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National Compact Stellarator Experiment (NCSX)
Motivation and Goals

Stellarators have advantages for MFE:

• Steady-state operation w/out current drive.

• Avoid disruptions w/out active feedback.

• 3D shaping: Ample design freedom to
optimize properties.

NCSX: test physics concept using
tokamak-stellarator synergies:

• Quasi-axisymmetric (QA) B–field with low
ripple to reduce orbit widths, ripple transport,
flow damping.

– Tokamak-like transport properties?

• High-beta at reduced aspect ratio (≤ 4.4)

• Bootstrap current to generate some (~25%)
of the rotational transform (“iota”).

NCSX
Coil and VV prototypes in 2003

First Plasma in 2007
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Key Physics Considerations in the NCSX Design

• Optimize for a β=4% QA stellarator target equilibrium.

– Test of quasi-symmetry in HSX: J. N. Talmadge, et al., EX/P3-22.

• Ability to access target state starting from vacuum.

• Flexibility to test physics, accommodate profile variations.

• Space for divertors.
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NCSX Target Equilibrium Has Attractive Properties

• 3 periods, low R/〈a〉 (4.4).

• Quasi-axisymmetric w/ low ripple.

– εh,eff = 0.1% in core, 2% at edge.

• Stable at β=4.1% to ballooning,

kink, vertical, Mercier modes, w/out
conducting walls or feedback.

• “Reversed shear” iota profile
(0.39–0.65).

– stabilize neoclassical tearing modes.

•  3/4 of edge iota (B-poloidal) from
external coils.

– 1/4 from bootstrap current.

Plasma Cross Sections
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Coil Design Satisfies Physics and Engineering Criteria

• NCSX design uses 18 modular coils

(3 shapes)

– Also TF, PF, and helical trim coils.

• Free-boundary VMEC-based method
was developed to optimize coils for low-
R/〈a〉, current-carrying stellarators.

– D. J. Strickler, et al., FT/P2-06 (Fri. p.m.)

• Required properties are realized:

– Free-boundary equilibrium with the
required  physics properties (R/〈a〉, QA,
stability at β = 4%, iota profile).

– Engineering feasibility metrics: coil-coil

spacing, min. bend radius, tangential NBI
access, coil-plasma spacing.

– Good magnetic surfaces.
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Coil Design Produces Good Surfaces at High ββββ

• Free-boundary PIES
equilibrium for β = 4%.

• Multi-filament coils.

Sum of effective island
widths is <1%.

• Coil geometry adjusted to “heal” islands (measured with PIES code) while
preserving physics and engineering properties.

– S, R. Hudson et al, next talk.

• Corrections for neoclassical and finite χ⊥ /χ|| effects (not included in PIES
calculation) reduce effective island width by factor 2-3.

Also, good surfaces in a range of vacuum configurations.

VMEC plasma boundary
with unhealed coils

First wall boundary
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A Wide Range of Plasma Conditions Is Accessible

Machine Parameters
• R = 1.4 m
• B = 1.2 - 2.0T
• PNBI ≤ 6 MW (tangential access, 0.3 s pulse)

• PRF ≤ 6 MW (high-field-side launch)

ββββ = 4% at B = 1.2 T, P = 6 MW  (assuming ττττE = 2.9 ×××× ISS95 ≈≈≈≈ L-mode)
• ne = 6 × 1019 m-3

• Ti(0) = 1.8 keV
• νi* = 0.25

Many regimes available to test physics
• Low νi*  (~0.1), high Ti  (≤2.5 keV) with B → 2 T.
• High ne (≤ 1.6 × 1020 m-3) Sudo limit at B = 1.2 T.

• Long pulse (≤ 1.7 s) with heating upgrades.
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Profile Evolution: Vacuum to High-Beta

New method uses TRANSP code to simulate time evolution of profiles
in equivalent tokamak configuration.
• External iota simulated as externally driven current.
• Ohmic startup: Vloop ≈ 1 V, clamped after initial 1.5 MA/s current rise.

• 6 MW NBI: balanced to control iota perturbation from NBCD, modulated to
control pressure.

• Assumed empirical τE = min(neo-Alcator, L-mode)
Reaches all-bootstrap target state with ββββ ≈≈≈≈ 4% after 0.3 s of heating.
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Coils Provides Stable Access Path to High Beta

Transformation to stellarator equilibrium uses free-boundary VMEC with
simulated profiles, NCSX coils.

Good properties calculated along the discharge trajectory.
• Quasi-axisymmetric (εh,eff < 0.4% at r/a = 0.5)

• Stable to ballooning and kink modes.
• Good magnetic surfaces.

Magnetic surfaces at t = 0.3 s
(ββββ = 4.5%)

• Effective m=5 island area ≈ 2.5%

with neoclassical correction.
(5% in PIES calculation)

Free-boundary PIES calculation

• Island width can also be
reduced with trim coils.
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External iota controlled by plasma shape at fixed profiles.

Also

• Can externally control shear.

• Can increase ripple by ~10x, preserving stability.
• Can lower theoretical β-limit to 1%.
• Can cover wide operating space in β (to at least 6%), IP, profile shapes.

β=4.2%, full current

NCSX Coils: Flexibility to Vary Physics Properties
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Edge Field Lines Have Long Connection Lengths

• L > 100 m desired for low-temperatures at

target → impurity control

• Ordered (not stochastic) field line

structure, expands near tips of bean

cross-section (envisioned divertor

location).

• Field lines stay close to boundary except

near divertor.

• Sets criteria for first wall placement to

ensure long connection lengths.
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NCSX Physics Design Summary

NCSX
Coil and VV prototypes in 2003

First Plasma in 2007

• Optimized for high-beta compact QA

plasma with attractive physics properties.

• Access to high-beta state starting from

vacuum.

• Flexibility for physics experiments.

— Knobs to vary physics properties.

— Large operating space in β, IP, profile

shapes.

— Range of operating scenarios (high β,
low ν*, long pulse).

• Space for divertor and first wall.

• Ample port access.

• Feasible engineering design.

— Engineering: B. E. Nelson, et al., FT/2-4.


