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Introduction



Compact Compact stellarators stellarators (low A = R/<a>) offer:(low A = R/<a>) offer:

� Combination of the desireable features of
TOKAMAKS   (low A, high β, good confinement)

� with those of the STELLARATOR

(low recirculating power, disruption avoidance)

� Focus is on COMPACTNESS

(while preserving confinement/stability)



Features of low A = R/<a> Features of low A = R/<a> stellaratorsstellarators
� Lower cost near-term experiments while

maintaining a similar plasma radius as large
aspect ratio devices

� Longer term potential of a more economically-
sized, higher-power-density reactor

� Opens up a new regime of stellarator parameter
space with new physics expected in:
� transport

� equilibrium fragility

� plasma flow dynamics

� enhanced confinement regimes

� RF heating strategies

� microturbulence



Strategies for QOS Optimization

� Optimize an ultra low aspect ratio (A = 2.5 - 3),
low β configuration for a Concept Exploration
experiment
� most of the rotational transform supplied externally

� Optimize compact (A = 3 - 3.5) , high β
configurations as part of the longer-term QOS
program
� a larger fraction of the transform provided by

plasma currents



Methods

� Stellarator optimization
� Transport evaluation
� Ballooning
� Bootstrap Currents



Stellarator optimization loop determines outer  flux surface shape.
Coils to produce this shape are then �reverse-engineered�:

30

40

50

60

70

80

90

100

0 50 100 150 200

χ2
total

Iterations

Initial configuration
Final optimized
configuration

Adjust
boundary
shape +
profiles

Solve
VMEC

equilibrium

Calculate
χ2

Levenberg-Marquardt
Minimize χ2

NESCOIL
COILOPT

 Stellarator optimization



Optimization  Process  Successfully  Integrates  a
complex, interacting set of  Physics  Criteria:

Targets   

(Physics/Engineering)
Example

Bounce-average omnigeneity
(drift surfaces and flux

surfaces aligned)

Bmin = Bmin (ψ)
Bmax = Bmax (ψ)

J = J(ψ)
Target nearby quasi-

symmetries
Minimize Bmn if m ≠ 0 (QP),

or if m/n ≠1 (QH)

Local diffusive transport D, χ from DKES

Current profile self-consistent IBS,
I(ψ) goes to 0 at edge

Limit maximum plasma current e.g., Imax < 40 kAmps

Iota profile i(ψ) = 0.5 (ρ = 0) to 0.8 (ρ = a)

Magnetic Well, Mercier V” < 0, DM > 0 over cross
section

Ballooning stability <β> ~ 2-4%

Aspect ratio R0/a ≈ 2.5 to 3.5

Limit outer surface curvature avoid strong
elongation/cusps

Control variables:

shape (30-40 Fourier
harmonics Rmn, Zmn)
for LCFS  +  profile

parameters

 Stellarator optimization



Transport optimizations using the DKES transport
target have resulted in confinement improvement.
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Bootstrap and Ballooning Analysis

� The COBRA code used for rapid ballooning
optimization and configuration evaluation
� Initially estimates growth rate with finite difference

solution, then refines with variational principle and
Richardson extrapolation

� R. Sanchez, S.P. Hirshman, et al., Journal of Computational Physics 161(2000) 576.

� Optimization targets collisionless bootstrap current
for bootstrap consistency
� K.C. Shaing, E.C. Crume, Jr., J.S. Tolliver, S.P. Hirshman, W.I. van Rij     "Bootstrap

current and parallel viscosity in the low collisionality     regime in toroidal plasmas",
Phys. Fluids B1, 148 (1989).

� K.C. Shaing, S.P. Hirshman, J.S. Tolliver "Parallel viscosity-driven neoclassical fluxes
in the banana regime in nonsymmetric toroidal plasmas", Phys. Fluids 29, 2548
(1986)

 Stellarator optimization



Transport tools

� General purpose stellarator particle simulation code (DELTA5D)

� thermal electron/ion transport, bootstrap current

� alpha particles

� neutral beams, ICRH tails

� uses MPI to achieve near linear speedup with number of processors

� Drift Kinetic Equation Solver (DKES)

� variation of bootstrap current with collisionality and electric field

� local diffusion coefficients          ambipolarity condition

� integrate over profiles to obtain global lifetimes

� uses shared memory OpenMP parallelism to achieve ~ x 3 speedup
(with Ed D�Azevedo, ORNL CCS Division)

� Other qualitative measures: J, Bmin, Bmax, |B| contours

 Transport analysis



Applications of DKES to QO transport:

� Used in the optimizer

� Collisional bootstrap current

� Ambipolarity studies
� Initially, use DKES for both electron and ion fluxes

� Then hybrid model: DKES electron flux with ion particle
flux from particle-based calculation

 Stellarator optimization



The DKES (Drift Kinetic Equation Solver) provides the
full neoclassical transport coefficient matrix (multi-helicity)
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(i.e., to carry out the above integrals, one will need to
generate a 2-D matrix of Γ�s vs. these parameters for

each flux surface)

� W. I. Van Rij, S. P. Hirshman,
Phys. Fluids B 1, 563 (1989)

� Variational: provides upper
and lower bounds on dS/dt

� Expands f in Fourier-Legendre
series
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DELTA5D Monte Carlo code is used for both
thermal plasma and fast ion confinement studies

� Thermal plasma
� Global and local diffusive limits

� Various fast ion populations
� ICRF tails (quasilinear diffusion operator)

� Neutral beam ions (pencil beam approximation)

� Alphas

� Alfvén turbulence (to be added)

� Options for f and δf particle weightings

� Diagnostics: particle and energy losses, loss patterns, energy
slowing down, escaping pitch angle/energy/lifetime distributions

� Longer term goal: Multi-species (thermal, fast ion, impurity),
coupled transport and electric field evolution model

� Computational characteristics

� parallelization over particles rather than domains

� uses collective MPI communications, runs on T3E and IBM-SP

 Transport analysis



Hamiltonian Hamiltonian Guiding Center Orbit Equations:Guiding Center Orbit Equations:
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Coulomb collision operator for collisions of test
particles (a) with a background plasma (b):

C f
f

v v
v f

v
f
v

where

v

v
G

v
G

v

ab a
D
ab

a
ab a ab

a

D
ab

ab

ab b b

ab

b

= − + +













= ( )






−














 =



ν ∂
∂λ

λ ∂
∂λ

∂
∂

ν α ν α ∂
∂

ν ν
α

φ
α α

ν ν
α

ε
ε

ε

2
1

1
22

2
2 3

0
3 0

( )

/ 



= ∫ = − ′[ ]

= = = ( )
( )

−φ
π

φ φ

α α ν π

( ) ( ) ( ) ( )

ln

/

/ /

x dt t e G x
x

x x x

T
m

T
m

n e e

T m

t
x

ab
b

a
b

b

b

ab b ab a b

b a

2 1
2

2 2 4

2

1 2

0
2

0 0
0 3 2 1 2

2Λ

 Transport analysis



Monte Carlo Equivalent of the Monte Carlo Equivalent of the FokkerFokker--
Planck OperatorPlanck Operator

[A. Boozer, G. Kuo-Petravic, Phys. Fl. 24 (1981)]

λ λ ν λ ν

ν
ν

ν νε
ε

ε
ε

n n d n d

n n n
n

b b n

t t

E E t E
E d

dE
T T E t

= − ± −( )[ ]

= − − +














 ± [ ]

− −

− −
−

−

1 1
2 1 2

1 1
1

1

1 2

1 1

2
3
2

2

( )

( )

/

/

∆ ∆

∆ ∆

 Transport analysis



Local Monte-Carlo equivalent quasilinear
ICRF operator (developed by J. Carlsson)
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For the low density, higher temperature case, the ion
particle density evolves to a hollow profile shape.
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In future work will explore dependence on:
� Particle refueling and energy input model
� Self-consistency between collision operator and particle profiles
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Particle fluxes are peaked near the center
where the ion temperature is highest

 n(0) = 3 x 1013 cm-3, T(0) = 1.8 keV

time-averaged ion particle fluxes
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Since ICRF heating does not preserve µ or J, it can
enhance radial particle fluxes.  This can be an

important issue and control knob for the generation of
the ambipolar electric field
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Configuration
Development

� Ultra low A (2.5 - 3), near-term devices
� most of the transform supplied externally
� quasi-poloidal symmetry built-in

� Compact (A = 3 - 3.5) high β devices
� large fraction of transform comes from current
� quasi-poloidal symmetry enhanced by high β



Selection Criteria for Configurations

� Guidelines for the selection of a configuration for
a CE:

� Compact:  A < 3

�  This ultra low aspect ratio range is lower
than existing stellarators (1/2 to 2/3 that of
NCSX)

� Good confinement:  τneo > 2*τISS95

•  Drift-optimized so that neoclassical transport is not the
dominant loss mechanism

�  Cases normalized to:         and   | | .B =1 0  R a⋅ = 0 278.



Selection Criteria for Configurations (cont.)

� Stability:  MHD stable at β ~ 2%
•  Ballooning and Mercier analysis included in

optimization to ensure stability at β levels relevant to
a CE

� Accessibility: not an issue for low IBS QOS

� Flexibility: ability to vary the bootstrap current
through the |B|-spectrum



Quasi-Poloidally Symmetric Cases

� Base case: A2.5_M2_B1.3

�  Max.Tor.Cur. = 25.7 kA

� Low aspect ratio: A < 2.5

�  Have obtained configurations
with aspect ratios in the range: A=2.1 to A=3.0

� Rotational transform below 0.5:  ι  ~ 0.3 - 0.4

�  Majority of the transform is from the coils,
bootstrap current causes iota to increase

�  Stable to neoclassical tearing modes

 Equilibrium



Outer Surface Views for A2.5_M2_B1.3

Cross Sections for A2.5_M2_B1.3
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Free boundary A2.5_M2_B1.3 configuration (from coils)
yields very similar transport as original fixed boundary case:
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Profiles used in transport studies

� n = constant, Zeff = 1
� (1 - r2)2 Te, Ti profiles
� eφ(r)  varies inversely with kTe

� ion root
� electron root to be investigated
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Projected QO/CE heating scenarios include
both ECH and ICH regimes

<β>
(1) ECH 0.5 1 0.18 1.4 0.15 8.1 0.019 1.6 0.7

(2) ECH 1 0.5 0.045 2.1 0.2 1.5 0.0021 0.22 1

(3) ICH 1 1 0.83 0.5 0.5 11.7 0.68 0.64 2

(4) ICH 1 0.5 0.59 0.4 0.25 5.5 0.75 1.8 3.7

n/1020

(m-3)
Te

(keV)
Ti

(keV)
τISS95

(msec) ν*elec ν*ion

Pheat
(MW)

<B>
(Tesla)RF

 Transport analysis



Confinement in the 2 field period, A = 2.5 configuration
covers a range from τE,global = (1.4 to 3.6) τE,ISS95 for

different ECRF and ICRF heating scenarios

ECH 1 16.2 17.4 16.2 8.1

ECH 0.5 4.27 1.95 2.1 1.5
ICH 1 27 ~100 41.7 11.7
ICH 0.5 7.7 ~55 16.4 5.5

Monte Carlo energy lifetimes
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Transport analysis in regimes with (Te > Ti) for the 2 field period
A=2.5 device shows tendency to improve with increasing β:
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Energetic particle loss simulations show exit pitch angle, energy
and exit position of ions on outer flux surface
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Collisionality and electric field dependence of bootstrap
current coefficient (results shown are for Nfp = 2, A = 2.5 device)

DKES monoenergetic particle/energy
transport coefficient
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Self-Consistent ambipolar electric field calculations
- initially DKES will be used offline for electrons and ion to obtain φ(r) for DELTA5D
- next step is to use DKES for electron flux coupled with DELTA5D for ion flux
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QP Symmetry Cases (cont.)

� Weak shear with iota
mainly from coils
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QP Symmetry Cases (cont.)

� Pressure profile for this
case is ballooning unstable

� Mercier stable due to  the
well at the center
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QP Symmmetry Cases (cont.)

� Modifying the pressure
profile however....

� ... leads to ballooning
stability at higher β
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PIES Flux Surfaces at β = 1.6%

Fixed  Boundary    Free Boundary

z 
(m
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R (m) R (m)

D. Monticello

computational
boundary

 Flux surface fragility



High β Configurations

� A class of configurations with high β MHD
stability limits
–  Rotational transform primarily from plasma current

�  Better alignment with self-consistent bootstrap
current than advanced tokamaks

�  Stable at higher β than comparable tokamak due to
lower current

 Equilibrium



High β Configurations (cont)

� Have obtained 3 field period configurations with
ballooning stability up to β=23%, Vertical/Kink stability
up to β =15% (G. Fu),
aspect ratios A~3.5 - 4.5

� For lower aspect ratio (A~2.7) 2 field period devices,
testing effect of lowering elongation and boosting
external rotational transform on vertical stability

 Stability



High β Case: 3 Field Periods

� Outer flux surface/cross sections: 3 FP, A=3.7, β=15%
 Equilibrium



High β Case: 3 Field Periods

� 3 FP, A=3.6, β=15%, <|B|>=1 T, Max.Tor.Cur.= 155 kA
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<β> = 23%

<β> = 10%

<β> = 0%

Variation of Bmn Spectra for type II Configurations with <β>
 Equilibrium



High β Case: |B|/Flux Surface Alignment

� |B| surfaces align with flux surfaces at higher b:

β=0%:

β=23%:

NFP* ϕ=0° NFP* ϕ=90°  NFP* ϕ=180°

NFP* ϕ=0° NFP* ϕ=90°  NFP* ϕ=180°

 Equilibrium



|B| contours for type II configurations show a significant
improvement in poloidal symmetry with increasing <β>

<β> = 0% <β> = 23%

 Equilibrium



Through its modification of |B|, high β changes both the thermal
neoclassical transport and bootstrap coefficient
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Increasing β leads to improved neoclassical transport
and to a decreased bootstrap current coefficient.

(results shown are for 3 field period, A = 3.4 device)
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α-particle slowing-down simulations show these devices
indicate very good confinement with increasing β.
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High β Case: Ballooning Stability

•  Edge becomes ballooning unstable for <β> >0.25%, Second
regime stabilization begins at edge above
<β > = 0.6%, and stabilizes it beyond 1%.

�  The region of the plasma in second regime moves inwards from
the edge for increasing < β >.

� Plasma becomes totally stable above < β > = 7%

�  Innermost part of the plasma always in first stability regime.

� For the 3 FP, β=15%, A=3.7 case: (R. Sanchez)  
 Stability



High β Case: 2 Field Periods

� Outer flux surface/cross sections: 2 FP, A=2.7, β=5% 
 Equilibrium



High β Case: MHD Stability

� Have been able to affect the stability by increasing the
amount of external transform (Fu) 
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STABILITY REGIMES

� Edge becomes ballooning unstable above <β> = 0.25%.

� Second regime stabilization begins to be effective at
edge above <β> = 0.6%, and stabilizes it beyond 1%.

� The region of the plasma in second regime moves
inwards from the edge for increasing <β>.

�Plasma becomes totally stable above <β> = 7%

� Most inner part of the plasma stays always in first
stability regime.

 Stability



BALLOONING SPECTRUM (LOW-β)
 Stability



BALLOONING SPECTRUM (HIGH � β)

        β = 0.6%

β = 1%

β = 2%

β = 4%

β = 9%

β = 17%

β = 25%

 Stability



   MERCIER STABILITY

� Plasma remains Mercier stable except for a range of
<β>  between 3-6%.

� Mercier modes are stabilized due to the existence of a
large magnetic well that increases with <β> .

� The radial region of instability is identical to the region
of ballooning instability for the same values of <β>

� This might help to optimize both type of unstable
modes in the same way.

 Stability



   MERCIER STABILITY

 Stability



Summary

� Attractive 2 and 3 field period devices have been found for
A = 2.5 - 3.5
� Attain good confinement by being near quasi-poloidal symmetry

� Modular coils: good flux surface reconstruction, preserves physics

� Different heating options and magnetic field variation
(0.5 � 1T) allow exploration of different confinement
regimes
� ECH: τneo/τISS95 from 1.4 to 2

� ICH: τneo/τISS95 from  3 to 3.6

� Quasi-poloidal symmetry minimizes viscous damping in the
direction of the Er x B drifts
� lower parallel flows

� influences accessiblity of enhanced confinement regimes which rely
on Er x B  shear



Summary (contd.)

� High β configurations offer improved confinement
with increasing β
� Large fraction of the transform from plasma current

� Similar to advance tokamak, but bootstrap current is well
aligned and not too large (as it is in an axisymmetric device)

� Stability limits (ballooning, kink, vertical) allow operation at
<β> ~ 15% (second regime stability)

� Have achieved lowest alpha losses (~12%) of any of our
configurations


