Shear Alfvén spectrum in heliotron systems
- continuum and point spectra -

NIFS N.Nakajima
Motivation

1. In LHD experiments, energetic particle-driven modes | TAE,
GAE, R-TAE(EPM), and HAE | have been observed. The
identification is based on the structure of the shear Alfvén
spectra and the resonance conditions.

2. On the other hand, the reconstruction of MHD equilibrium
is fairly difficult in helical systems ( plasma boundary, net
toroidal current profile)

Purposes

1. To clarify the structure of the shear Alfvén spectrum in
heliotron systems.

2. To use such the information of spectrum for the reconstruc-
tion of MHD equilibrium
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1 Gap frequencies

wa(®) : local Alfvén frequency

in double symmetric systems
[ straight tokamak with circular cross section |

Q(¢) = |m —ng(¢)| : continuum

in general tori

Q) = Im —ng(¥)|, Q' =|m'—n'q(y)|
{ Q) = V(¥) }

m' =m+meg, 1 =n+ng

1 2m + me,
2n + ng,



A) Symmetric systems

1) axisymmetric tori

1 2m + me
Neq = 0, Q(@b) e almeqls CI(%D) ™ _'Tq
s 1
meg = 1 (toroidicity) — Q= 5 TAE gap
meg = 2 (ellipticity) - Q= é : EAE gap
meg = 3 (triangularity) — Q= 5 NAE gap

2) straight helical systems

1 2m + kM
Meg = kM, neq = kN, Q) = 5k|M — Nq(4)], Q(lb)—m

k=1,2,.-- : HAE gap



16.0

14.0

120

10.0

( 2, 10)

8.0

6.0

4.0

0)
0)
0)2.0
0)
0)
0)

P~~~ o~~~
- = - .

( 6,30) ( 8,(40), 50)

el atala e e

i 28 e

0)
0)
0)
0)
0)
0)



B) Asymmetric tori with N field period
( N = 10 for LHD )

_2m + my
- 2n+ kN’

combination of TAE, EAE, NAE, ---, and various HAE
gaps

1

Y
The width of spectral gaps in the range of HAE fre-

quency becomes narrow.

Mode family
Mode families of perturbations are created by the field period:

Num. = [-2]\1] +1, (=6 for LHD)

For perturbation with n > 0,

Ny=1, n=1,9,11,19, .
Ny=2, n=2,8,12,18, -
Ny=3, n=3,7,13,17,--
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2 Discrete modes (Point spectra)

A) Symmetric systems
high-n modes in the field line coordinates (i, n, )

E{—Z—g + |a —2ecos(2n) —F(n) [ £ =0

dn? ¥
Mathieu

where
for high-n TAE

0
ry = 51 &% = (29)2:
e = —2ag <« toroidicity,

S 2
F(n) Lo

T @sn)2 : local potential
for high-n HAE

0 20) 2
n — (meq & o neqq)a, a = :rn— 3
eq

— Negq
dZE h O ; 4
£ = QW — (a+ 1)e, < ellipticity or triangularity,

[2(meq — negq)s]?

- + -+ : local potential
[(meq — meqq)? + (25m)°]?

unstable region of Mathieu = spectral gaps
stable region of Mathieu = continuum

Local potential F'(n) makes point spectra in the spectral gaps.



B) Asymmetric tori

d*¢
= + |a—2ecos(2n)—F(n)]| £=0,

dn? ~
Mathieu

F(n) = 2¢'cos(2\n), A : irrational number

When [¢| and |¢’| become large and same order, the potential
becomes quasi-periodic, leading to the existence of Point
spectra (asymmetric modes).

Note

1. Point spectra are created by a non-periodic ( local
or non-local ) perturbation superposed on a peri-
odic potential.

2. To create point spectra (TAE, HAE, and so on) in the sym-
metric systems, the magnetic shear (s) is needed.

3. To create point spectra (asymmetric modes), a quasi-periodic
potential ( irrational X ) is needed.



3 Shear Alfvén spectra of LHD

shear Alfvén branch

VY[ 5
B2

V|2 »
T

B’-v[ B. Vg—‘] Pm

In Boozer coordinates (¢, 0, ¢),

k= (Gl oot (o) e (81)

0 = wQTA, T4 =

I

BQ
Note only two quantities |V|? and |V|? (%) determine
the shear Alfvén spectrum.
V| = change in shape

(8%

B = change in field strength

Note in helical systems, plasma shaping may signifi-
cantly affect the shear Alfvén spectrum.



A) Lagrangian approach (by self-adjointness)

L fdafdgéLé
(B2 of o\’
. /d@/dg Q2| Vop 2 (F) |vw|2( S E)

Let € = >; ai cos(m;f + n;(), then
£ = XTMX, )"(’T:(al,ag,u- ,ar) ,

B?
M;; = /dQ/dC [QQIWIZ (< >) cos(m;f + nC) cos(m;6 + n;C

— |V 2(m; + gni) (my + qn;) sin(m;0 + n;¢) sin(m;0 + n;C)]

=0 = MX =0,
detM =0 = eigenvalues: 2= QQ(w)

e advantage

1. Whole structure of shear Alfvén spectrum is easily seen.

2. By selecting Fourier modes of equilibrium and pertur-
bation, we can see which modes are related to the spec-
trum considered.

e disadvantage

1. It is difficult to distinguish between continua and point
spectra.
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Note in the case of LHD,

1. The spectral gap is so complicated that a large number of
Fourier modes of equilibrium and perturbations are needed.

2. When a large number of Fourier modes are used, the shear
Alfvén spectra between different mode families are almost
same ( there is no essential differences between mode fam-
ilies).

3. The shape of the plasma cross section significantly affects
the structure of the HAE spectral gap.

(a) The ellipticity expressed by (meq, neq) = (2, 10) makes
a large spectral gap in a whole plasma region.

(b) Other Fourier components around m,, = 2 have a same
order of amplitude, thus shear Alfvén continua between
spectral gaps around Q = |[Meg — qeg|/2 [(Meg, Teq) =
(2,10)] become quite thin.

(c) Moreover, the merging of the thin Alfvén continua oc-
curs, which may lead to the split of the thin continua
in the plasma periphery.

(d) It is not so clear which spectrum is continuum.
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B) Boundary value approach

By changing the coordinates from (3,6, () to (¢, n, ),

= 9(—OO<7)<+00): a = C_qga
self-adjoint type equation:
2
s 0 2 0 ¢ 2 2 (BQ> b
Lg = e [W?ﬂ 87)5] + Q% VY| (? § = 0,
Q = Q,a)

Boundary condition:

~

§(n==L)=0

1. Fourier modes of the MHD equilibrium can be selected be-
fore the coordinate transformation.

2. All of Fourier modes of the perturbation are included (all
mode families are combined).

12



Comparison with high-n ballooning equation

Through £ = [V9[¢,
Schrodinger type of equation of shear Alfven modes:
2
o2 B?
L = a—nﬁ + [ (u) —Usa(n) | £ =0,

Q = Q)
1 &|Vy

Schrodinger type of high-n ballooning equation

2 BZ .
L§ = 6_§+ 0 (<BQ>) — Unign(n) | £ =0,

on?
51 == Q(v,b,ﬁk,a)
2|1 2 . W S .
Uhigh('r)) = : 6|kJ-| = —BXE-ZZJ_BXVP-IC_L

k| O B2k, |?
Note
ﬂlifglo Unigh(n) = Usa(n)

The solutions of shear Alfvén equation correspond to such so-
lutions of high-n ballooning equation that are not influenced
by the local potential due to the magnetic shear and magnetic
curvature.

13
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C) Leapunov exponent and winfing number

§

phase . tang = =

§

amplitude : A =4/£%2+ £2

Equation of the phase
d¢ _1+V(n} 1-Vin)
dn 2 2
Linearized eq. of the phase (¢ — ¢ + d¢)

dlndgp ;
T = —[1= Vin)sin(29)

Note  6¢pA? = const.

cos(2¢)

where

9 2
V(n) =0 (%) —U(m),

winding number : w(fY) = Tri'lir{.'lo @

Leapunov exponent :

Note w is a continuous non-decreasing function of {2 with plateaus
(like a devil’s staircase).

15



Classification of eigenvalues

For extended solutions

As = 0, (JA] < o0 = [64] < o0)

d
o= 5 0, (continua)

d?

For localized solutions

Ay < 0, (JA| — oo(due to round off error) = |d¢| — 0)

d
d—g— > 0, (point spectra)

For diverging solutions

16



Dispersion (even):
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Summary of calculations

. Strong plasma shape deformation makes shear Alfvén con-
tinua in HAE frequency range quite thin.

. Moreover, the merging of such quite thin continua changes
the spectral property from the continua into point spectra
(asymmetric discrete modes).

(a) Those point spectra are degenerate: Qeyen = Qodd-

(b) Those point spectra are independent of the magnetic
field line: © = Q(%).

(c¢) Their radial structure may be like a d-function.

. Asymmetric discrete modes exist in the upper half of the
HAE frequency range.

. In the lower half of the HAE frequency range, high-n HAE
modes exist between quite thin shear Alfvén continua.

(a) High-n HAE modes have week (strong) a (6x)-dependence:

=~ Q(w: gk)
(b) The global HAE mode may be fairly localized near the
plasma edge.

(c) Expected mode numbers of the global HAE mode for
(Meg; Teg) = (2,10) and g =1 are

(m,n) = (5,1) + (7,11)
(_311) ¥ (5:9)



Discussions

. Experimentally observed modes with f ~ 200 kHz may be
identified as radially localized HAE modes, if the plasma
boundary and the density profile are adequately determined.

. R-TAE or EPM modes with (m,n) = (2, 1) may be excited
in LHD, when the rational surface with ¢« = 1/2 exists in
the low shear region near the magnetic axis.

Observation of Theoretical
TAE, HAE, R-TAE prediction

4

[ more exact reconstruction of MHD equilibrium J
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