virtually has no effect on the transform; ι
is essentially due to the rotation of the ellipse.  The axis wobble merely makes the
magnetic well shallower or the magnetic hill steeper. To generate on-axis transform >0.5,
the ellipticity needs to be > 3, making the ellipse quite elongated.

We note that for ellipticity ~3 and ∆1,1/∆1,0~0.05, the on-axis ι  is approximately that
calculated by J&B, but the transform of our results is due to the ellipse rotation, not the
helical excursion of the axis
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Fig. 1. ι on axis versus axis excursion for ellipticities 1.7, 3.0 and 7.0 and for aspect ratio
A=3.

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

1 .4

0.00 0.02 0.04 0.06 0.08 0.10

ι(
1

)

∆ 1,1/ ∆1,0

A = 3

∆ 2,1=−0.50

∆ 2,1=−0.75

∆ 2,1=−0.25

Fig. 2.  ι  at boundary versus axis excursion for ellipticities 1.7, 3.0 and 7.0 and for A=3.
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C.2   Effects of aspect ratio.

Fig. 3 shows the ι  generated with various ellipticity and axis excursion for an aspect ratio
A= 6 configuration.  For the same ∆1,1/∆1,0 and ellipticity, the on-axis ι  is higher for larger
A.  Again, it is weakly dependent on the wobble of the axis.  The magnetic well property
becomes better when compared to a similar configuration with A=3.

C.3  Effects of axisymmetric elongation.

Fig. 4 compares ι  for A=3 configurations with three axisymmetric elongations, κ=0.0, 1.5
and 2.0 (corresponding to ∆2,0=0.0, -0.2 and –0.333) added to the rotating ellipses whose
ellipticities are 1.7 and 3.0, respectively. The overall ellipticity (E0) now becomes

E0
2 0 2 1

2 0 2 1

1 0

1 0
=

− −
+ +

.

.
, ,

, ,

∆ ∆
∆ ∆

 .                                                                                                      (4)

The axisymmetric elongation reduces the rotational transform and makes the dependence
on axis wobble even weaker.
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Fig. 3.   ι on axis versus axis excursion for ellipticities 1.7 and 3.0 and for aspect ratio
A=6.
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Fig. 4.  ι on axis versus axis excursion with axisymmetric elongation added.

C.4  Effects of shaping using triangularity.

Fig. 5 shows the effects on on-axis ι  when the second order shaping terms are added.
Here, results for A=3 and axisymmetric elongation ∆2,0 =-0.333 (or κ=2) are given.
Adding axisymmetric triangularity to an otherwise elliptical configuration generally
reduces ι  (here we chose ∆3,0=∆-1,0=0.09, corresponding to δ=0.5), whereas adding helical
trangularity increases ι  due to the increase in the effective axis excursion (here, we chose
∆−1,-1=0.15 and ∆3,1=-0.03 as an example).  Fig. 6 compares Poincare sections of two
configurations with and without triangular shaping.

Fig. 7 shows the variation of edge ι  due to the second order shaping.  It is seen that the
helical triangularity has lesser an effect.  For high ellipticity it may even reduce ι . In all
the cases the dependence on axis wobble is weak.
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Fig. 5.  ι on axis versus axis excursion with triangular shaping added.  The three numbers
in the parenthesis correspond to ∆3,0, ∆-1,-1 and ∆3,1, respectively.

                                                  

Fig. 6.  Four Poincare sections spaced at equal intervals over half a field period for
              configurations with ∆2,0=-0.33, ∆2,1=-0.50, ∆1,1=0.1·∆1,0 on the left
              and with additional ∆3,0=∆-1,0=0.09 and ∆-1,-1=0.15, ∆3,1=-0.03 on the right.
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Fig. 7.  ι at boundary versus axis excursion with triangular shaping added.  The three
numbers in the parenthesis correspond to ∆3,0, ∆-1,-1 and ∆3,1, respectively.

C.5  Effects of relative radial direction of axis excursion.

The above discussions assumed ∆1,1>0 so that the axis wobbles outward when an ellipse
in vertical position starts to turn.   Fig. 8 illustrates the effects of axis wobble when the
relative phase is changed such that the axis wobbles inward first (∆1,1<0). In this figure,
only the shaping of the lowest order is included. It shows that the axis excursion has a
stronger effect, especially for larger ellipticities. C82 has, in fact, this kind of axis
excursion.  Still, most of the transform is generated by the rotating ellipse rather than the
helical movement of the axis.

The magnetic well property improves with an initial inward axis wobble when compared
to an outward wobble.  On the other hand, the B1,1 component becomes significantly
larger and B1,0 (m=1, n=0) also becomes more negative, resulting in a deeper main
toroidal ripple well.

Fig. 9 shows the effects of the relative phase change of the axis excursion when some of
the second order shaping terms are added.  We see now that the inward axis wobble has
virtually no effect on the rotational transform.
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Fig. 8. Comparison of ι on axis for positive and negative ∆1,1.
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Fig. 9. Comparison of ι on axis for positive and negative ∆1,1 and with second order
shaping.
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C.6  Effects of relative vertical direction of axis excursion.

The relation we established in Eq. 1 is such that the axis wobbles outward and downward
as an ellipse in vertical position starts to turn if ∆1,1 is positive.  Fig. 10 compares the on-
axis ι  when the vertical wobble of the axis is directed initially upward instead. The
reversal of the initial vertical direction only makes the dependence of ι  on the axis
excursion even weaker.
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Fig. 10. Comparison of ι on axis for initial vertical direction moving downward (α=1)
and upward (α=-1).

D. Conclusions.

VMEC equilibrium calculations using simple model stellarators show that most of the on-
axis rotational transform is generated by the rotation of the plasma rather than by the
helical excursion of the magnetic axis as long as the excursion radius is limited to < 10%
of the major radius.   It requires an ellipticity on the order of 3 to generate an on-axis ι  ~
0.5.  If, for MHD stability considerations, we also require an axisymmetric elongation on
the order of 2, the plasma half width at the narrow section for a 1-m major radius
configuration would be

a min
, ,

,

. . .=
+ +

= − − =
1 1 0 333 0 5 0 172 0 2 1

1 0

∆ ∆
∆ A A

  .                                                               (5)
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Thus, for an aspect ratio 3 machine, the smallest half width may be as small as 0.06 m.
Furthermore, to ensure a vacuum magnetic well with an ellipticity ~3, the aspect ratio
probably would have to be greater than 3, making the smallest half width even smaller.
This is a fact we have to live with if high ι  configurations are indeed more desirable from
the viewpoint of better particle confinement and smaller bootstrap current.


