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Modern stellarators are designed by choosing the shape of the plasma to optimize its

physics properties.  Unfortunately practical magnetic field coils cannot precisely support a

plasma that has the shape prescribed by the optimization.  A method will be given for

optimizing plasmas so the only plasma shapes that are considered are the ones that are

consistent with efficient, well-separated coils.  The method provides a clear prescription for

finding the minimal number of independent coils needed for the flexibility to produce many

important plasma configurations.  The number of free parameters that exist for optimizing

stellarator configurations will be determined.  About thirty parameters in stellarator design

are of comparable difficulty for coils to produce as the four shape parameters that are used

in defining tokamaks through squareness.
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I. Introduction

The physics properties of a toroidal plasma are uniquely determined by the profiles

of net plasma current and pressure, the toroidal flux in the plasma, and the plasma shape.1

That is, the shape of the outermost surface of the plasma on which the normal component

of the magnetic field,   
r
B n⋅ ˆ , must vanish.  Jürgen Nührenberg2,3 used the uniqueness to

find stellarators with optimal physics properties by varying the shape of the plasma surface.

This procedure is the basis of modern stellarator design.

 

Nührenberg’s procedure maximizes a target function that depends on a set of

parameters that define the plasma surface.  The location of the outermost plasma surface,

  
r
x( , )θ ϕ , is conventionally described using( , , )R Zϕ cylindrical coordinates,

  
r
x R R Z Z( , ) ( , ) ˆ( ) ( , ) ˆθ ϕ θ ϕ ϕ θ ϕ= + . (1)

The functions of two angles, R( , )θ ϕ  and Z( , )θ ϕ , are defined by a set of coefficients si ,

which can be written as a matrix vector  
r
s .  For example, the si  may be the coefficients of

Fourier series.  The physics properties of a stellarator plasma, with given pressure and

current profiles, are then determined by   
r
s .  The magnitude of the magnetic field is

normalized by the toroidal magnetic flux within the plasma boundary.  In Nührenberg’s

procedure, a target function   T s( )
r

 is defined, which contains information about the

neoclassical transport and magnetohydrodynamic properties of the plasma.  The shape

coefficients   
r
s  are varied until the target function is maximized.  

In modern stellarator design, coils to support an optimized stellarator plasma are

found by following a procedure given by Peter Merkel.4  The coils have two functions.

They (1) produce the net toroidal magnetic flux in the plasma, and (2) insure the normal

component of the magnetic field on the plasma surface is zero.  As Merkel observed in his

original paper on coil design,4 coils with a non-zero separation from the plasma cannot

precisely accomplish the second of these tasks for a defined plasma shape.  The

mathematical reasons will be discussed in Section (II).  The method adopted by Merkel for

dealing with this problem is to design the coils to minimize the mean-squared normal

magnetic field on the desired plasma surface,
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ε 2
2

≡ ⋅( )∫
r
B n da

plasma

ˆ .  (2)

Once coils are designed by this method, further optimizations can be carried out by varying

the shapes of the coils.5

Merkel’s basic strategy of minimizing ε 2  treats all distributions of the normal

magnetic field on the plasma surface with an equal weight.  However, the physics

properties of a stellarator can be far more sensitive to some normal field distributions than

others.  This observation leads to two different strategies for choosing the coils.  In the first

strategy, which was described in a recent paper,6 the physics optimization defines not only

a plasma shape but also an acceptable tolerance on the various distributions of normal

magnetic field.  Coils are then optimized within these constraints.  A distribution of the

normal magnetic field that must be retained to minimize ε 2  might have little effect on the

physics properties of the plasma.  If that normal field distribution is associated with a

magnetic field that decays rapidly away from coils, inefficient and nearby coils are

needlessly required.  On the other hand if plasma properties are sensitive to a particular

field distribution, the importance of that distribution may not be adequately represented in a

minimization of ε 2 .  In the second strategy, which is described in Section (III), the set of

magnetic field distributions that have a slow spatial decay away from coils is established.

These are the only field distributions that are consistent with efficient and distant coils.  The

plasma optimizations are carried out using the amplitudes of these field distributions as

independent parameters.  Walter Dommaschk has given scalar potentials for a set of slowly

decaying fields,7 which could be used in the optimization.  The sets of slowly decaying

fields described in Section (III) obey completeness and orthogonality relations that are not

simply obtained for the Dommaschk potentials.  In effect, the first strategy optimizes the

plasma and then checks for the implications for the coils.  The second optimizes the coils

and then checks for the implications for the plasma.

The codes that have been written for physics optimization can be modified to use

the set of magnetic field distributions that have a slow spatial decay. The physics target

function is augmented by a penalty function that measures the difference between the

normal magnetic field that a certain plasma shape requires and the normal field that the set

of magnetic field distributions can produce.  If the constant that appears in front of this

penalty function, cp , is small, the physics optimization is of the traditional form.  If cp  is
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made large, the degradation in the physics properties associated with efficient and distant

coils is explicitly determined.  By gradually making cp  larger, one can determine which

missing field distribution would have the largest effect on the physics optimization.

The utility of a stellarator experiment is largely determined by the ability of its coils

to support a large number of interesting plasma equilibria.  Emphasis should be placed on

interesting equilibria.  Any coil set offers some flexibility through variations in the currents

in the coils.  However careful design is required if variations in the coil currents are to

produce an interesting range of equilibria. In the Wendelstein 7-X stellarator, for example,

flexibility in interesting equilibria was achieved8 by the use of a second set of coils to allow

variation in rotational transform while maintaining optimized plasma configurations. In

Section (IV) techniques will be discussed that allow coils to be designed, so the widest

possible range of interesting configurations can be obtained by variations in the coil

currents.

The procedure for designing coils that will be given in this paper uses a control

surface, which is separated from all of the desired plasma configurations by at least the

minimum coil/plasma separation.  The magnetic field distributions are determined by the

use of a complete set of distributions of surface current on the control surface.  These

distributions are ordered by the rate of spatial decay of their magnetic field in the region

enclosed by the control surface.  For typical stellarators approximately thirty distributions

have a spatial decay no faster than the field distribution that determines squareness in a

tokamak.  These distributions are the ones that are available to optimize plasmas that are

consistent with reasonably distant coils.  The current distribution on the control surface can

be divided into three parts: (i) a primary current distribution, which produces a typical

plasma configuration, (ii) a set of distributions required for flexibility, and (iii) a set of

tolerances on the accuracy with which a complete set of current distributions must be

controlled.  The flexibility requirements are based on the consideration of a large number of

plasma equilibria, such as different pressure and current profiles, and the determination by

Singular Value Decomposition (SVD) methods9 of the most important current distributions

for flexibility.  These current distributions can be used as the basis of the coil design, or

they can be converted into normal magnetic field distributions on the control surface.  The

formulation using the normal magnetic field distributions allows a simple specification of

the physics requirements on the coils.  With a simple specification of the requirements, coil

designers can use their full creativity in finding the cheapest set of coils that offer adequate

access to the plasma.
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A number of persons have noted that a symmetric 1/R toroidal field produces a

normal magnetic field with high harmonics when interacting with a complicated plasma

boundary.  They have viewed this as proof that a slowly decaying field can produce the

high harmonic normal fields that are desired for stellarator optimization.  This view

confuses the problem and the solution as is illustrated by giving the surface of a tokamak a

toroidal ripple.  Few will doubt that if one wishes to produce a mode number n toroidal

ripple in a tokamak surface that a field that scales roughly as Rn is required.  Nonetheless,

an axisymmetric toroidal field dotted into the normal to the rippled surface has an nth

toroidal harmonic.  A tokamak surface with sufficiently high order toroidal ripple is

inconsistent with distant coils.

II. Mathematical Issues

 

 The design of stellarator coils raises a number of interesting and important

mathematical issues.  Two of these will be discussed in this section.  The first issue is why

it is an ill-posed mathematical problem to specify the normal magnetic field on the plasma

surface that a set of coils must produce.  The second issue is the determination of the

choices that exist in the specification of a unique magnetic field in the region enclosed the

coils.  This section can be skipped by readers more interested in the coil design method

than in the associated mathematical issues.

 

 In the paper that originated modern coil design,4 Peter Merkel noted that the

problem of the continuation of a magnetic field into a vacuum region is not well posed and

that singularities tend to arise.  In 1917 Jacques Hadamard10 gave the example of this type

of problem that appears in textbooks on partial differential equations.  However, the

problem in coil design is somewhat different than that given by Hadamard.  Hadamard

showed that Cauchy boundary conditions (specification of both the function,   φ( )
r
x , and the

normal derivative of the function,   ̂n ⋅ ∇
r

φ) yield ill-behaved solutions when applied to

Laplace’s equation, ∇ =2 0φ .   However in standard coil design, Cauchy boundary

conditions are never used.  The boundary conditions that are used are the function

(Dirichlet conditions) or the normal derivative of the function (Neumann conditions).

Indeed to obtain a unique solution to Laplace’s equation, one must apply either Dirichlet or

Neumann boundary conditions.  See the discussion of Equation (9) below.    
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 To illustrate the type of problem faced in coil design, consider ∇ =2 0φ  in ( , )r θ
polar coordinates.  The well-behaved (regular) solution in the region r ≤b  is

 

 φ θ θ( , ) exp( )r c
r

b
imm

m

m

= 



 −

=

∞

∑
1

(3)

 

 with the cm  constants.  These constants can be determined by specifying either the

functionφ θ( , )a  (Dirichlet conditions) or its normal derivative ∂ ∂( ) =φ/ r
r a

 (Neumann

conditions) at r=a.  However, either specification generally makes Laplace’s equation ill-

posed (yields singular results) when a <b.  To demonstrate this, consider the function

 

 φ θ
α

α θ
α α θ

α θθ( , )
sin

cos
sin( )a

i
mm

m

= 





=
+ −

=
=

∞

∑1
1 22

1

Imag
1

1- ei , (4)

 

 which is a well-behaved analytic function for α <1.  The solution at r=b  is

 

 φ θ α θ( , ) sin( )b
b

a
m

m

m

= 





=

∞

∑
1

, (5)

 

 which is an exponentially divergent Fourier series when b a> /α .   The divergence of the

Fourier series for φ θ( , )b  is the generic result when φ θ( , )a  is an analytic function of θ .

Generic analytic functions have singularities (poles) in the complex θ -plane.  Let the

closest pole above the real axis be located at θ = +Θ Γi  with φ θ θ( , ) / ( )a c ir→ − +( )Θ Γ

near that pole.  The Fourier transform, 2π ≡∫c a im dm φ θ θ θ( , )exp( ) , can be calculated by

standard contour integration methods to yield c ic im mm r→ −{ exp( )}exp( )Θ Γ  for large m .

In other words, the Fourier series of a generic analytic function converges exponentially, as

exp( )−mΓ .  The example of Equation (4) has an exponentially convergent series with

α = −e Γ .  An analytic expression for the normal magnetic field on the plasma surface

(which is actually a Neumann condition) generically yields a singular current for a

sufficiently separated coil surface.  However in the cylindrical example, a generic analytic

function can be approximated with exponential accuracy by a function for which the

solution at r=b  increases only algebraically, as ( / )b a M  with M an integer.  That is, the
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Fourier series for an analytic function can be truncated at m=M, which yields a analytic

function that differs from the original one by an exponentially small, exp( )−MΓ , function

of θ .

 

 The problem of going from the normal field specified on the plasma surface to the

coils is ill-posed.  In the example of the last paragraph, a function that approximates the

required normal field with exponential accuracy, exp( )−MΓ , is consistent with coils that

are separated from the plasma by an arbitrarily large distance.  However, the required

currents can become very large, increasing as ( / )b a M  with M the largest mode number that

is retained.  Efficient, but distant, coils require M be small.  However, M must be

sufficiently large to achieve the desired plasma properties.  It is the achievement of an

optimal balance desirable coils and desirable plasmas that is the goal of both the method

explained in this paper and in the method of the previous publication.6

 

 The magnetic field that is required for supporting a plasma can be specified in

several ways. The choices in the quantities that can be specified in order to define a unique

magnetic field will now be explored.

 

 Electrodynamics is based on linear equations, so the magnetic field in an experiment

is the unique sum of the field due to the coil currents and the field due to the plasma

currents,    

r r r
∇ × = µB jpl o pl  with   

r r
B xpl ( ) → 0  as   

r
x → ∞.  To simplify notation, the field due

to the coil currents will be denoted by   
r
B , so the complete magnetic field is   

r r
B Bpl + .  By the

control surface is meant a toroidal surface that lies outside of all plasmas a stellarator is

designed to produce with a spatial separation from these plasmas which is no less than the

minimum allowed coil/plasma separation.  The control surface is assumed to lie between

the plasmas and all coils.  In the region enclosed by the control surface, the field due to the

coils is   
r r r
B x= ∇ φ( ) with ∇ =2 0φ .  

 

 In the region bounded by the control surface, the magnetic field   
r
B  obeys a simple

integral relation, Equation (8), which defines the uniqueness requirements.  In this region

the scalar potential of the field cannot be single valued for coils that have a net poloidal

current (the current through the hole of the torus).  That current is given by

  
µ = ⋅ ∂ ∂∫0G B x d

r r
( / )ϕ ϕ .  The scalar potential for the magnetic field has the form
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φ ϕ φ= µ π +( / ) ˜
0 2 G  with φ̃ a single-valued function of position.  Within the region

enclosed by the control surface

 

 

  
B d x d x B da

G
B d x

control

2 3 2 3 0 3

2
= ∇ ⋅ ∇( ) − ∇{ } = ⋅ + µ

π
∇ ⋅∫∫ ∫ ∫

r r r r r r
φ φ φ φ φ ϕ˜ ( ) . (6)

 

 Since the magnetic field is divergence free,   
r r r r
∇ ⋅ = ⋅ ∇( )ϕ ϕB B , and

 

 
  

r r
B d x t⋅ ∇ = π∫ ϕ ψ3 2 (7)

 

 with ψ t  the toroidal magnetic flux enclosed by the control surface.  Therefore,

 

 

  
B d x G B da

enclosed

t

control

2 3
0∫ ∫= µ + ⋅ψ φ̃

r r
. (8)

 

 

 This equation allows one to find the conditions required for a unique magnetic field within

the region enclosed by the control surface.  Let   δ
r r r
B B B≡ −1 2  be the difference between two

magnetic field distributions in the region enclosed by the control surface.   Then, a

derivation identical to that of Equation (8) implies

 

 

  
δ δ δψ δφ δ

r r r
B d x G B da

enclosed

t

control

( ) = µ ( )( ) + ( )( ) ⋅∫ ∫
2 3

0
˜ . (9)

 

 The two fields must be identical,   δ
r
B ≡ 0, if the right hand side of this equation vanishes.

Two conditions must be satisfied to make the two fields identical.  First, either the poloidal

currents G  must be identical or the toroidal fluxes ψ t  must be identical.  Second, either the

single-valued potentials φ̃ must be identical (Dirichlet conditions), or the normal

components of the fields   
r r
B n n⋅ = ⋅ ∇ˆ ˆ φ must be identical (Neumann conditions).

 

 A uniqueness theorem can also be obtained in terms of the surface current on the

control surface that would be required to produce the magnetic field due to the coils.  The
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current density on the control surface   
r
j  must be divergence free and lie in a toroidal

surface.  These two conditions imply the form

 

 
  

r r r
j

G J
r b r= ∇ × +

π
−

π




 − ∇








κ θ ϕ ϕ θ δ( , ) ( )
2 2

. (10)

 

 with (r, θ,ϕ) any toroidal coordinate system in which r=b defines the control surface.  The

net poloidal current in the control surface is the constant G, and the net toroidal current is

  
J B x d= ⋅ ∂ ∂( ) µ∫

r r
( / ) /θ θ 0 .  The function κ θ ϕ( , )  is called the current potential, has units of

Amperes, and defines the distribution of the surface current.  The magnetic field

 

 
  

r r r
B

G J
r b r= ∇ + µ +

π
−

π




 − ∇φ κ θ ϕ ϕ θ δ0 2 2

( , ) ( ) . (11)

 

 satisfies Ampere’s Law,   
r r r
∇ × = µB j0 .  Except on the control surface, the magnetic field

satisfies   
r r
B = ∇ φ with ∇ =2 0φ , and throughout all of space the magnetic field is non-

infinite and divergence-free.  Integrating   
r r
B x r⋅ ∂ ∂/  an infinitesimal radial distance across

the control surface, one finds that the jump in the potential across the control surface

(outside minus inside) is

 

 
1

2 20µ
[ ] = − −

π
+

π
φ κ ϕ θG J

. (12)

 

 The net toroidal current flowing in the control surface J is given by the poloidal loop

integral 
  
J B x d= ⋅ ∂ ∂( ) µ∫

r r
( / ) /θ θ 0 , so the magnetic potential must have a multivalued term,

( / )µ πoJ 2 θ , in the region r >b.  If   
r r
B ⋅ ∇ φ is integrated over all of space, except the region

occupied by the coil surface, one finds

 

 

  

r r r r r
B d x B d x B da G J

control

t p
2 3

3

0 0= ∇ ⋅ = − [ ] ⋅ + µ + µ∫∫ ∫( ) ˜φ φ ψ ψ . (13)
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 The condition 
  

r
B n⋅[ ] =ˆ 0 , which follows from   

r r
∇ ⋅ =B 0, was used.  The poloidal flux (the

flux through the hole in the torus) is

 

 

  
ψ θp

exterior

B d x≡
π

⋅ ∇∫1
2

3
r

 . (14)

 

 Equation (12) implies the single-valued part of the magnetic potential obeys φ̃ κ[ ] = −µ0 , so

 

 

  

r r r
B d x B da G J

all space control

t p
2

0
3/

_

µ( ) = ⋅ + +∫ ∫κ ψ ψ . (15)

 

 The net toroidal current J has no direct effect on the field in the region enclosed by the

control surface, and the net poloidal current G has no direct effect on the field outside of the

control surface. If currents lie on a number of surfaces, Equation (15) can be trivially

generalized by letting the right hand side be a sum of terms, each of which is like the right

hand side of Equation (15).  

 

 The magnetic field can be made unique in the region enclosed by the control surface

by specifying either the poloidal current G  or the toroidal flux ψ t  together with either the

current potential κ   on the control surface, Equation (15), or the normal field   
r
B n⋅ ˆ  on the

control surface, Equation (8).

 

III. Optimization Strategy

The central idea is to optimize stellarator configurations using the distributions of

current   
r
j  on the control surface that produce magnetic fields that have a slow spatial decay.

An arbitrary current   
r
j  on the control can be described by a current potential κ θ ϕ( , )

together with the net toroidal J and poloidal G currents flowing on the surface, Equation

(10).  The current potential on the control surface can be expanded in a complete set of

orthonormal functions, κ θ ϕ θ ϕ( , ) ( , )= ∑ I gi i , which gives an infinite number of

parameters, the Ii , with which to optimize stellarator configurations.  However, if the

othonormal functions are chosen appropriately only a few, No, are associated with

magnetic fields that have a sufficiently slow spatial decay to be useful for optimizing a
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stellarator that is to be consistent with efficient and distant coils.  As will be discussed in

Section (V) the number No is related to the number of Fourier terms of the form

sin( )m nθ ϕ−  that have m2 + n2 less than a critical value.  By comparison with tokamak

experience m2 + n2 ≤20 is a reasonable constraint, which makes No=4 in a tokamak and

No=34 in a stellarator.  Although the parameter space available for stellarator optimization is

limited, the available number of free parameters is not smaller than the number used in

previous optimization studies—just different.  If one wants stellarators that are consistent

with distant coils, then it would appear reasonable to seek optima in the space of

configurations that are consistent with distant coils.  That is the gist of the present proposal.

This strategy has the additional benefit of allowing the design of coils that have maximum

flexibility for accommodating plasmas with different profiles and physics properties,

Section (IV).  

A simple idea for identifying an appropriate set of orthonormal functions for

describing the current potential is to start with two arbitrary complete sets of orthonormal

functions: φ θ ϕi ( , )on a surface that is typical of the location of plasmas that one wishes to

produce and γ θ ϕj ( , )  on the control surface.  A single term in the current potential on the

control surface, I j jγ θ ϕ( , ), produces a magnetic field   

r
Bj  and a row of an inductance

matrix,

  

L I w B daij j p i j

plasma

≡ − ⋅∫ φ θ ϕ( , )
r r

. (16)

A repeated index does not imply a sum.  The function wp  is the weight that appears in the

definition of orthonormality on the plasma surface, w dap i j ijφ φ δ=∫ .  The inductance

matrix Lij  gives the strength of the normal magnetic field on the plasma surface that has the

spatial distribution φ θ ϕi( , ) produced by a current potential in the control surface with

spatial distribution γ θ ϕj ( , ) .  Neil Pomphrey introduced the use of Singular Value

Decomposition theory for studying the inductance matrix of stellarator coils.  The

fundamental theorem of Singular Value Decomposition (SVD) theory5 says an arbitrary real

matrix such as   
t
L  can be written as

  
t t t

l
t

L U VT= ⋅ ⋅ (17)
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with   
t t

U  and V orthogonal matrices and   
t
l a diagonal matrix.   (An orthogonal matrix

multiplied by its transpose is the unit matrix.)  Let   
r
γ  be a vector with componentsγ θ ϕi ( , )

and   
r
g  a vector with components gi ( , )θ ϕ  such that

  
r t r
g V= ⋅γ . (18)

The inductance,   li , associated with a function gi ( , )θ ϕ  is a diagonal element of the

inductance matrix   
t
l and gives the efficiency with which the current distribution gi ( , )θ ϕ

produces normal magnetic field on the plasma surface.  If the functions gi ( , )θ ϕ  are ordered

so the ones associated with larger inductances, the   li , come first, they form a useful set in

which to expand the current potential.  Only current potentials with a sufficiently large

inductance should be considered in the stellarator optimization that emphasizes efficient

coils.

The set of useful distributions of current potential in the control surface, the

gi ( , )θ ϕ , can be chosen in a number of ways.  Two different sets of No useful distributions

are essentially equally useful if they are coupled by non-singular matrix and each set

uniquely determines the set of No distributions of magnetic field that have the slowest

spatial decay.  Not all sets of functions, gi , have these properties.  In one dimension any

odd periodic function, g g g( ) ( ) ( )θ θ θ= + π = − −2 , can be written as g a( ) sin( )θ = Θ  with

a the maximum value of g and Θ( ) arcsin( / )θ ≡ g a .  Consequently, a function with an

arbitrarily rapid spatial variation can be written using a Fourier series that contains only an

m=1 term.  A choice that helps clarify fundamental properties of appropriate functions, gi ,

and avoids the problems of Fourier series is the set of natural functions, which is discussed

in Section (V).

A stellarator is optimized in the proposed method by picking No distributions of the

current potential on the control surface that have sufficiently large inductances   li  to

produce a significant magnetic field on plasma surfaces.  The optimization is done by

augmenting the target function  T s( )
r

 of a Nührenberg-like optimization with a penalty

function   P s( )
r

.  The new target function is   T s( )
r

 -  P s( )
r

.  Let the index j = 1 to No denote

the distributions of current potential that are retained, and let   

r
Bj  be their associated
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magnetic fields.  Linear algebra implies the inductance matrix, Eq. (16) defined by these

distributions will have No non-zero eigenvalues and No associated functions fi ( , )θ ϕ  on the

plasma surface,   
r t r
f U= ⋅φ.  The orthogonal matrix   

t
U  is defined by Equation (17).  Let   

r
Bo

be the magnetic field due to all sources other than the current potential κ θ ϕ= ∑ I gi i ( , ) ,

and define fluxes 
  
Φi p i ow f B da≡ ⋅∫

r r
.  The penalty function can then be chosen to be

  

P s
w B n da

c
i

i

N

p o

p

o

( )
( ˆ)

r
r= −

⋅

















=
∑

∫
1

2

1
2

Φ
(19)

with cp  a constant.  In stellarator optimization codes, the normal magnetic field on the

surface of a plasma due to all other sources,   
r
Bo , is determined by the plasma shape vector

  
r
s .  Consequently, 

  
w B n dap o( ˆ)

r
⋅∫ 2  is a function of   

r
s  as is each flux component,

  
Φi p i ow f B da≡ ⋅∫

r r
 on the plasma surface.  If the constant cp  in Equation (19) is zero, then

the new optimization is the same as the old.  By increasing cp  during an optimization one

can track the modification of a plasma configuration that is required to make it consistent

with desirable coils, cp → ∞ .

The number of parameters that are used to describe the shapes of the plasma

surfaces in the VMEC equilibrium code,11 which is at the heart of most stellarator

optimizers, is in practice very limited.  This limitation makes it subtle to constrain the

surface shape to be consistent with distant coils.  The number of magnetic field

distributions that are consistent with distant coils, No , may even be greater than the number

of shape parameters,   
r
s .  Nonetheless, the VMEC shape parameters require constraint to be

consistent with distant coils.  That is, the low-order VMEC shape parameters do not in

themselves constrain the plasma shape to be consistent with distant coils. In the remainder

of this section a method of finding the constraint on the shape parameters,   
r
s , will be given,

and the completeness of the shape parameterization will be defined.
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Let   
r t r
f U= ⋅φ be functions, fi ( , )θ ϕ , that are ordered by the size of their associated

inductances with fluxes, 
  
Φi p i ow f B n da≡ ⋅∫ ( ˆ)

r
.  If a small change is made in the shape, the

fluxes are changed by   δ δ
r t rΦ Ω= ⋅ s .  Using Singular Value Decomposition one can write

  
t t t t
Ω = ⋅ ⋅Y ZT ω  with   

t
ω diagonal and   

t
Y  and   

t
Z  orthogonal.  The number of non-zero

elements of   
t
ω gives the number of effectively independent surface displacements Ns .

(Changes in the shape parameters   
r
s  can represent changes in the parameterization of the

surface in ( , )θ ϕ  as well as changes in its shape.)  Only effectively independent

displacements will be considered, so   
t
ω can be taken to have a well-defined inverse.  Let

the flux   
r t r
Φ Φs Y≡ ⋅  with Yi N js> =, 0, so   

r
Φs  has Ns  components.

Only the first No  of the functions fi ( , )θ ϕ  can be produced efficiently by distant

coils.  A flux component   ( )
r
Φs i  of   

r
Φs  is determined primarily by the No  functions if

( )Yij
j

No

=
∑ >

1

2 1
2 .  (The factor of one half is to a certain extent arbitrary, but one half is a

reasonable requirement.) Let Ne  be the number of flux components that satisfy

( )Yij
j

No

=
∑ >

1

2 1
2 .  These No  flux components are the only flux components that can be both

efficiently produced by the coils and well represented by the VMEC shape parameters. The

other flux components are either inefficiently produced by coils or are poorly represented

by the VMEC shape parameters and should be penalized by the target function, Eq. (19), to

insure a plasma shape that can be efficiently produced by coils.  If N Ne o< , the coils can

produce plasma shapes that the shape parameters of the equilibrium code can not accurately

represent.  In other words, N Ne o/  is the completeness of the shape parameterization in

VMEC.

IV. Optimal Coils for Flexibility

The utility of a stellarator experiment is largely determined by the ability of its coils

to support a large number of plasma equilibria.  Different plasma equilibria mean different

profiles of plasma pressure and current as well as more fundamental changes in the

configuration.  Assume that a large group of ieq  equilibria is given which one would like to
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support by varying the currents in a set of coils.  Each member of this group of equilibria

can be made consistent with distant coils using the technique described in Section (III).  In

this section a method will be given for obtaining a fixed primary coil set plus the smallest

number of control coils required support the ieq  equilibria.  The currents in the control coils

have different values for each of the ieq  equilibria.  The fixed current in the primary coil set

is chosen to minimize the current required in each of the control coils.

The first task in the design of a set of coils is the choice of the control surface.  The

control surface must have a minimum separation from every member of the group of

equilibria it is to support.  The minimally separated surface is a reasonable starting point for

the design of a set of coils.  The choice of control surface determines a set of No functions

gj ( , )θ ϕ , such as the natural functions, that are associated with magnetic fields that have a

slow spatial decay, Section (V).  Each of the ieq  equilibria should be fit as well as possible,

using the technique described in Section (III), by a current potential on the coil surface of

the form

κ θ ϕ θ ϕi ij j
j

N

I g
o

( , ) ( , )=
=
∑

1

(20)

with 1 ≤ ≤i ieq  numbering the equilibria.  The number of equilibria, ieq , is assumed to be

large compared to the number of current distributions, No, that are retained.  Many

equilibria will be obtained by tracking a plasma optimum as parameters in the current and

pressure profiles are changed, parameters that give the variation in profiles that an

experiment must be capable of accommodating.

The coil set can be separated into primary and control coils.  The current potential of

the primary coil set is

κ θ ϕ θ ϕp j
p

j
j

N

I g
o

( , ) ( , )( )=
=
∑

1

(21)
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with the currents defining the primary set given by either I
i

Ij
p

eq
ij

i

ieq

( ) =
=
∑1

1

 or

I I Ij
p

ij ij
( )

max min( ) ( ) /= +{ } 2 with “max” or “min” meaning the maximum or minimum

within the group of ieq  equilibria.  The second choice for Iij
p( )  minimizes the control coil

currents required to support the full group of ieq  equilibria.  The first choice is affected less

by extreme equilibria in the group.  A natural form for the primary coils is a set of modular

coils, which means toroidal field coils that are wound with helical bends so they produce

not only the net poloidal current G (or equivalently the toroidal flux) but also the current

potential κ θ ϕp( , ).  However, many choices for the primary coils are possible.  For

example, many stellarators use helical coils.

The control coils are designed by writing the current potential that is required for

each of the equilibria as

κ θ ϕ κ θ ϕ θ ϕi p ij j
p

j
j

N

I I g
o

( , ) ( , ) ( ) ( , )( )= + −
=
∑

1

. (22)

The control coils must carry currents that produce the important elements of the matrix

  ( ) ( )δ
t
I I Iij ij j

p≡ − . (23)

The important elements of the matrix   δ
t
I  can be determined using SVD techniques.  Write

  δ
t t t t
I Y i ZT= ⋅ ⋅  with   

t
i  a diagonal and   

t
Y  and   

t
Z  orthogonal matrices.   The important current

distributions are the components of   
r t r
g Z gc( ) ( , ) ( , )θ ϕ θ ϕ= ⋅  associated with large diagonal

elements of the matrix   
t
i .  Linear algebra insures that the number of diagonal elements of   

t
i

that are sufficiently large to be of importance, Jc , is less than or equal to No.  The current

that must flow in the control coils to produce one of these equilibria is   I Y iij
c T

ij
( ) ( )≡ ⋅

t t
.  The

current potential that gives each of the ieq  equilibria is then

κ θ ϕ κ θ ϕ θ ϕi p ij
c

j
c

j

J

I g
c

( , ) ( , ) ( , )( ) ( )= +
=
∑

1

. (24)
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The number of independent control coils Jc  is determined by the variety of plasma

equilibria that one wishes to support.  The number Jc  cannot be extremely large.  Jc  cannot

be larger than No, but practical considerations make Jc  even smaller.  The number Jc  can

not be made extremely small if attractive plasma equilibria are to be supported that have the

variation in the plasma pressure and current profiles that is to be expected during plasma

start-up and in normal plasma operations.  An arbitrarily varied group of equilibria can not

be supported by a single set of coils.  Iteration is required to determine that most varied

group of equilibria that can be supported by a practical set of coils.

A complete specification of the current potential requires more than a specification

of the primary and the control currents, which are given in Equation (24).  A complete

specification requires a statement of tolerances, the accuracy with which the various current

potential distributions, the gi , must be produced.  These tolerances are given by the

acceptable degradations in the target function   T s( )
r

 of the physics optimization.  The

degradations can be found using quality matrix techniques6 or the related control matrix

techniques that have been developed by Harry Mynick and Neil Pomphrey.12  For high

order functions the tolerance is quite loose, approximately proportional to ( / )b a N  with b/a

the ratio of the coil to plasma radius and N the index of gN .  The natural filtering that

Laplace’s equation has on high order modes leads to this loose tolerance and implies distant

coils can be far simpler than nearby coils.

For general coil design work, it may be easier to have the requirements given in

terms of the normal magnetic field on the control surface. Equations (9) and (15) imply the

magnetic field in the region enclosed by the control surface is uniquely specified by the

poloidal current G outside of the control surface and either the normal magnetic field or the

current potential on the control surface.  That is, the current potential on the control surface

and the normal magnetic field are interchangeable.  James Bialek has written a code which

calculates the relation between the equivalent current and fields.  The requirements on the

coil system can be specified by

  

r
B n B B f f

control p j
c

j

J

j
c

j j
j

c

⋅( ) = + +
= =

∞

∑ ∑ˆ ( , ) ( , ) ( , )( ) ( )θ ϕ θ ϕ δ θ ϕ
1 1

. (25)
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The principal and control field distributions are determined in an obvious way from

Equation (24).  The tolerances imply an error ±δ j  is tolerable in the normal field

distribution that has the dependence fj .  The functions fj  can be the natural functions that

are discussed in Section (V).

V. Natural Functions on a Surface

The prescription of a surface,   
r
x( , )θ ϕ , determines a natural set of functions fi ( , )θ ϕ

on that surface, which are solutions to a surface Helmholtz equation, ∇ = −s i i if k f2 2 .   This

complete, othonormal set of functions is ordered by the wavenumber ki .  When ki  is large

compared to the mean curvature at each point on the surface, the solutions to the full

Laplacian that have a natural function as a boundary condition grow or decay exponentially

away from the surface, exp[ ( )]± −k r bi .  

The natural functions are useful for defining the number of parameters that are

available with which to optimize stellarators.  The wavenumber of the N th  natural function

goes as k N rN s→ /  for N → ∞ with rs  a constant.  (For a large aspect ratio symmetric

torus ( )2 2 2π rs  is the surface area.)  The number of axisymmetric natural functions is much

smaller scaling as k N rN s→ /  with rs  roughly the minor radius.

The natural functions have an arbitrary weight function w( , )θ ϕ  in their

orthonormality relation

f f wdai j ij=∫ δ . (26)

This weight function has an important interpretation if one assumes the control surface is a

thin resistive shell with resistivity η  and thickness δs .  The current potential in the surface

can be expanded in terms of the natural functions, κ θ ϕ= ∑ I fi i ( , ).  If one chooses the

weighting w s∝ η δ/ , then the Ohmic power dissipated in the surface is R Ii i
2∑  with the

resistance R da ki s i= ( )∫ ( / )η δ 2 .   That is, the natural functions are the eigenmodes of the
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resistance operator, and the methods of redistributing current to allow better access or

lower current density that were discussed in Reference (6) can be implemented using w.

Laplace’s equation,   ∇ = ∇ ⋅ ∇2F F
r r

( ), can be written as the sum of a surface and a

normal part by writing the gradient of the potential as   
r r r
∇ = ⋅ ∇ − × × ∇F n n F n n Fˆ( ˆ ) ˆ ( ˆ ).  The

explicit form for the sum is

  
∇ = ∇ ⋅ ⋅ ∇{ } − ∇ ⋅ × × ∇{ }2F n n F n n F

r r r r
ˆ( ˆ ) ( ˆ ( ) . (27)

The part of the Laplacian that involves only derivatives within the surface, which is called

the surface Laplacian,

  
∇ ≡ −∇ ⋅ × × ∇{ }s f n n f2

r r
ˆ ( ˆ ) , (28)

has the natural functions fi ( , )θ ϕ  as its eigenfunctions.  In other words, the fi ( , )θ ϕ  obey

the in-surface Helmholtz equation

∇ = −s i i if k f2 2 , (29)

which has the ki
2  as its eigenvalues.  The two periodicities of the torus determine all of the

boundary conditions.

To proceed further, a choice for the radial coordinate needs to be made.  A simple

choice for the radial coordinate is

  

∂
∂

=
r

rx

r
w x n( ) ˆ (30)

with   w x( )
r

 a weight function that is assumed to be greater than zero.  This choice implies

  wn F F rˆ /⋅ ∇ = ∂ ∂
r

.  The area element of the surface   
r
x r b( , , )= θ ϕ  is   da d d

r r
= α θ ϕ  with
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r
r r

α
θ ϕ

≡ ∂
∂

× ∂
∂

x x
, (31)

the normal to the surface is   ̂ /n =
r
α α  with   α α=

r
, and the coordinate Jacobian is

  
ℑ ≡ ∂

∂
⋅ ∂

∂
× ∂

∂






=
r r r
x

r

x x
w

θ ϕ
α . (32)

A different, but standard, form for the area element is   
r r
α = ℑ∇ r .  The consistency of the

two forms implies the surface normal   ̂n w r= ∇
r

.  The radial part of the Laplacian is

  
∇ ≡ ∇ ⋅ ⋅ ∇( ){ } = ∂

∂
∂
∂





 −n

mF n n F
w r w

F

r w

dF

dr
2 1 1 2r r

ˆ ˆ
Κ

. (33)

The mean curvature, Κ m ( , )θ ϕ , which is the average of the two principal curvatures of the

surface, is shown in the Appendix to satisfy

  

r
∇ ⋅ = −n̂ m2Κ . (34)

Since the natural functions fi  form a complete set, Equation (46), any solution to Laplace’s

equation can be written as an expansion, F u r fi i= ∑ ( ) ( , )θ ϕ .  The u ri ( )  obey coupled

ordinary differential equations.  For simplicity, assume the weight function is a constant,

w=wo, then

d u

dr
k u

du

dr
i

i i ij
j

j

2

2
2 2− = ∑Κ (35)

with Κ Κij m i j of f w da≡ ∫ .  The two solutions to Equation (35) are simple when ki m>> Κ ,

u r ei
k r bi( ) ( )≈ ± − (36)



21

in the vicinity of the surface r=b.  Equation (36) makes the intuitively obvious point that

only natural functions that have a long wavelength within the surface r=b are associated

with solutions to Laplace’s equation that have a slow variation off the surface.  The use of

the natural functions to define the magnetic fields that have the slowest spatial decay

requires that the eigenfunction with the smallest ki  that is neglected have a wavenumber

large enough to be approximated by Equation (36).  The mixing among distributions that

are associated with different spatial decays is irrelevant if all of the distributions that are

being intermixed are among the No that are in the optimization space.

Using arbitrary coordinates within the surface, the surface Lagrangian is

  
∇ ƒ =

ℑ
∂

∂
ℑ × ∇ ⋅ × ∇( ) + ∂

∂
ℑ × ∇ ⋅ × ∇( )








s n n f n n f2 1
θ

θ
ϕ

ϕ( ˆ ) ( ˆ ) ( ˆ ) ( ˆ )
r r r r

. (37)

 One can use the dual relations of general coordinates to show

 

  
n̂ f

x f x f
i

i i× ∇ = ∂
∂

∂
∂

− ∂
∂

∂
∂

r r r
1 1
α ϕ θ α θ ϕ

. (38)

 The natural functions can found by a matrix diagonalization. Consider a complete

set of functions that are othonormal using the weight w , Equation (26).  One such set of

functions is

 

 ψ θ ϕ θ ϕ
αi

m n

w
( , )

sin( )= −
π 2

(39)

 

 and the similar cosine functions.  If the stellarators that are being considered have reflection

(or stellarator) symmetry, as all major stellarator designs have, one need only consider

sinusoidal or cosinusoidal functions, not both.  Define a matrix by

 

 ℜ ≡ − ∇∫ij i s jw daψ ψ2 . (40)

 

 Since the Jacobian is ℑ = wα  and da d d= α θ ϕ , this matrix can be rewritten as a

symmetric positive operator on two functions,
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ℜ = ℜ [ ] ≡ × ∇ ⋅ × ∇∫ij i j i jw n n daψ ψ ψ ψ, ( ˆ ) ( ˆ )

r r
. (41)

 

 Since the   
t
ℜ  matrix is symmetric, it can be written as   

t t t t
ℜ = ⋅ ⋅W k WT 2  with   

t
k 2  a diagonal

and   
t

W  an orthogonal matrix,   
t t t

W W T⋅ = 1.  The eigenfunctions fi ( , )θ ϕ  are given by

  
r t r
f W( , ) ( , )θ ϕ ψ θ ϕ= ⋅ .  These eigenfunctions are orthogonal with weight w  since

 

 f f wda W W wda W Wi j ii i jj j
i j

i i jj i j
i j

ij= = =∑∫ ∑∫ ' ' ' '
' '

' ' ' '
' '

ψ ψ δ δ . (42)

 

 The wavenumbers ki  are the square roots of the diagonal elements of   
t
k 2 .  The

eigenfunctions of the surface Helmholtz equation, Equation (29), and their wavenumbers

ki  are given by the eigenfunctions fi ( , )θ ϕ  and the eigenvalues of the   
t
ℜ  matrix.  The use

of a very limited orthonormal set of functions ψ θ ϕi ( , )  defines an approximate solution to

Equation (29).  Neil Pomphrey has written a code that determines the natural functions

using this diagonalization procedure.

 

Each eigenvalue ki
2  is an extremum of ℜ [ ]ψ ψ,  while holding ψ 2 1wda =∫  with

  ψ ( )
r
x  otherwise arbitrary.  Using a Largange multiplier to enforce the normalization,

 δ ψ ψ λ ψ δψ ψ λψℜ [ ] +{ } = − ∇ −{ }∫ ∫, 2 22wda wdas , (43)

 

 which proves eigenvalues are extrema.  If the directions of principal curvature of the

surface are used as coordinate directions, the operator ℜ [ ]ψ ψ,  contains terms proportional

to ∂ ∂( )ψ θ/
2
 and ∂ ∂( )ψ ϕ/

2
 but not ∂ ∂( ) ∂ ∂( )ψ θ ψ ϕ/ / .  By taking the largest or smallest

possible values for the various quantities that appear in the integral expression for ℜ [ ]ψ ψ,

and using the complete set of functions sin( )m nθ ϕ− , one finds that constants c1 to c4

exist such that

 

 c m c n k c m c ni1
2

2
2 2

3
2

4
2+ > > + (44)
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 with m  and n  integers.  The number of independent functions of the form sin( )m nθ ϕ−

with m m≤ max  and 0 ≤ ≤n nmax  approaches the limit N m n= 2 max max  for large values of

N .  This implies the number of eigenvalues that have a value greater than or less than a

given eigenvalue obeys

 

 k
N

rN
s

→ (45)

 

 as N  goes to infinity with rs  a distance defined by the spectrum.  In a periodic cylinder, the

spectrum is k m r n Ri
2 2 2 2 2= +( / ) ( / )  with 2πr and 2πR the two periodicity distances.  The

radius defined by the spectrum is r rRs = .  If only the toroidally symmetric, n=0,

eigenfunctions are admitted, as is the case in the design of a tokamak, then far fewer modes

are consistent with a small wavenumber, k NN ∝ .

 

 Any function   ψ ( )
r
x  that can be normalized, ψ 2 1wda =∫ , and for which ℜ [ ]ψ ψ,  is

not infinite can be represented by a series in the eigenfunctions of the operator ℜ [ ]ψ ψ, .

To prove this let ψ = +
=
∑c fi i N
i

N

∆
1

 with c f wdai i≡ ∫ψ  and ∆N if wda∫ = 0 for i≤N.  Then,

ℜ [ ] = + ℜ [ ]
=
∑ψ ψ, ,c ki
i

N

i N N
2

1

2 ∆ ∆ , but if the eigenvalues have been properly ordered

ℜ [ ] ≥ ∫∆ ∆ ∆N N N Nk wda, 2 2 , which implies

 ∆N
N

wda
k

2
2≤

ℜ [ ]∫
ψ ψ,

. (46)

As N goes to infinity, the square integral of the error in the approximation to the solution

must vanish.  In other words, the eigenfunctions of ℜ [ ]ψ ψ,  form a complete set of

functions.

 The matrix ℜ ij  is proportional to the resistance matrix6 of a thin shell,   
t
R , in which

w s∝ η δ/ , the resistivity divided by the shell thickness.  More precisely, if one lets the

weighting function be
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 w
da
s

s

=
∫

η δ
η δ

/

/
, (47)

 

 the eigenfunctions fi ( , )θ ϕ  of   
t
ℜ  are dimensionless, and the resistance matrix is

 

 
  

t t
R das= ( )ℜ∫ ( / )η δ .   (48)

 

In other words, the Ohmic power dissipated in thin shell by the current potential

κ θ ϕ θ ϕ( , ) ( , )= ∑ I fi i  is   P I R IT= ⋅ ⋅
r t r

.

VI.  Discussion

Practical magnetic field coils cannot precisely support a plasma that has a shape

prescribed by an optimization of its physics properties.  Recently a method was outlined for

designing coils that reproduce optimized stellarator configurations within a certain tolerance

on the degradation in quality.6  A different method has been outlined here that constrains

the optimization of the stellarator to configurations that require only No easily produced

distributions of magnetic field.  Both methods utilize the target function of the physics

optimization   T s( )
r

 to define the implications of restricting the number of distributions of

field that the coils must produce to No.

The proposed method assumes the plasma always has a fixed boundary, which is

determined by the values of a set of coefficients,   
r
s .  The optimization is carried out within

the defined set of coefficients; a well-defined plasma surface always exists.  This means the

coils that are designed will not always produce a good plasma surface, for the plasma

surface was not allowed to break within the formalism.  Problems with the quality of the

magnetic surfaces can be corrected by the addition of trim coils that produce field

components that resonate with the closed magnetic field lines in, and close to, the plasma.

To find the strength of the currents required in the trim coils, enforce the plasma boundary

that is given by the optimization by placing a fictitious current carrying surface just outside

the plasma.  The current in this fictitious surface is calculated in the background field of the

coils that have been designed.  The magnitude of the fictitious current can be slowly
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reduced to zero while adjusting the currents in the trim coils to prevent the breakup of the

plasma surface or other surfaces in the plasma.

The proposed method of designing stellarator coils couples the design process to

the general physics optimization of the stellarator configuration.  The method limits that

optimization to those configurations that can be produced by practical coils.  This

restriction, which may at first appear to be a disadvantage, is the fundamental power of the

method.  As outlined in Section (IV), the method determines an optimal set of primary coils

plus the minimal number of control coils that are required to support a broad group of

plasma equilibria.  The physics and the engineering design of stellarators can be separated

within the method.  A control surface that lies as close to the plasmas as any coils can

produces the separation.  The requirements on the coils are specified by giving the poloidal

current and the normal field on a control surface that the coils must produce.  The normal

field has three parts: (1) the primary field, (2) the field distributions that must be variable

within a required range, and (3) the allowed tolerances on all distributions of normal field,

Equation (25).

A number of persons have asked whether it would not be better to optimize the

plasma using a set of coils that have a number of free parameters.  A direct optimization,

which is a generalization of the method used by Drevlak,5 would dispense with the need for

a control surface.  Five issues favor the use of a control surface on which the coil

requirements are specified.  

1.  Completeness: A plasma optimization should consider all magnetic field distributions

that can be efficiently produced by coils.  All magnetic field distributions are included if the

normal field on the control surface is expanded in the natural functions, Section (V).

However, it is difficult to insure a complete representation using coils.  Approximately

thirty field distributions have a slow spatial decay, so the coils must have at least that many

free parameters.  However, it is difficult to insure that collections of the coil parameters do

not form a pseudo-null space, a set of parameters that if varied together produce little

change in the field on the plasma.

2.  Flexibility: Optimal coils must support not just one, but many, interesting plasma

configurations.  The number or type of independent coil currents that are required for

flexibility is not known a priori.  Just having a large number of independent coil currents

does not insure useful flexibility.  For example, in a tokamak driving the currents
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independently in each toroidal field coil adds no useful flexibility.  Having a complete, but

limited, set of parameters for describing the field distributions is critical to optimizing a

device for flexibility, Section (III).

3.  Constraint on the plasma/coil separation: As the plasma pressure and current evolve,

changes occur in the shape of the plasma.  A coil system in which the coils have many free

shape parameters must be constrained to remain a minimum distance from all of the

required plasma configurations.  This constraint defines a surface that the coils cannot

penetrate.  The constraint surface can be identified with the control surface of this paper.

4.  Coil size: An argument for using coils is that a real coil produces some short wavelength

fields.  Even though these fields decay between the coils and the plasma, they may have a

beneficial effect.  If true, the coils must be simulated as full bundles and not by a few

filaments.  This is demonstrated by letting d be the cross-sectional dimension of the coils.

A current potential representation of the coils can be expanded in the natural functions,

Section (V).  Only terms associated with wavenumbers that satisfy kid<<π are insensitive

to the shape of the coils.  A phase shift kid=π changes the sign of the driven field.  The

coils are normally made as large as possible in order to minimize the current density, so

kid≈π for the largest wavenumbers that are explicitly retained.

 5. Plasma sensitivity: A field distribution with a rapid spatial decay can be important to an

optimization only if the plasma is sensitive to a small change in the distribution.  

Sensitivity to a field distribution implies control and careful design are necessary.  If the

plasma optimization is very sensitive to a missing field distribution, that distribution can be

found using moderate values of the parameter cp, Equation (19), and a decision can be

made whether that distribution should be added to the control surface specification.  

The control surface can be used in two different ways to determine coils.  First, the

control surface can be used directly as a surface on which a current potential is defined.

The contours of constant current potential can then be used to define the turns of the

windings.  In reality, several such coil surfaces would be required to allow the independent

current potentials required for flexibility.  Coil optimization with several coil surfaces was

used8 in Wendelstein 7-X.  Optimization methods using several surfaces were also

discussed in Reference (6).  Second, the control surface can be used as the surface on

which the normal field that coils must produce is specified, Equation (25).  The control

surface offers maximal freedom to the coil designer to find the cheapest and most efficient
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coils with reasonable plasma access that are consistent with the physics requirements of the

device.
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Appendix:  The Divergence of the Surface Normal

The divergence of the normal can be calculated using the formula from the theory of

general coordinates for the divergence,
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Using the radial coordinate defined by Equation (30), the coordinate Jacobian, which is

given in Equation (32), and the orthogonality relations   ̂ ˆn n⋅ ∇ = ⋅ ∇ =
r r

θ ϕ 0  that follow from

Equation (30), one finds
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The derivative
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Now
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which implies
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This equation can be rewritten as

  

r
∇ ⋅ = −n̂ m2Κ (A6)
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with Κ m  the mean curvature of the surface at each point on the surface.13  A surface in

three dimensions has two principal curvatures, and Κ m  is the average of those two

curvatures.


