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QPS is a very low aspect ratio
(A = 2.7) Quasi-poloidal stellarator

• <R0> = 0.9 m, <a> = 0.33 m,
<B> = 1 T ± 0.2T for 1sec,
Ip ≤ 150 kA, PECH = 0.6-1.2
Mw, PICH = 1-3 Mw

• This experiment will test:
– Equilibrium robustness

– Neoclassical and anomalous
transport

• Near conservation of Pθ
implies banana width
involves toroidal field rather
than poloidal field

– Stability limits up to
<β> = 2.5%

– Bootstrap current effects

– Reduced poloidal viscosity
effects on shear flow
transport reduction

– Configurational flexibility



Our transport analysis has focused on
optimization targets and comparisons

between configurations

• QOS optimizations
(1996 - 1999)
– J*, J, Bmin, Bmax

– DKES

• QPS optimizations
(2000 - present)
–  εeff

– Poloidal symmetry

– DKES

However, with the QPS configuration becoming fixed, we are
shifting over to flexibility studies and transport predictions.

• NEO εeff, Poloidal symmetry

• DKES
– Setup, mode selection

– Parallel runs

– Energy integration

• DELTA5D Monte Carlo
– Global full-f model

– ICRF heating

– NBI heating efficiency

– Alpha losses

– Bootstrap current

• 1-1/2 D model

Evaluation ToolsOptimization Strategy



NEO code provides εeff
3/2 ~ D1/ν, χ 1/ν.  Comparison of

different configurations:
 NEO εeff code
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 DKES model
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These ranges are based on the
maximum n, T in the profile,
eφ/kT(a) = 1, and looking from

thermal energy to 9 times thermal
(as sampled by velocity integrals
for χ)

- ECH electrons:
7x10-5 < ν/v < 10-3

8x10-5 < E/v < 2x10-4

- ECH ions:
6x10-3 < ν/v < 7x10-2

10-2 < E/v < 3x10-2

- ICH electrons:
3x10-3 < ν/v < 4x10-2

5x10-5 < E/v < 2x10-4

- ICH ions:
2x10-3 < ν/v < 3x10-2

2x10-3 < E/v < 6x10-3

Note: these L11’s are based on
the gb4 device.

DKES transport dependencies show that both
L11 ∝ ν1/2 and L11 ∝ 1/ν regimes are accessed.



DKES L11 transport coefficient at Er/v = 0 and global
Monte Carlo lifetimes show similar trends at low
collisionality among QPS devices as NEO εeff

3/2

coefficient  DKES/DELTA5D model
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QPS Flexibility Studies

• Modular coil
currents can vary
±25%

• Vertical field
currents can vary
±100 kA

• Toroidal field
currents can vary
±70 kA

Mod 4

Mod 3

Mod 2
Mod 1

(split coil)

2 vertical
field coils

4 independently powered modular coils

Toroidal 1/R
field
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QPS Flexibility Studies - effect on |B|
Degraded
transport

Improved
transport

Nominal
configuration

(ψ/ψedge)
1/2=0.1

(ψ/ψedge)
1/2=0.5



DKES L11 coefficient demonstrates
sensitivity of transport to coil current

optimization
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DKES L31 coefficient (bootstrap
current for recent QPS device (411)
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Comparison of DKES predicted bootstrap
current profiles with collisionless limit

• Collisionless limit based on
BOOTSJ code of L. Berry/J.
Tolliver - includes damping to
avoid singularities at rational
surfaces

• Based on:
•  K.C. Shaing, B.A. Carreras, N. Dominguez, V.E. Lynch,

J.S. Tolliver,  "Bootstrap current control in stellarators",
Phys. Fluids B1, 1663 (1989)

• K.C. Shaing, E.C. Crume, Jr., J.S. Tolliver, S.P.
Hirshman, W.I. van Rij.  "Bootstrap current and parallel
viscosity in the low collisionality  regime in toroidal
plasmas", Phys. Fluids B1, 148 (1989).

•  K.C. Shaing, S.P. Hirshman, J.S. Tolliver "Parallel
viscosity-driven neoclassical fluxes in the banana
regime in nonsymmetrical Toroidal  plasmas", Phys.
Fluids 29, 2548 (1986).
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Monte Carlo procedure for estimating
global energy lifetimes (DELTA5D code)

Typical initial Maxwellian particle
loading for T = 500eV (1 - ψ/ψmax)

2

• start with particles distributed
over cross section using PDF’s
consistent with assumed
profiles and local Maxwellians

• follow ensemble in time,
replacing particles (consistent
with initial PDF’s) as they leave
outer surface

• Record energies of escaping
particles - use to calculate τE

• Follow until approximate
steady–state is achieved

• Vary potential (with fixed profile
shape) to achieve global
ambipolar balance of
electron/ion particle loss rates

DELTA5D Monte Carlo
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Power flows for global single species test particle
simulations:
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• To achieve steady state, in a
reasonable simulation time,
terms (1) and (2) need to be
balanced:

• For Er = 0

– can include pitch angle
and energy scattering if
Qii + Qei is weak during
particle confinement time

– or can include only pitch
angle scattering

• For Er ≠ 0

– rely on Qii + Qei term (1)
to redistribute energy
loss/gain from term (2)

– or can remove kinetic
energy loss/gain (due to
e∆φ) each time step

DELTA5D Monte Carlo



Monte Carlo studies of global ion confinement
times for ICH parameters between devices (all at

same R0) and for different coil currents
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Monte Carlo studies of global ion confinement
times for ECH parameters between devices

(all at same R0) and in QPS for different coil currents
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δδf f Bootstrap Current CalculationBootstrap Current Calculation
[uses method of A. Boozer and M. Sasinowski, Phys. Plasmas 2 (1995) 610]
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δf Monte Carlo scan of Bootstrap current

vs. flux surface



(Error bars are based on one standard deviation away from the
mean in the above saturated time resolved currents)
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High β configuration: |B| contours
 start to close and align with ψ:

β=0%

β=23%

NFPϕ=0° NFPϕ=90° NFPϕ=180°



α-particle slowing-down simulations show these devices
indicate very good confinement with increasing β.

The configuration was scaled to <B> = 5T and R0 = 10m
for alpha confinement studies

 Alpha confinement
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Fast ion driven Alfvén Instabilities

• Motivations for study of stellarators Alfvén instabilities
– Seen experimentally (W7-AS, CHS, LHD)

• A. Weller, D. A. Spong, et al., Phys. Rev. Lett. 72, 1220 (1994); K. Toi, et al., Nucl. Fusion 40, 149
(2000); A. Weller, et al., Phys. of Plasmas 8 931(2001)

– Enhanced loss of fast ions

– Diagnostic use (MHD spectroscopy)

– Channeling of fast ion energy to thermal ions

• Low aspect ratio configurations provide a new environment for
Alfvén studies
– Stronger equilibrium mode couplings

– Lower number of field periods lead to

• More closely coupled toroidal modes (n0, ± n0±Nfp, etc.)

• This leads to HAE (Helical Alfvén) couplings at lower frequencies



Stellarator Alfvén Couplings
Alfvén   coupling   condition :

integers
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• GAE (global Alfvén mode):          α = 0,  ∆ = 0
• TAE (toroidal Alfvén mode):       α = 0,  ∆ = ±1
• EAE (elliptical Alfvén mode):      α = 0,  ∆ = ±2
• NAE (noncircular Alfvén mode): α = 0,  |∆| > 2
• MAE (mirror Alfvén mode):          α = 1,  ∆ = 0
• HAE (helical Alfvén mode):          α = 1,  ∆ ≠ 0



This leads to a set of 3 coupled equations.  A
singularity condition gives the Alfvén continuum

[A. Salat, J. A. Tataronis, Phys. Plasmas 8, 1200 (2001)]
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Stellarator Alfvén Continuum Equation
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The continuum equation in general geometry (low β) can be written:

This can be written in Boozer coordinates using the following:

For devices with stellarator symmetry, the
surface displacement can be expanded as follows:

Multiplying equation (1) by the Jacobian and integrating over a flux 
surface then leads to:
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Stellarator Alfvén Continuum Equation (contd.)

Integrating by parts then leads to the following symmetric matrix eigenvalue problem:



W7-AS: discharge 40173
[Similar to cases analyzed in A. Weller, D. A. Spong, et

al., Phys. Rev. Lett. 72 (1994) 1220]

n = 1 GAE continua

n = 1

n = 1

n = 9

n = 4

n = 6

• In experiment, fluctuations were observed at ~18
kHz
• GAE mode: below the lowest n = 1 continuum
• Such modes can be approximated by cylindrical or
   axisymmetric  modelsContinua based on 3d stellarator equilibruim



n = 1 mode family stellarator continua
dominant toroidal mode is color coded

Continua with multiple toroidal modes

W7-AS: discharge 42873
5 field periods R/<a> = 12

fluctuations observed at 30-50 kHz
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dominant poloidal mode is color coded



W7-AS: discharge 43348
fluctuations observed at: 30-40, 50-60,

  85-100, 125-150, 180-200, and 210-240 kHz

n = 1 mode family stellarator continua
dominant toroidal mode is color coded

Continua with multiple toroidal modes
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LHD
(10 field periods, R/<a> = 6, torsatron)

n = 1 mode family stellarator continua
dominant toroidal mode is color coded

Continua with multiple toroidal modes
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NCSX
3 field period, R/<a> = 4.4

quas-toroidal symmetry

n = 1 mode family stellarator continua
dominant toroidal mode is color coded

Continua with multiple toroidal modes
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QPS (2 field periods, R/<a> = 2.7, quasi-poloidal symmetry)

n = 1 mode family stellarator continua
dominant toroidal mode is color coded

n = 1

n = 3 n = 5
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Recently the STELLGAP code has been upgraded to
solve the 3 coupled equations for the stable Alfvén

mode structure in compact 3D configurations



Conclusions
• QPS optimized design provides good confinement at

very low aspect ratio

• New physics areas to be tested:
– Equilibrium robustness for compact geometry

– Improved neoclassical transport

– Anomalous transport at low A regime

– Lowered poloidal flow damping

– Beta limits

• Substantial flexibility from varying modular coil
currents
– Factor of 50 variation in low collisionality transport

• Good energetic particle confinement at high β
– Self-induced isodynamic configuration

• STELLGAP code developed for
stellarator Alfvén continua and discrete eigenmodes


