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Optimization of the current potential for stellarator coils
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Stellarator plasma confinement devices have no continuous symmetries, which makes the design of
appropriate coils far more subtle than for axisymmetric devices such as tokamaks. The modern
method for designing coils for stellarators was developed by Peter Merkel@P. Merkel, Nucl. Fusion
27, 867 ~1987!#. Although his method has yielded a number of successful stellarator designs,
Merkel’s method has a systematic tendency to give coils with a larger current than that required to
produce a stellarator plasma with certain properties. In addition, Merkel’s method does not naturally
lead to a coil set with the flexibility to produce a number of interesting plasma configurations. The
issues of coil efficiency and flexibility are addressed in this paper by a new method of optimizing
the current potential, the first step in Merkel’s method. The new method also allows the coil design
to be based on a freer choice for the plasma–coil separation and to be constrained so space is
preserved for plasma access. ©2000 American Institute of Physics.@S1070-664X~00!02702-6#
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I. INTRODUCTION

A major advance in the design of stellarators was
Nührenberg’s concept of optimizing stellarator configu
tions by varying the shape of the outermost surface of
plasma. Early successes were stellarators with quasihe
symmetry1 and the design for the Wendelstein 7-
stellarator.2 The shape of the outermost surface is determi
by the external coils, and the magnitude of the magnetic fi
in the stellarator is set by the enclosed toroidal flux. T
plasma equilibrium equation,“p5W3BW , implies BW •“p
50, so the normal field on the plasma surface due to the
of coils that is being designed must be equal and opposit
the normal field due to other coils, such as toroidal fie
coils, and plasma currents. In this paper, the toroidal flux w
be assumed to be produced by a given set of toroidal fi
coils. The task is the design of an optimal set of supplem
tal coils that cancel the normal component of the magn
field on the plasma surface. There are two optimizations:~1!
the optimization of the stellarator configuration, which is c
ried out by varying the plasma shape, and~2! the optimiza-
tion of the coils to produce that configuration.

The standard method to optimize the coils to produc
given stellarator configuration3,4 is that of Peter Merkel. The
first step is the determination of the current on a toroi
surface, the coil surface, that approximates the desired l
tion of the coils. The current on a given toroidal surface
defined by a single function, the current potentialk~u, w!,
which is a function of the poloidal,u, and the toroidal,w,
angles. The coil surface can be given in the form

XW c~u,w!5R~u,w!R̂~w!1Z~u,w!Ẑ, ~1!

with (R,w,Z) cylindrical coordinates. An example of
simple toroidal surface isR(u,w)5R01a cosu and Z5
2a sinu with R0 and a constants. The current density sa

a!Electronic mail: ahb17@columbia.edu
6291070-664X/2000/7(2)/629/6/$17.00
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fies two constraints. It must be divergence-free and mus
in the coil surface,W•“r 50 with r any well-behaved radia
coordinate such thatr 5r c gives the coil surface. These tw
constraints imply the current density has the form

¤
¢52d~r 2r c!“W r 3“

W k~u,w!, ~2!

which defines the current potentialk~u, w!. The current flows
along constant-k contours becauseW•“W k50. The Dirac
delta functiond(r 2r c) has the units of 1/r , sok has units of
W times an area, which is amperes. The current potentia
found in Merkel’s method by minimizing the mean square
the normal field,*(B¢ •n̂)2da, on the desired plasma surface3

The turns of the coil system are then chosen to lie alo
constant-k contours. The change ink between contours
which has units of amperes, gives the required curren
each coil turn. The shape of the turns can be further o
mized by imposing constraints on the magnetic field or c
properties.4

This paper proposes a new method for optimizing
current potential. The new method emphasizes the coil fl
ibility for producing many desirable plasma configuration
the coil efficiency~minimization of^ j 2& and Ohmic losses!,
and the preservation of space free of coils for plasma ac
~port space!.

To make the distinctions clearer, Merkel’s method w
be described using the notation of the new method of o
mizing the current potential. Merkel’s method relates tw
matrix vectors, a flux vectorFW and a current vectorIW, by an
inductance matrixLJ. The normal magnetic field on th
plasma surface due to sources other than the coils being
signed is given by the magnetic flux vector,FW . Let f i(u,w)
be any complete set of dimensionless functions on
plasma surface. One example of such a set of functions is
trigonometric functions; another isf i constant in adudw cell
© 2000 American Institute of Physics
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on the plasma surface andf i50 elsewhere. Thei th compo-
nent of the flux vector is

F i[Eplasma
surface

f i~u,w!BW 0•daW , ~3!

with BW 0 the field due to all other sources than the coils be
designed. The current vector,IW, on the coil surface is define
using any general set of dimensionless functions,gj (u,w),
on that surface. The current potential is written as

k~u,w!5(
j

I jgj~u,w! ~4!

with the components of the current vectorI j having units of
amperes. TheLi j component of the inductance matrixLJ is
defined by

Li j I j[2Eplasma
surface

f i~u,w!BW j•daW ~5!

with BW j the magnetic field produced by the current poten
k5I jgj (u,w) on the coil surface.~The convention of an im-
plied sum over a repeated index is not being followed;
sums will be denoted explicitly.!

If the functionsf i(u,w) used to define the flux compo
nents, Eq.~3!, are appropriately orthogonalized, Merkel
method for finding the current potential is equivalent to t
minimization of the errorE with

E2[~FW 2LJ• IW !T
•~FW 2LJ• IW !. ~6!

The superscriptT denotes the transpose of a matrix, (Li j )
T

5L ji or the change of a column vector into a row vect
The minimum ofE can be found by a number of technique
These techniques are equivalent to solving, as well as is
sible,

LJ• IW5FW , ~7!

for the currentIW.
Probably the best method for solving Eq.~7!, as well as

is possible, is by the use of singular value decomposit
~SVD! techniques. These techniques were recently in
duced into stellarator coil design by Neil Pomphrey. T
SVD theorem5 says any real matrix can be written as

LJ5UJ • lJ•VJT ~8!

with lJ a diagonal matrix with diagonal elementsl i and UJ

andVJ orthogonal matrices.~An orthogonal matrix multiplied
by its transpose is the unit matrix.! Equation~7! can then be
rewritten using the eigenvectors of the flux,FW (e)[UJ T

•FW ,
and the current,IW (e)[VJT

• IW. If an eigenvaluel i is nonzero,
the associated component of the current is given by

I i
~e!5

F i
~e!

l i
. ~9!

Multiplication by an orthogonal matrix does not change t
magnitude of a vector, so the magnitude of the curr
squared is
g

l

ll

.

.
s-

n
-

t

IWT
• IW5(

i
S F i

~e!

l i
D 2

. ~10!

The fundamental problem in solving the equationFW 5LJ• IW is
that the inductance matrix can have very small or zero di
onal elementsl i . @The components of the current associat
with zero eigenvalues cancel no component of the fluxF i

(e) ,
so these current components have been set to zero in Eq.~10!
to minimize the magnitude of the current.#

The exact solution ofLJ• IW5FW , Eq. ~7!, often gives a
very large, and typically infinite, magnitude for the curren
In the SVD method of solving Eq.~7!, only those compo-
nents of the current in Eq.~9! are solved that are associate
with a sufficiently large inductancel i. l min . If the induc-
tance elements are arranged sol i. l min for i< i s and l i

, l min for i . i s , the squared error in fitting the field is

E25 (
i . i s

~F i
~e!!2. ~11!

In other words, no attempt is made to use currents in the
surface to cancel the parts of the normal magnetic field
the desired plasma surface that are associated with flux c
ponentsF i

(e) with i . i s . The more flux components that ar
canceled by coil currents the smallerl min , the smaller the
error, but the larger the magnitude of the current. The S
method finds the minimum current magnitude required
achieve a given level of error.

The fundamental difficulty a coil designer faces is th
the use of distant coils to make the normal magnetic fie
BW •n̂, zero on a prescribed surface is an ill-conditioned ma
ematical problem. The problem becomes well condition
only when theBW •n̂50 surface is prescribed with an allowe
tolerance. To understand the fundamental mathematica
sue, consider a problem in a cylinder. Suppose the field li
that start a distancer p , called the plasma radius, from
straight wire carrying a currentJ are to be distorted into a
simple shape, such as an ellipse, using currents lying o
cylindrical shell of radiusr c . The only currents in the prob
lem are the current in the wire and the surface current on
cylindrical shell. The plasma shape can be specified
X(u)5r(u) r̂ (u) with r̂ the radial unit vector of cylindrical
coordinates. A simplified elliptical distortion isr(u)5r p$1
12d cos(2u)%. The normal magnetic field on the plasma su
face due to the wire can be expanded in a Fourier serie
sin(mu) with m even. Assumingd!1, the fluxes, form even,
through the plasma surface due to the wire are

Fm5
2

p
m0Jh~2d!m/2 ~12!

with h the height of the cylinder. The inductance matrix b
tween the cylindrical surface current and the plasma surf
is not precisely diagonal, but the characteristic behavior
the inductance matrix is illustrated by its diagonal eleme

l m5mpm0hS r p

r c
D m

. ~13!
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The currentI m , associated with a Fourier component of t
current potential, required to cancel the normal field due
the wire is I m5Fm / l m . Consequently, I m5(2J/m)
$2d(r c /r p)2%m/2 which diverges, uI m11u.uI mu, if r c

.r p /d1/2. In other words, the plasma can be distorted into
ellipse only if the shell carrying the surface current is su
ciently close to the plasma. The divergence of the surf
current, I m , can be eliminated by canceling only the flu
componentsFm with m<M , a largest mode number. If thi
is done the current on a sufficiently distant surface is do
nated byI M and becomes large as (r c /r p)M. Clearly, the
efficiency of the coil set is improved by loweringM, but the
fit to the prescribed elliptical surface becomes worse. T
minimum acceptableM, and therefore the optimal coil se
can only be determined if a maximum tolerable deviat
from the desired ellipse is prescribed. In the SVD version
Merkel’s method, this tolerance is incorporated by cancel
a flux component only if it is associated with a large indu
tance. The minimal inductance that is retained determines
errorE and the tolerance. In the method proposed in Sec
an allowable tolerance is placed on the degradation of
physics properties due to the deviation in the plasma sur
from the optimal shape.

What are the limitations of Merkel’s method for findin
the current potential? Four important limitations are as f
lows. ~1! Components of the flux may be ignored that a
essential to supporting the plasma. For example, flux c
ponents that resonate with the magnetic field lines and
stroy magnetic surfaces in the plasma need to be reta
even when their inductance coefficients are small. In the
gon of the field, missing components of the flux can lead
a poor reconstruction.~2! Components of the flux may b
retained that are inessential to supporting the plasma. As
cylindrical problem illustrates, the highest mode number
tained in the calculation will dominate the magnitude of t
current if the coil surface is sufficiently displaced from t
plasma. The retention of inessential components of the
leads to inefficient coils and fictitious limits on the maximu
tolerable separation between the coils and the plasma.~3! No
concession is made to flexibility. The optimal current pote
tial is found for one plasma configuration. Any flexibility i
accidental that arises from varying the currents between
turns of the single coil set that is derived from such a curr
potential.~4! There is no constraint in the method, as no
mally applied, to reserve space for ports.

The four limitations of Merkel’s method are address
by the new method for finding the current potential. The n
method optimizes the efficiency of the coil set by retaini
all flux components that are essential to supporting a de
able plasma configuration but no more. The new meth
gives a current potential that depends independently on
components of the flux that must be controlled, which na
rally gives a flexible coil set. Space can be reserved for po
and the impact of port space on the efficiency and the fl
ibility of the coils can be studied.
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II. NEW METHOD FOR OPTIMIZING THE CURRENT
POTENTIAL

The method that is being proposed for finding the op
mal current potential differs strongly from the old. For e
ample, only the important components of the flux vector,FW ,
are retained—far fewer than the number of components
the current vector,IW, that is being considered. This mea
the desired flux vector,FW , can be produced exactly by
nonunique current vector,IW. The freedom in the current vec
tor is used to minimize the power dissipation in the coils th
are being designed. In other words, the freedom in the c
rent vector allows a minimization of the current density.
the end of the analysis, the number of independent cur
components is equal to the number of components of the
vector that must be controlled. The analysis gives the cur
potential that most efficiently~minimal Ohmic dissipation in
the coils! balances a given set of fluxes.

The new method for optimizing the current potent
uses two matrices that play no role in Merkel’s metho
These are the quality matrixQJ and the resistance matrixRJ .

The importance of the various components of the fl
vectorFW is measured by the quality matrixQJ . Nührenberg’s
method1 for finding stellarator configurations is an optimiz
tion of a target function which contains information on th
magnetohydrodynamic and the neoclassical transport pro
ties of the configuration. The target function is optimized
varying the Fourier coefficients in the shape of the outerm
surface of the plasma. Once an optimum is obtained, one
find how the target function, or the quality of the configur
tion, is degraded by changes in the Fourier coefficients
equivalently by displacements normal to the plasma surfa
jW•n̂. ~A tangential displacement gives a change in the
rametrization of the plasma surface, not a new surf
shape.! Except on a rational magnetic surface, the magne
perturbationbW associated with a displacementjW is given6 by
bW 5“

W 3(jW3BW ). This relation between the perturbed fie
and the displacement can be used to show that the pertu
flux is

~FW 2LJ• IW ! i 5Eplasma
surface

f i~u,w!bW •daW

52Eplasma
surface

~B¢ •“W f i !jW•daW 1~dFW p! i , ~14!

with dFW p the change in the flux on the original plasma su
face due to the change in the plasma equilibrium. The ta
function for the stellarator configuration should deviate fro
its optimum valueT0 with roughly a quadratic dependenc
on the normal displacementjW•n̂ while dFW p is linear in jW

•n̂. Consequently, the target function depends on the p
turbed flux as

T5T02~FW 2LJ• IW !T
•QJ •~FW 2LJ• IW !, ~15!

which defines the quality matrixQJ . As in the cylindrical
example, a set of desired plasma shapes can only be re
duced by the coils to a certain tolerance. Obtaining an
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ceptable tolerance,QT , on deviations from the optimal targe
function forces the coil currents to satisfy the constraintFW

2LJ• IW)T
•QJ •(FW 2LJ• IW),QT . The quality matrix resemble

a metric tensor; this matrix defines how far a set of coils m
reproducing a given target plasma.

The quality matrix,QJ , is a symmetric, positive matrix
and can be diagonalized. A diagonal element is importan
it satisfies either one or both of the following criteria:~1! the
diagonal matrix elementqi is large, ~2! the component of
flux F i associated with the element is large. The eleme
can be ordered so the most important elements, those ha
the greatest potential for degrading the quality of the c
figuration, come first. The degradation in quality associa
with the i th element of the diagonalized quality matrix
qiF i

2. The tolerance on the quality,QT , can be met by fitting
exactlyNF components of the flux with

QT. (
i .NF

qiF i
2. ~16!

In other words, the maintenance of a given quality tolera
on the target function of the stellarator configuration defin
NF components of the flux that must be canceled by curre
in external coils. The cancellation of the remaining comp
nents of the flux,i .NF , is not essential. Indeed, the cu
rents that would cancel these components of the flux can
chosen to maximize the efficiency of the coil set.

The determination of the quality matrix is the most d
ficult part of the proposed method for designing stellara
coils. Some of the benefits of the proposed method are
tained if a smooth set of functions, thef i(u,w), are used to
define the important fluxes by Eq.~16! with qi51. An ex-
ample of such a smooth set of functions is the trigonome
functions. The success of this simplified method is depend
on the choice of thef i . For example, sensible results are n
obtained if eachf i is chosen to be constant in adudw cell and
zero elsewhere. The use of the quality matrix makes the
sults invariant to the initial choice of thef i as well as pro-
viding a sounder physical basis for defining a tolerance
the quality of the plasma configurations.

The efficiency of the coil set is optimized by reducin
the Ohmic power that is dissipated in the coils,

P5 IWT
•RJ• IW, ~17!

to a minimum. The method for calculating resistance ma
RJ is given in Sec. III. The resistance matrix is symmetric a
positive definite. As shown in Sec. III, it can be used
impose additional constraints, for example, that space on
coil winding surface be free of coils in order to allow roo
for ports.

The number of components of the current vectorIW,
which is denoted byNI , is assumed to be very large com
pared to the number of flux components that must be fit,NF .
To satisfy the constraint that theNF components of the flux
that must be fit are fit, the equationFW 5LJ• IW must be solvable
with FW the important part of the flux. The equationFW 5LJ

• IW can be solved by diagonalizing the matrixLJT
•LJ. A theo-

rem of linear algebra implies that the number of nonz
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•LJ cannot be larger thanNF . If the IW can

indeed satisfy the required equationFW 5LJ• IW then the matrix
LJT

•LJ must have preciselyNF nonzero eigenvalues,l i
2, the

number of important fluxes. In other words, the mat
LJT

•LJ hasNF eigenvectorsus& associated with nonzero eigen
values andNI2NF eigenvectorsun& associated with zero ei
genvalues. The eigenvectorsun& are said to span the nu
space ofLJT

•LJ. The current can be written in the form

IW5(
s51

NF

I sus&1 (
n51

NI2NF

I nun& ~18!

with the I s determined by the equationFW 5LJ• IW and theI n

arbitrary. In other words, theNF currentsI s can be chosen to
reproduce theNF fluxes exactly with the currentsI n totally
unconstrained. The arbitrary components of the currenI n

are then chosen to minimize the Ohmic power. That minim
zation yields

(
n51

NI2NF

Rn8nI n5(
s51

NF

Rn8sI s ~19!

with Rn8n5^n8uRJ un& and^nu the transpose of the eigenvect
un&. Since the resistance matrix is positive definite~has no
null space for nonzeroW), one can solve Eq.~19! to find the
I n in the form

I n52(
s51

NF

I scsn ~20!

with csn a matrix of constants. The current that exactly r
producesNF fluxes with minimal Ohmic power is

IW5(
s51

NF

I sS us&2 (
n51

N12NF

csnun& D . ~21!

This current, Eq.~21!, should be inserted in the constrai
equation (FW 2LJ• IW)T

•QJ •(FW 2LJ• IW),QT to ensure that the
currents associated with fluxesi>NF do not lead to a viola-
tion, or a less than optimal satisfaction, of the tolerance c
straint. The number of important fluxes,NF , should be iter-
ated until the tolerance constraint is optimally satisfied.

The new method of finding the current potential defin
a set ofNF independent currents that exactly controlNF flux
components. If one assumes the importantNF components
of the flux are similar for a set of stellarator configuration
then the set ofNF currents is sufficiently flexible to produc
all the configurations in the set. Why might one expect t
to be the case? The important flux components associ
with different eigenvalues of the quality matrix affect th
target function differently, so one would assume that at le
that many flux components must be controlled. The m
important flux components are presumably associated w
either low or resonant Fourier harmonics of the normal m
netic field. By low Fourier harmonics is meant poloidal ha
monicsm50,1,2,3 and low toroidal harmonics of the num
ber of periods of the stellarator. This is analogous to say
the properties of a tokamak plasma are largely determined
the aspect ratio, the ellipticity, and the triangularity.
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The flexibility of a coil set can only be fully tested b
having a number of desirable plasma equilibria that cover
space of plasma parameters that one wishes to study.
plasma equilibria has a set of important fluxes that must
canceled by the coils. A set of coils can do this if the indu
tance matrix between the currents in the coils and the imp
tant fluxes is nonsingular. The coils can produce this c
figuration with adequate efficiency if the required Ohm
power,P5 IWT

•RJ• IW, is acceptable.

III. THE RESISTANCE MATRIX

The resistance matrixRJ is defined so the Ohmic powe
dissipated by the coils

P5E h j 2d3x ~22!

can be written asP5 IWT
•RJ• IW. The current density is given in

terms of the current potential by Eq.~2! and the current
potential is expressed in terms of the current componenI i

by Eq. ~4!. The theory of general coordinates implies

“
W r 3“

W k5
1

J S ]XW c

]w

]k

]u
2

]XW c

]u

]k

]w
D ~23!

with XW c(u,w) the equation for the coil surface, Eq.~1!, andJ
the Jacobian of (r ,u,w) coordinates.

Although the current carrying region can be arbitrar
thin—so for most purposes it can be viewed as a surfac
finite resistance matrix implies the thickness cannot be z
The volume of the current carrying region associated wit
small change inu and w will be denoted byv(u,w)dudw.
That is

*d3x

v~u,w!
5du dw5E d~r 2r c!dr du dw. ~24!

Using d3x5Jdr du dw, one finds that

1

v
5

d~r 2r c!

J . ~25!

The Ohmic power can then be written as

P5E h

v H S ]XW c

]w
D 2S ]k

]u D 2

22S ]XW c

]u
•

]XW c

]w
D ]k

]u

]k

]w

1S ]XW c

]u
D 2S ]k

]w D 2J du dw. ~26!

The current potentialk can be written ask(u,w)
5SI jgj (u,w) with gj (u,w) any general set of dimensionles
functions, Eq.~4!. Equation~26! implies the components o
the resistance matrix are

Ri j 5E h

v H S ]XW c

]w
D 2

]gi

]u

]gj

]u
2S ]XW c

]u
•

]XW c

]w
D S ]gi

]u

]gj

]w

1
]gi

]w

]gj

]u D1S ]XW c

]u
D 2

]gi

]w

]gj

]w J du dw ~27!

and the Ohmic dissipation isP5SI iRi j I j .
e
ch
e
-
r-
-

a
o.
a

The factorh/v in the resistance matrix, Eq.~27!, allows
additional constraints to be imposed—though generally
the expense of greater Ohmic dissipation.~1! The constraint
that there be no coils in a region occupied by a port is i
posed by making thegj (u,w) constant in any region that i
to be occupied by ports or by makingh/v very large.~2! The
current density in any region on the current surface can
reduced by makingh/v larger in that region.~3! A flexible
coil system will probably require layering. That is some co
will need to be located further from the plasma than othe
The optimal layering can be studied by having several nes
current surfaces withh/v in a surface larger the further th
surface is from the plasma. Current distributions that
crease only slowly in magnitude as the coil surface is mo
further from the plasma will then move to the outer curre
surfaces. The formalism with multiple current surfaces is
sentially identical to that given in this paper except there
no cross terms in the resistance matrix between current
ments,gj (u,w), in different surfaces.

IV. SUMMARY

The scientific usefulness of a stellarator experimen
largely determined by the flexibility of its coils to produce
number of important plasma configurations and the acce
offers for heating and diagnostics. The cost and techn
limitations of an experiment are largely determined by t
efficiency with which the required magnetic fields can
produced. In this paper a new method of finding the curr
potential is given which can serve as the basis for design
coils that optimize flexibility, efficiency, and access.

The design of stellarator coils to produce a plasma o
given shape is an ill-conditioned mathematical problem
less a tolerable deviation from the given shape is specifi
The modern method of designing stellarators provides
natural definition of the tolerable deviation. Stellarators a
designed by maximizing a target function through variatio
in the shape of the plasma. The target function defines h
far a particular stellarator configuration is from the optimu
The matrix that measures this distance is the quality ma
QJ , which is a positive symmetric matrix like a metric tens
in ordinary space. The coils that are being designed ca
the normal magnetic field due to all other sources on
plasma surface that optimizes the target function. This c
not be done perfectly but can be done within a specifi
tolerance on the degradation of the target function. T
eigenvectors and eigenvalues ofQJ determine which parts o
the normal magnetic field must be carefully canceled a
which can be ignored while achieving the specified tol
ance.

The first step in coil design is the determination of
current distribution on a surface that approximates the lo
tion of the coils. The current distribution on the coil surfa
should be chosen to cancel the parts of the normal magn
field that are important for achieving the specified toleran
on the quality of the plasma configuration. This does n
uniquely determine the current distribution since there
only a finite number of such parts of the field. The curre
distribution is made unique by maximizing the efficien
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~minimizing the required Ohmic power! and constraining the
current to be zero in regions to be occupied by ports. Si
each nondegenerate eigenvector of the quality matrix en
ders a different response by the target function, it is expec
that the important eigenfunctions must be independently c
trollable by the coils that are being designed to have a fl
ible coil set. The most critical parts of the normal magne
field to control are presumably related to simple features
the plasma cross section~like aspect ratio, ellipticity, or tri-
angularity! or to resonances that can destroy the magn
surfaces in the plasma.

The method that has been used until now to optimize
current distribution in the coil surface forces the coils
cancel unimportant parts of the normal magnetic field on
plasma surface which~1! needlessly increases the curre
that is required to support the plasma and~2! reduces the
maximum acceptable separation between the coils and
plasma. It is preferable to have the coils far from the plas
for two reasons:~1! to provide space for freedom in th
plasma shape and~2! to simplify the coils. The tolerable
space between turns of a coil set is less than the dista
from the coils to the plasma; the further back the coils
fewer the turns that are required to obtain a good repre
tation of a continuous distribution of surface current. Ho
e
n-
d

n-
-
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f

ic

e

e
t

he
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-

ever, the number of ampere-turns in the coil set natura
increases the further the coils are from the plasma.

The concepts that have been introduced in this pa
give a definite procedure for designing coils that are flexib
efficient, and have good plasma access. These are the
critical features of the coils of an attractive experiment.
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