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Introduction

• Discrepancy between Experiments and Linear Stability Theory in LHD
Experiments : Achievement of 〈β〉 = 3.2% in inward-shifted config. (Rax = 3.6m)

Linear Theory : Destabilization of ideal interchange mode at much lower β

for smooth pressure profiles

• Stabilizing Mechanism ?

Prediction by linear stability analysis

3D equilibrium calculation

(K.Ichiguchi, et al., NF(2001)181)

– Effective stabilization

due to Local pressure flattening

at low order resonant surfaces

(Interchange mode ⇐ pressure gradient)

⇓
Such profile is generated automatically ?

Mode Overlapping becomes crucial ?

Pressure profile stable

for n = 1,2,3 modes
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• Development of Nonlinear Calculation Code



Basic Equations

• Reduced MHD Equations (based on improved stellarator ordering)

for Ψ(Poloidal flux), Φ(Stream function), P (Pressure)
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• Toroidal Effects ⇐= Toroidally averaged 3D equilibrium (VMEC code)

• Perturbation : Expanded in Fourier series with Multi-Helicity
• No Average Flow



Configuration and Linear Stability

• Vacuum configuration : Inward-shifted LHD with Rax=3.6m

• Equilibrium conditions

� Free boundary and no net-current conditions
� P = P0(1− ρ2)(1− ρ8) . . . close to experimental result for 〈β〉 < 1%, (〈β〉 ∼ 0.43β0)

• Focus on equilibria at β0 = 0.5% and 1.0% (linearly unstable)

� Ideal β limit for low-n mode :

β0 � 0.1%

� 0.37 ≤ ί ≤ 1.8

� Parameters for Nonlinear Calculation
S = 106

ν = 10−4

κ⊥ = 10−6 ( ∼ 0.1m2/sec)

ε2κ‖ = 10−2 ( ε = 0.16)

� β0 = 0.5% : 2 ≤ n ≤ 4 modes unstable

� β0 = 1.0% : 1 ≤ n modes unstable

� m=5,n=2 mode dominant for both cases

Linear growth rate with the parameters
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Mild Saturation at β0 = 0.5%

• Nonlinear evolution at β0 = 0.5% for P = P0(1− ρ2)(1− ρ8) (0 ≤ n ≤ 5, 0 ≤ m ≤ 15)

Time Evolution of Kinetic Energy
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� Linear phase : Dominant linear mode : m=5,n=2

� Nonlinear phase : Slow and small variation of Ek in low level ( <∼ 10−7)
Small humps at t = 4800, 11325, 16000τA ⇒ What happens ?



Mild Saturation at β0 = 0.5% (cont.)

Saturation of m=5,n=2 mode

Pressure Contour and Flow Pattern

(t = 4800τA, ζ = 0, ρ ≤ 0.4)

� 2m (10) vortices around ί = 2/5 surface

interchange low and high pressure regions.

� Mushroom-like structure of pressure

Poincaré Plot of Field Line

(t = 4800τA, ζ = 0, ρ ≤ 0.4)

� Driven reconnection of field lines

due to vortices

� 2m (10) magnetic islands



Mild Saturation at β0 = 0.5% (cont.)

Average Pressure and Rotational Transform

(〈P 〉 = Peq + P̃00 )
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Single mode saturation :

� Local pressure flattening

� Steepening pressure gradient in both sides

� Excitation of other single mode

Sequence : m=5,n=2⇒ m=7,n=3⇒ m=2,n=1

� Indirect interaction

through local 〈P 〉 variation
� Locally flat 〈P 〉 profile
(as predicted in linear analysis)

Stream Lines at final state

(t = 24000τA, ζ = 0, ρ ≤ 0.8)

� Separated mode structure in ρ

due to weak driving force



Bursting Activity at β0 = 1.0%

• Nonlinear evolution at β0 = 1.0% for P = P0(1− ρ2)(1− ρ8) ( 0 ≤ n ≤ 7, 0 ≤ m ≤ 22 )

Time Evolution of Kinetic Energy
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� Linear phase : Dominant linear mode : m=5,n=2

� Nonlinear phase : Bursting behavior of Ek in high level ( <∼ 10−5) ⇒ Mechanism?

Simultaneous excitation of many modes

due to enhancement of driving force



Bursting Activity at β0 = 1.0% (cont.)

Stream Lines (ζ = 0, ρ ≤ 0.8)

• t = 2800τA

(before burst)

� Localization around

each resonant surface

• t = 3200τA

(triggering burst)

� Overlapping of modes

with different helicity

• t = 3640τA

(high-level burst)

� Generation of

large scale vortices in ρ

Mechanism of Bursting Activity
Mode Overlapping =⇒ Release of wide range =⇒ Strong Cooperative Flow

(direct interaction) Free Energy



Bursting Activity at β0 = 1.0% (cont.)

Average Pressure and Rotational Transform
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� During Burst (t = 3840τA) :

Wide flat-pressure regions

due to large scale vortices

� Final state (t = 13000τA) :

Substantial reduction

of pressure

in whole core region (ρ <∼ 0.5)



Stable Path to High Beta Regime

• Bursting activity for fixed pressure profile may limit achievable β .

However, pressure profile must be succeeded as β increases.

• Nonlinear analysis at β0 = 1.0% with pressure profile saturated at β0 = 0.5%

Procedure for initial equilibrium

– Employment of 〈P 〉 profile
saturated at β0 = 0.5%

– Increase of beta to β0 = 1.0%

– Free boundary equilibrium

Linear Growth Rate
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� Reduction in n=1,2,4 modes



Stable Path to High Beta Regime (cont.)

Time Evolution of Kinetic Energy
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� Nonlinear phase : Mild saturation as in β0 = 0.5% case

Small and Slow variation in Ek in low level ( <∼ 10−6)
No bursting activity

⇑
Reduction of driving force through deformation of initial pressure profile



Stable Path to High Beta Regime (cont.)

Stream Lines at final state

(t = 13000τA, ζ = 0, ρ ≤ 0.8)

� Localization around resonant surfaces

due to reduction of driving force

� Weak interaction between modes

Average Pressure Profile
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� Reduction of pressure is much smaller

than in bursting case.



Stable Path to High Beta Regime (cont.)

Diagram of stable path to high beta regime in LHD
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Linear ideal limit

� Fixed Profile : High fluctuation level ⇒ Bursting : Unstable Path

� Succeeded Profile : Low fluctuation level ⇒ Mild : Stable Path

Succession of pressure profile : Stabilizing mechanism

Self-organization of pressure
LHD plasma traces the stable path to high β regime.



Conclusions

• The nonlinear evolution of the interchange mode with multi-helicity is
examined in the inward-shifted low-beta LHD equilibria with almost

parabolic pressure profile.

• In the sufficiently low β case, the modes with different helicity interact

indirectly through the local pressure variation.

Saturated pressure profile is locally flattened, as is predicted in the linear

analysis.

• Increasing β with the pressure profile fixed enhances the driving force.

Direct interaction of modes through the mode overlapping results in a

bursting activity in the kinetic energy.

The bursting activity may limit the achievable β, because the pressure is

globally reduced in the core region.

• The bursting behavior is suppressed if the saturated pressure profile is
succeeded in the increase of β.

This results indicate that the pressure profile can be self-organized so that

the LHD plasma should achieve high beta regime along a stable path.


