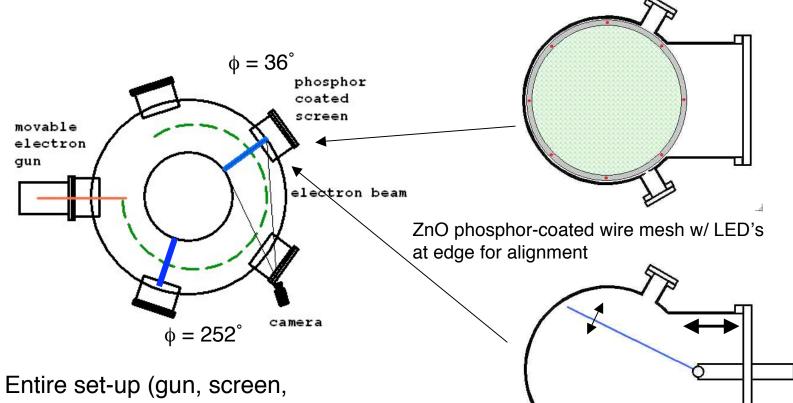
Potential Collaborations on NCSX with the Compact Toroidal Hybrid (CTH) group, Auburn University

Presented at NCSX Research Forum

Dec. 7-8, 2006

Stephen Knowlton, Auburn University


CTH experiment investigates subset of NCSX research areas

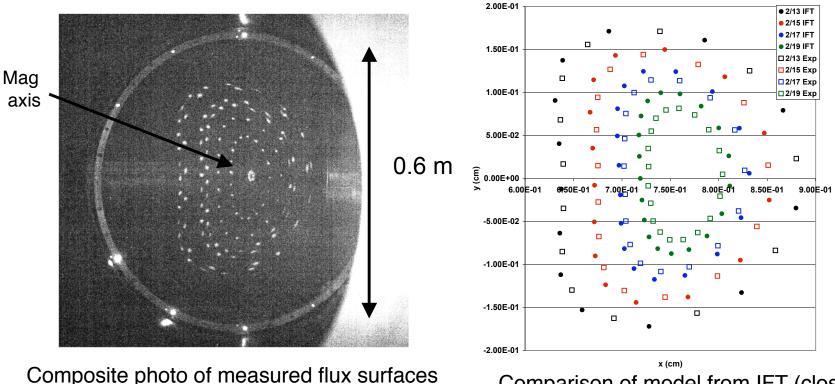
- Integrity of magnetic flux surfaces
- Measurement and reconstruction of magnetic equilibrium
- Low- β current-driven instabilities and disruptions
- What are areas in which CTH personnel may contribute to NCSX research campaigns in FY09, FY11, and beyond?
- Are there specific questions for research preparation on NCSX useful to address on CTH?

Collaborative Research Interests

- How to determine/confirm best coil model from field-mapping and other magnetic measurements?
- Can we adequately reduce static islands in the vacuum configuration
- What are effects of (controlled) static islands on both equilibrium and stability?
- Can we identify location (phase) of islands in plasmas?
- Compare predicted LCFS with edge profile measurements.
- How well can we reconstruct current profile from external magnetics, and if we include internal B-measurement (e.g. mmwave Faraday rotation)?
- Is control of external rotational transform profile robustly effective in avoiding current-driven disruptions?

E-beam mapping for accurate coil modeling

camera) was rotated toroidally by two field periods to test for n>0 deviations in equilibrium.


Movable phosphor-coated wand

_

CTH exhibits good flux surfaces

Low rotational transform (iota_edge ≤ 0.2) with zero auxiliary toroidal field

- no low-order rational surfaces => no islands
- Low aspect ratio configuration achieved

Comparison of model from IFT (closed symbols) w/ expt. (open symbols)

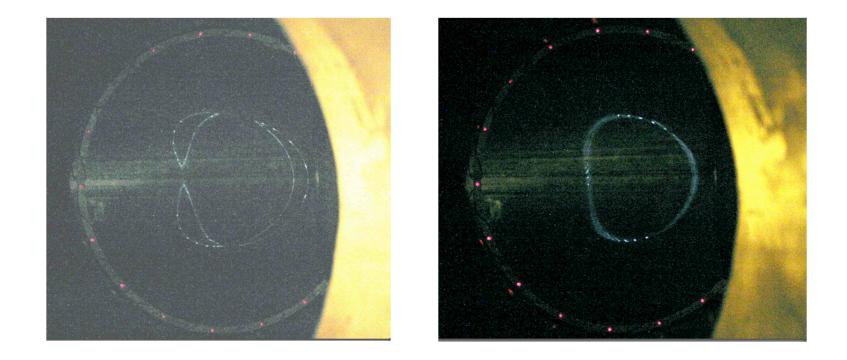
Magnetic axis localized to within several mm

Small deviations from design investigated by leastsquares fitting

Alter coil model by varying coil parameters in optimizer in IFT line-following program;

- least squares fit of differences between multiple experimental **magnetic axis** positions and computed results.
- includes B_{EXT} , poloidal coil positions and currents, helical coil winding law Example: Helical coil winding law (ϕ tor. Angle; θ pol. Angle) $\phi = 2/5 \theta + \beta_1 \sin \theta + \beta_2 \sin 2\theta$ $r_{COIL} = r_0 + a_1 \cos \theta + b_1 \sin \theta + ...$

- perform SVD analysis to identify likely source(s) of error (Hanson/Muñoz)


In design, $r_0 = 0.385$ m, $a_1 = b_1 = 0$ Best fit: $r_0 = 0.384$ m, $a_1 = 2.6$ mm, $b_1 = 0.7$ mm

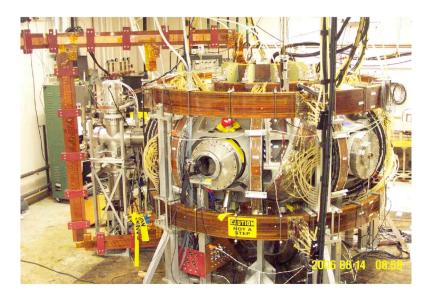
Results also directed us to find flaw in vertical field configuration (0.4% field imbalance)

=> Continuing to validate this scheme

Static island successfully reduced

1/3 island reduced to minimal width by application primary & (orthogonal) secondary corrections

Contributions to field mapping on NCSX


• Provide analysis & modeling

- Apply validated SVD analysis procedure to NCSX coil model and measurements
- Use field-mapping results to assist in placement of correction coils, if not already fully designed & emplaced.
- Suppression of vacuum islands
- Provide test-bed for NCSX techniques
 - Can we (or should we) map at pulsed high field (B~0.5 T) to reduce effect of remnant fields?
 - Test techniques for faster, more accurate mapping
 - Possibility of field-mapping at different toroidal locations
- Contribute existing hardware.

CTH program: field-mapping & ECRH plasmas supplemented by ohmic current

- Easily alternate between fieldmapping & plasma operation
- Densities up to 4 x 10¹⁸ m⁻³ (ECRH) cutoff attained; higher with ohmic current
- Diagnostics
 - -Segmented Rogowski coils
 - -Flux loops
 - -Diamagnetic loop
 - -Langmuir probes
 - -SXR arrays; 4mm interferometer

5 field periods $R_o = .75 \text{ m}, \text{ R/<a> \ge 4$ $B_o \le 0.7 \text{ T}$ $I_p \le 30 \text{ kA}; \Delta \iota \le 0.5$ $P_{in} = 15 \text{ kW ECRH @18GHz}$