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1.1  Introduction

1.  MHD Equilibrium of a Heliotron J Plasma

“Standard” configuration of Heliotron J device ;
ITA / ITB = 5 / 2

Bumpy component (toroidal mirror ratio) can be 
widely varied by two sets of TF coils (TA & TB coils) 
in Heliotron J

better neoclassical transport
deep magnetic well

magnetic shear is weak
toroidicity is not small

free boundary equilibrium ?
magnetic island ?

fixed boundary VMEC equilibrium was mainly 
used  for the analysis

Heliotron J   
(L=1/M=4 heliotron)
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1.2  Free boundary calculation by VMEC

Free boundary calculation
* fixed total toroidal flux
* combination of the field line tracing code
à divertor, fast ion orbit calculation, 

ECH ray tracing
initial guess for HINT code

comparison with the fixed boundary equilibium

larger Shafranov shift
larger rotational transform
à position of resonant rational surface

changes. 

wavy plasma boundary structure cannot be 
reproduced  correctly both in fixed and free 
boundary equilibria by the VMEC

(parallel current calculated 
from local equilibrium)

free boundary equilibrium
(βaxis~1%)

fixed boundary equilibrium
(βaxis~1%)



free boundary equilibrium (βaxis~1%)

fixed boundary equilibrium (βaxis~1%)

ι/2π = 4/7

ι/2π = 4/7



PIES code (PPPL) 

Direct MHD equilibrium calculation by the iterative method
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update pressure distribution by field line tracing

update magnetic field vector

è construction of (quasi) flux coordinates

Magneto-differential eq.   --- (quasi) flux coordinates
Poisson eq.                      --- background coordinates

* separates external field and 
the field produced by plasma current

* virtual casing method
free boundary equilibrium

1.3  Free boundary calculation by PIES

Poisson eq.



constructed from the VMEC equilibrium

fixed boundary calculation
boundary of background coordinates --- last closed flux surface

In Heliotron J, the shape of the plasma boundary is complicated.
à fixed boundary calculation is not easy

free boundary calculation
boundary of background coordinates = control surface

(internal         external)

(1) background coordinates are constructed from expanded flux surfaces  
obtained by extrapolating Fourier amplitudes (Rmn, Zmn) 

In Heliotron J, we use VMEC equilibrium calculated by 
neglecting higher harmonics because of the above reason.

(2) background coordinates are constructed from the ”virtual” equilibrium
calculated by the VMEC using inner wall surface of the vacuum vessel 
as a  “plasma boundary”.

background coordinates



Free boundary equilibrium calculated by  PIES

β0 ~ 1 %β0 ~ 0 %

control surface ι = 4 / 7

external magnetic field is
calculated by KMAG
(Biot-Savart)



“virtual equilibrium”
by the VMEC

background
coordinates

control surface 
= vacuum vessel

vacuum flux surfaces
by the KMAG-PIES

β0 ~ 1.5% equlibrium
by the PIES
(k=51, m=30/34, n=20/24,
niter~100;  SX-6: 6.5GB)

~1500 field periods



HINT code (NIFS)

step A ;  distribution of pressure on 3D grid points with 
fixed magnetic field vector
(relaxation method  or  field line tracing method)

step B;  relaxation calculation of magnetic field vector on 3D grid
points with fixed pressure distribution
(relaxation process using time evolution of the dissipative
MHD equations)

Eulerian coordinates --- rotating helical coordinate system

1.4  “Free boundary” calculation by HINT

# boundary condition at the computational boundary :  fixed boundary
à we use a large “box” so that the size of the box does not affect the result.

“Free boundary” calculation



step-A : assignment of the pressure

40 field periods

120 field periods

pressure distribution in the magnetic islands

40 field periods 160 field periods 240 field periods

old pressure averaged along
the field line running through
the grid point 

new pressure at the grid point

time consuming !

improved method
sampling points
à interpolation

(S.S. Lloids,
H.J. Gardner,
T. Hayashi)field line tracing method



Equilibrium in standard configuration of Heliotron J (HINT)
Initial pressure profile is  2
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β0~1.5%β0~1.0%



1.5  Bootstrap current in Heliotron J

* Change of the direction of the bootstrap current was observed in H-J experiments
when the IV-coil current is varied.
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good agreement can be seen

bootstrap current is estimated using
fixed boundary VMEC equilibrium 
without net current.
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Outward shift by the IV coil current decrease of bumpy field component
(toroidal mirror ratio)

increase of rotational transform

observation of decrease of stored energy

consistent to the DKES result  (à bumpy field component can control
magnitude and direction of BSC)

bumpy field ßà improved transport ßà stored energy ?

STD(BIV=+72%) (BIV= -71%)



2.  MHD Stability of a Heliotron J Plasma

2.1  Introduction

“Standard” configuration of Heliotron J  (fixed boundary equilibrium)
deep magnetic well à interchange mode is stable

(Mercier criterion)

ballooning mode ?
strong bumpiness (toroidal mirror ratio)

à toroidal dependence ?

local analysis (ballooning mode eq.)

global analysis (CAS3D code)
toroidal mode number dependence ?

## effect of the global magnetic shear ? ###



Mercier  criterion --- localized Interchange mode

Interchange mode is stable in the “standard” configuration

Ballooning Mode Equation (WKB approximation)
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field line label on a flux surface
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secular term      non-periodicity
(flute-like approx.)

covering space
quasi-mode
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2.2 Local analysis

),,|( ks θαξ leigenfunction ; eigenvalue ; 2ω

dispersion relation ;  ω2=λ(s,a,qk)

non-axisymmetry α dependence



contours of λ(s,α,θk)

p=p0(1-s2)2p=p0(1-s)2

Typical level surface of λ in Heliotron J

strong α-dependence
weak θk-dependence

normal curvature

O. Yamagishi, Y.Nakamura, K. Kondo
Phys. Plasma 8 (2001) 2750.

Mercier unstable 
LHD equilibrium



Quantization 
(finite toroidal mode number)

ray equations
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type C;    periodic in α --- discrete mode à quantization condition;

type S;    quantum chaos ? 

toroidal mode number ; n
number of nodes ; N

ray trajectory 

nN 2/)12(2/)( 2 +=∆ πωα

strong toroidal mode coupling ?
à single toroidal mode number

cannot dominate the mode structure ?



2.2 Global mode analysis by the CAS3D code

strong toroidal mode coupling
perturbation is extended 

along the flux tube

strong α dependence
weak θk dependence

local analysis

helical ballooning



IDEAL Low-n Interchange mode
in LHD

GLOBAL: n=2, p=p(0)(1-s2)2

Typical mode structure



n

n = 50

(a) perturbation ξs

(b) local shear
(c) normal curvature
(d) geodesic curvature



nmax dependence of the growth rate

nmax dependence of the growth rate

β0=1.0%
β0=1.2%
β0=1.4%
β0=1.6%

eigenfunction along the field line

local analysis

nmax=22

nmax=62

Critical number of nmax (maximum toroidal 
mode number used in a calculation) exists.

nmax < 10   à stable quantum chaos
nlimit = 17?

insufficient number of toroidal modes
à the mode cannot be 

localized in a flux tube

O. Yamagishi, Y.Nakamura, K. Kondo, N. Nakajima
Phys. Plasma 9 (2002) 3429.



Negative region
of perturbed
potential energy

high-nmax mode has narrower radial structure
increase nmax à critical beta tends to the local value

β0
local~0.6%



Ballooning mode

Pressure driven mode and mode coupling

Cylindrical plasma … no mode coupling
“bad” curvature and local shear

are not localized on a flux surface                  à interchange

Axisymmetric torus … poloidal mode coupling
“bad” curvature and local shear

can be localized poloidally on a flux surface  à interchange
tokamak ballooning

Non-axisymmetric torus … poloidal & toroidal (helical) mode coupling
“bad” curvature and local shear

can be localized freely on a flux surface        à interchange
tokamak ballooning
helical ballooning

Characteristics of helical ballooning
# corresponding to the mode whose level surface of  λ is spherical

in a local analysis (ballooning mode eq.)
# can be unstable even if a negative shear (q’<0) case
# strongly localized in the toroidal direction

è strong toroidal mode coupling is essential



Magnetic shear dependence of the pressure driven mode in Heliotron J



Magnetic shear dependence of the pressure driven mode in Heliotron J

positive ι’ is favorable
against helical 
ballooning mode
in a low shear 
stellarator.

low ι is favorable
against interchange
mode and helical 
ballooning mode.



Summary

1. Importance of free boundary equilibrium calculation in a low shear
stellarator is shown.

2. Improved methods to resolve the difficulties in calculating a H-J
free boundary equilibrium by PIES and HINT are discussed.

3. Though the free boundary calculation by the  VMEC cannot reproduce 
fine wavy structure near the plasma boundary, it gives reasonable 
equilibrium properties unless there is no wide magnetic island in the
plasma.

4. Good agreement can be seen between bootstrap current observed in 
H-J and that calculated by the SPBSC code.

MHD equilibrium

Pressure driven instabilities

1. Close relation is found between local and global analysis for
the helical ballooning mode.

2. It is shown that the magnetic shear has crutial role on the helical
ballooning mode in a low shear stellarator.


