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Anderson localization of ballooning modes, quantum chaos
and the stability of compact quasiaxially symmetric stellarators a…
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The radially local magnetohydrodynamic~MHD! ballooning stability of a compact, quasiaxially
symmetric stellarator~QAS!, is examined just above the ballooning beta limit with a method that
can lead to estimates of global stability. Here MHD stability is analyzed through the calculation and
examination of the ballooning mode eigenvalue isosurfaces in the 3-space (s,a,uk); s is the edge
normalized toroidal flux,a is the field line variable, anduk is the perpendicular wave vector or
ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator
magnetic field geometry causes localization of the ballooning mode eigenfunction, and gives rise to
new types of nonsymmetric eigenvalue isosurfaces in both the stable and unstable spectrum. For
eigenvalues far above the marginal point, isosurfaces are topologically spherical, indicative of
strong ‘‘quantum chaos.’’ The complexity of QAS marginal isosurfaces suggests that finite Larmor
radius stabilization estimates will be difficult and that fully three-dimensional, high-n MHD
computations are required to predict the beta limit. ©2002 American Institute of Physics.
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I. INTRODUCTION

The stability and confinement of plasma configuratio
are key issues for the success of the magnetic confinem
fusion energy program. Classical stellarators were found
have unacceptably poor particle confinement many deca
ago, but new concepts and methods for designing magn
configurations, due to Nu¨hrenberg1 and Garabedian,2 have
led to quasisymmetric stellarators with computationally dr
orbit-optimized confinement. Just as symmetry is known
govern particle transport and system stability through
mathematical physics~e.g., Noether’s theorem3! and all
branches of contemporary physics, it is central to the de
opment of these new stellarator designs. Plasma beta (b) is a
measure of performance, defined as the confined plasm
netic energy divided by the confining magnetic energy o
fusion device. The problems of disruptions and magneto
drodynamic~MHD! stability which limit b for axisymmetric
tokamak performance are also central to stellarator de
and, like particle transport, can be targeted with compu
tional optimization techniques. Here we explore some
pects of the effect of symmetry and optimized stellara
design on MHD ballooning mode stability properties for
proposed, next generation, medium size stellarator exp
ment.

a!Paper QI1 5, Bull. Am. Phys. Soc.46, 247 ~2001!.
b!Invited speaker. Electronic mail: redi@pppl.gov
1991070-664X/2002/9(5)/1990/7/$19.00
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The National Compact Stellarator Experiment~NCSX!4

is a hybrid configuration which is intended to combine t
best features of drift-orbit-optimized stellarators, and a
vanced tokamaks. For the new stellarators, global kink
vertical mode high-n MHD stability can be calculated in the
ideal, linear limit5,6 for fully three-dimensional configura
tions. Simpler, one-dimensional, radially local, ballooni
calculations provide rapid estimates of MHD stability,7 but
are likely to underestimate the maximum averageb achiev-
able. The quasiaxially symmetric stellarator~QAS! design
for NCSX hasb limited by high-n kink and ballooning in-
stabilities. Consequently, a detailed study of ballooning s
bility is of interest for this QAS design, with the aim o
understanding and increasing theb limit.

In this paper we report on the application to the QAS
a well-known approach8 to investigating ballooning mode
spectra which has recently been applied to stellarators9,10

enhanced by new high performance computing and vis
ization tools. The method makes use of the additional g
metric and profile information contained in the results o
large set oflocal ballooning eigenvalue calculations to infe
global mode stability. Ballooning eigenvalue isosurfac
have been found which exhibit radial, poloidal, and toroid
localization9 for the H-1NF heliac11 at The Australian Na-
tional University and for 10 field period stellarators10,12 re-
lated to the large helical device~LHD!13 in Japan. Given
these isosurfaces, ray tracing can be used to predict the
0 © 2002 American Institute of Physics
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currence of kinetic stabilization ofb for a plasma configura
tion.

The symmetry breaking localization of the unstable b
looning mode eigenfunction in stellarator plasmas has b
shown to be analogous to the disorder-driven Ander
localization14 of one dimensional quantum systems. Th
eigenfunction localization, driven by departure from perio
icity in the equilibrium, is important in condensed matt
physics, as well as in acoustics and nonlinear optics. Abst
mathematical concepts and terminology, not usually found
plasma physics~broken symmetry, localization of eigenfunc
tions, quantum chaos, eigenvalue isosurface topolog!,
have crossed the boundaries of scientific subfields and
vide new methods with which to investigate stability
plasma physics.

The paper is organized as follows. In Sec. II we descr
the QAS configuration and discuss MHD instability calcu
tions of ballooning mode stability. Section III presents resu
for the localized eigenfunctions and structures found in
QAS energy spectra above the design point averageb. These
are compared to other stellarators and to axisymmetric to
maks. In Sec. IV we discuss these results, the possibility
finite Larmor radius stabilization of the ballooning instabili
in the QAS and comment on the connections between s
metry breaking and the practical problems of plasma part
confinement and MHD stability.

II. QAS BALLOONING MODE STABILITY
CALCULATIONS

The symmetric stellarator concept has led to improv
toroidal plasma configurations, for which good particle co
finement has been of primary importance. With sufficie
field line rotational transform iota (i51/q), good neoclassi-
cal particle confinement is assured. Unfortunately, tokam
require a large toroidal current to provide rotational tra
form, but such high current, necessary for high performa
plasmas, leads to instabilities and disruptions. The new
signs for the QAS stellarator are planned to provide ro
tional transform by modular field coils as well as bootstr
current, and so are both more stable to the kink mode
support steady state operation.

The National Compact Stellarator Experiment~NCSX!
design point4 is similar to the three-dimensional QAS plasm
configuration we examine. The stellarator plasma configu
tion at 4%b is found to have good particle confinement
well as kink, vertical and ballooning stability. This drift
orbit optimized experiment would be complementary to
large experiments underway in Japan~LHD! and under con-
struction in Germany@Wendelstein-7-X~W-7X!#,15 as well
as to a smaller symmetric stellarator in Wisconsin@the Heli-
cally Symmetric Stellarator~HSX!#.16

A stellarator plasma configuration is described by
harmonic spectrum of the magnetic field:B5SBmn cos(mu
2nNff), whereNf is the number of field periods. In mag
netic flux coordinates, B5“z3“c2q“u3“c5“a
3“c, where the field line labela[f2qu and is a measure
of the toroidal location. 2pc represents the poloidal mag
netic flux, andq5q(s) is the safety factor, equal to the av
Downloaded 03 Feb 2004 to 198.35.3.187. Redistribution subject to AIP 
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erage number of toroidal circuits traversed by a field li
for each poloidal circuit around the torus. An axisymmet
tokamak has allnÞ0 Bmn terms negligible; the quasihelica
symmetry of HSX requires allBmn terms withmÞn to be
small and the quasiaxially symmetric design of a QA
requires allBmn terms with nÞ0 to be small. The design
QAS axial symmetry is broken by (nÞ0,mÞ0) components
which are;1% of the strength of the (n50,m50) compo-
nent. In Fig. 1 is shown the shape of the last closed fl
surface for the QAS, with one half of one field period r
moved. The cross-section continuously deforms as the to
dal angle changes, as is apparent from the two cross sec
shown at the cut. The configuration analyzed, denoted LI3
has a major radius of 1.4 m, an aspect ratio of 4.4, a toro
magnetic field 1.2–1.7 T and 6 MW of neutral beam heati

Ballooning mode stability theory is based on the line
ideal, MHD energy principle, with which minimized plasm
energy,dWp , describes destabilized ballooning and other
ternal modes

dWp5~1/2!E dt@Q'
2 2 j i~j3B!/B22~j'•“P!~j'•k!

1B2~“•j'12j'•k!21gP~“•j!2#. ~1!

In this equation for the variation in plasma energy result
from a deformation in the plasma flux surface,j, the first
term is the stabilizing magnetic energy of field line bendin
The second term is the free energy from the current pro
and drives kink instabilities. The third term, proportional
“P, is the energy potential for interchange or ballooni
instabilities. This term is destabilizing if“P andk are in the
same direction (k"¹P.0), at the outer edge of a tokama
for example. The fourth term is the energy in field compre
sion for fast magnetosonic waves and the last term is
energy in compressional sound waves. Minimization ofdWp

in the limit as the component of the wave vector perpendi
lar to B, k' , approaches infinity yields a second order or
nary differential Euler–Lagrange equation, if the compre
sional terms are neglected.

Calculations of ballooning stability provide a relative
simple and rapid method for evaluating the performance
an MHD limited, plasma configuration, and are often us
for initial estimates of stability expected for plasma expe

FIG. 1. The outermost flux surface of the three field period quasiaxi
symmetric stellarator.
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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ments. The ballooning mode is driven by the plasma pres
gradient interacting with the magnetic field. Ions are
sumed to have negligible Larmor radius and to be locali
to a particular magnetic field line~diamagnetic drift negli-
gible!. Although this is a one-dimensional, ideal MH
model, effectively localized to a field line, valid on th
Alfvén time scale, with long parallel and short perpendicu
wavelength, it contains information about the thre
dimensional equilibrium through the plasma equilibrium g
dients. The ballooning mode instability eigenvalues,l, are
found by solving the ballooning equation in magne
coordinates7

]/]u@~Cp1Cs~u2uk!1Cq~u2uk!
2!]j/]u#

1~12l!@dp1ds~u2uk!#j50. ~2!

The coefficients$Cp , Cs , Cq , dp , ds% depend on the equi
librium magnetic geometry. The coefficientsds andCs of the
linear secular terms in Eq.~2! are proportional to
q8(s)/C8(s), the ~global magnetic! shear, while that of the
quadratic secular term,Cq , is proportional to the square o
the shear. The radial coordinate,s, is the edge normalized
toroidal flux, C(r )/C(a), which is proportional tor 2. The
parameteruk is related to the direction of the mode wav
vector. The secular terms cause localization when the she
nonzero: very roughly, the eigenfunction is localized arou
u;uk . The calculation results in an eigenvalue at each fl
surface which implies instability if positive:l.0. The dis-
placement of the flux surface increases with a notio
growth rateg5Al5 iv, asj}exp(ivt)}exp(Alt). The nor-
malization of the kinetic energy on which Eq.~2! is based,
leads to isosurfaces valid at the marginal point (l50), and
qualitatively correct for unstable values ofl. Further work is
needed to verify the structures in the stable spectrum.

The ballooning equation can also be transformed int
Schrödinger-type form9

@d2/du21E2V#A1/2j50 ~3!

with the ‘‘potential’’ V and the coefficientA expressed in
terms of the ballooning coefficients. The secular terms du
magnetic shear provide a ‘‘potential well,’’ modulated by t
poloidal and toroidal variations in the equilibrium quantiti
on the given field line. In the axisymmetric case~i.e., no
toroidal variation! this shear localization is the only effec
giving localization and hence a discrete spectrum inl: when
shear vanishes,V is periodic and thel spectrum consists o
continuum bands~‘‘Brillouin zones’’ !. However, in the non-
axisymmetric case the incommensurate periodicity of the
roidal and poloidal modulations~whenq is an irrational! can
give rise to Anderson localization and a discrete spectr
even when the shear vanishes.

III. BALLOONING MODE SPECTRUM RESULTS AND
VISUALIZATION

High-b equilibria for the QAS were obtained with th
VMEC code,17 keeping the fixed boundary coordinates of t
marginally stable design point and scaling the pressure
current profiles together. Asb increases, the bootstrap cu
rent driven by increased plasma pressure causes the pol
Downloaded 03 Feb 2004 to 198.35.3.187. Redistribution subject to AIP 
re
-
d

r
-
-

r is
d
x

l

a

to

-

m

nd

dal

magnetic field and plasma iota to increase. Two such e
libria, confirmed by convergence studies, will be compar
one just above marginal stability atb54.3% and one far
above marginal stability, atb56.8%. These cases are n
only ballooning unstable but also Mercier unstable. Figure
and 3 show profiles of the pressure derivatives and iota,
these equilibria. The TERPSICHORE code suite mod
VVBAL 7 was used to find the eigenvalues of the balloon
equation. In Fig. 4 is shown the radial dependence of
growth rates, for a range of betas above the marginal stab
point, parametrized bya5uk50.

FIG. 2. Derivatives of the pressure profile for two ballooning unstable eq
libria of the QAS, obtained with fixed boundary VMEC. Steeper press
results in higherb, but also drives MHD instability.

FIG. 3. Iota profiles of two ballooning unstable equilibria of the QA
Higher pressure drives bootstrap currents which increases the field
transform iota at 6.8% compared to 4.3%b.
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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The results,l(s, a, uk), of ballooning stability calcula-
tions were assembled into databases for the 4.3% and 6
b equilibria. Calculations were made for 129 flux surfac
in the radial coordinate, and for 101 values of the param
a, from 0 to 2p/3, and for 21 values of the parameteruk ,
from 0 to 2p. The resulting three-dimensional isosu
facesl(s,a,uk) for stable~l,0! and unstable~l.0! bal-
looning modes show features of localized structures, q
different from those seen for other stellarators or the ripp
tokamak.

In Figs. 5 and 6 are shown examples of the thr
dimensional structures found at 4.3%b for unstable and
stable values of the ballooning eigenvalue. Additional figu
illustrating the features described below for the QAS co
figurations and the tokamak case, with a slightly differe
colormap, may be viewed at the AIP Electronic Publicati
Auxiliary Publication Service~EPAPS!.18

In general the unstable spectra at both 4.3%b and 6.8%
b are less complex than the stable spectra. The unstable
looning spectra consist primarily of bands or continuous
bules of instability near the outer edge of the plasma, wh
shear is very low and instability is more easily driven. For
cases there is weak dependence on the ballooning a
stronger dependence on the field linea and strongest depen
dence ons, the magnetic surface. At 4.3%b, ~Fig. 5! we find
topologically spherical isosurfaces atl50.25 which become
topologically cylindrical surfaces at lower positivel values.
As l decreases toward 0, the cylindrical surfaces narrows
and extend toward each other alonga, along with the appear
ance of a connecting plane whenl50.025. The margina
isosurface,l50, is shown in Fig. 6 with thickness corre
sponding to data cube grid spacing,Ds50.01: two cylinders
connected by a plane. At 6.8%b planar (a,uk) isosurfaces
are found atl50.05, which break up into shreds as the
genvalue is increased above 2.4.

In the stable spectra, unusual topologically distinct str

FIG. 4. Ballooning eigenvalues as a function of the radial coordinate forb
scan above the ballooning limit of QAS3_LI383. 129 radial flux surfaces
used. Singular points occur where rational values ofq are found and for
locations of very low shear.
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tures are found in the different ranges ofl, with similar
structures occurring for both the low and high-b equilibria.
At 4.3% b for l520.2, the isosurface exhibits a helic
structure which rotates about an axis along theuk direction.
The structure is radially and toroidally localized within
small range ofa with the isosurface helix open toward th
plasma center. At 4.3%b and l520.45, stable isosurface
tubes are found, again aligned in theuk direction, localized
in s and a. At 6.8% b, similar isosurface structures in th

e
FIG. 5. ~Color! Ballooning spectrum of 4.3%b QAS configuration: The
eigenvalue isosurface near the plasma edge for the unstable mod
l(s,a,uk)50.25, comprises two topologically spherical surfaces. A
shown is the plane in (s,a) at uk50. The color map at the bottom of th
figure identifies stable eigenvalues in blue and green and unstable eige
ues in red and beige. A cross section of the marginal isosurface is locate
the (s,a) plane at the separation between red and green contours. The
3-space is reduced to show toroidal flux,s, from 0.8 to 1.0; field line vari-
ablea from 0 to 2p/3; ballooning parameteruk , from 0 to 2p.

FIG. 6. ~Color! Ballooning spectrum of 4.3%b QAS configuration: the
marginal isosurface atl(s,a,uk)50, for the same color map and reduce
3-space as in Fig. 5. Also shown is the (s,a) plane atuk52p/3.
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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1994 Phys. Plasmas, Vol. 9, No. 5, May 2002 Redi et al.
stable spectrum occur, although more global in extent,
located at two planes ins, corresponding to low order ratio
nal flux surfaces~see Figs. 3 and 4!. The complex structure
of the datacube for the QAS ballooning mode spectra
been examined with the powerful visualization tool, AV
EXPRESS.

When the maximum eigenvalue for all flux surfaces
plotted for the 4.3%b case, the usual choices (uk50,a
50) are found to correspond to average levels of instab
and do not represent anomalously low or high eigenvalu
Stellarator symmetry is apparent with reflection abo
a5p/6 and 3p/6. The alpha dependence of the eigenva
for the 4.3%b equilibrium repeats after 2p/3 and is symmet-
ric about a50, p/3, 2p/3, 3p/3, etc. Contours of unstabl
eigenvalues for both equlibria show the localization ina and
s of the unstable modes.

In Fig. 7 is shown the ballooning eigenfunction and p
tential,V, of Eq. ~3!, for flux surfaces near the magnetic ax
and the plasma edge. Eigenfunction localization is see
increase near the plasma edge where the magnetic she
weak or zero. Similar low-shear localization of the eige
function was also found by Dewar and Cuthbert9 for the
H-1NF heliac. They showed that the localization was not d
to magnetic shear by setting it artificially to zero, inste
attributing it to Anderson localization.

For the stable and unstable spectra of equilibria ab
the ballooning limit, there is weak dependence ofl(s,a,uk)
on the ballooning angle, strong dependence on the field
alpha and strongest dependence ons, the magnetic surface
radial coordinate. These findings are similar to those fr
the ballooning stability analysis9 for H-1NF, while the 10
field period stellarator ballooning stability datacube10

showed stronger dependence onuk and s, but weak depen-
dence ona. While localized structures have been found f
the 10 field period stellarator, for Heliotron-J19 and the
H-1NF heliac, it is somewhat surprising to find them also
the QAS because this is supposed to have tokamak-like p
erties.

FIG. 7. The localization of the ballooning mode eigenfunction for 4.3%b
and the ballooning potentials on flux surfaces near the magnetic axis an
plasma edge. The eigenfunctions are normalized to the same maxi
value. The ballooning potential is increasingly aperiodic far from the m
netic axis, where axial symmetry is more strongly broken.
Downloaded 03 Feb 2004 to 198.35.3.187. Redistribution subject to AIP 
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The QAS is next compared to a related axisymme
case. A plasma equilibrium based on the pressure and bo
ary parametrizations used for the 4.3%b QAS configuration,
is obtained, keeping only toroidaln50 plasma major radius
and boundary harmonics. This leads to a two-dimensio
equilibrium, b57%, with similar values ofB, A, Raxis. The
field line transform, iota, is much lower@i~0!50.02, i~1!
50.22# because there is no external transform as previou
provided by the stellarator coils and described by thr
dimensional boundary coefficients. A distinct difference
the isosurfacesl(s,a,uk) and the ballooning mode stabilit
is found as expected. Most dramatic is the simplicity of t
tokamak isosurface structures. The axisymmetric case sh
no a dependence, no toroidal localization, as there are
driving terms with this symmetry.

IV. DISCUSSION AND CONCLUSION

In solutions of the ballooning equation, expected to lim
high b performance for the compact quasiaxially symmet
stellarator, we find toroidal localization of ballooning mod
eigenvalue isosurfaces with new, topologically distinct stru
tures not seen in previous studies of other stellarator confi
rations. The relative complexity of the QAS ballooning spe
trum isosurfaces for NCSX is driven by the complexity
the magnetic configuration, since boundary coefficients w
only n50 components lead to isosurfaces with no toroid
dependence. Anderson localization and spherical isosurfa
indicative of strong quantum chaos, have been identified
are discussed below.

Anderson localization occurs in response to broken sy
metry~here axisymmetry!, as seen in the localization of elec
tron wave functions in disordered solids. It was first iden
fied as localized structures in the electron conduction b
arising from disorder in a crystalline matrix due to impuri
doping. In one-dimensional quantum systems it is now w
known that disorder results in normal modes that are ex
nentially localized. In plasmas several authors20,21 have
shown that Anderson localization arises from quasiperiod
ity of equilibrium quantities along a field line.

The iota profiles in Fig. 3 show weak and reversed sh
near the QAS plasma edge. Weak shear reduces the stre
of the secular terms,;(u2uk), in the ballooning equation
~2!, which in axisymmetric systems are responsible for loc
ization of the ballooning eigenfunction. In contrast, localiz
tion of the QAS ballooning eigenfunction increases in
gions of reduced plasma shear as seen in Fig.
demonstrating that something other than the well kno
shear localization is responsible. In fact the eigenfunct
becomes most peaked where plasma shear is zero, a
surface wherei50.631. The eigenfunctions for the 4.3%
case are shown foruk50. Each surface has a different sha
so that the poloidal angle at which the eigenfunction is ma
mum changes withs. Localization correlates with increasin
aperiodicity of the ballooning potential~Fig. 7!. The effec-
tive toroidal ripple,22 which is one measure of this breakin
of axisymmetry, changes by nearly three orders of magnit
across the plasma~Fig. 8!. We conclude that as has bee
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m
-
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found in H-1NF and HSX, the QAS also exhibits Anders
localization, occurring where shear is reduced and axial s
metry is broken.

At 4.3% b, at the highest eigenvalues, we have fou
topologically spherical isosurfaces. Ray tracing in such ca
shows strong ‘‘quantum chaos.’’23 This description for the
paths of rays of high-k' MHD waves or instabilities does no
mean that the plasma behavior is chaotic, but that the m
ematics of quantum chaos theory must be used for insta
ties far above the marginal point of the equilibrium. An a
ditional complication in using ideal MHD with ray tracing t
construct global ballooning modes is ak-space runaway. In-
troduction of a reflecting cutoff ink' to model numerical
truncation or finite Larmor radius~FLR! yields chaotic ray
paths ergodically filling the allowed phase space, indicat
that the global spectrum must be described using the
guage of quantum chaos theory.

Can the Dewar–Glasser8 WKB ballooning mode method
still be used to estimate theb limit of the QAS? A necessary
condition for the validity of ideal MHD ballooning theory i
that the equilibrium scale length,Leq, be much larger and the
ion gyroradius,r i , much smaller thank' , the perpendicular
wavelength:k'Leq@1, (k'r i)

2!1. For the NCSX QAS,r i

;1 cm. For some stellarator equilibria,k' has been esti-
mated from the isosurface structures, making use of
method of WKB ray tracing9,10 and derivation of semiclassi
cal quantization conditions for the eigenfunction. In contra
for the spherical isosurfaces of high eigenvalue surface
H-1NF, the mathematics of quantum chaos and statist
density of states was needed. To examine the validity of
ballooning modeb limit, it is the marginal isosurface,l
50, which is of interest. At both 4.3%b and at 6.8%b we
find that this surface is not simply connected. At 4.3%b, it
consists of a planar surface tangent to two topologically
lindrical surfaces, with axes parallel touk . Other stellarators
have also been found to have topologically cylindrical s
faces, but with axis aligned in thea-direction, not alonguk .

FIG. 8. Effective field line ripple for the QAS at 4.3%b.
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Work is in progress to develop new methods for regulariz
the WKB ray tracing and quantization conditions in this ca
to estimatek' and possible FLR stabilization. The ray tra
ing for the QAS surfaces may not follow simple paths, as
rays may trace out paths on either or both of the cylinde
transiting through the connecting plane and moving onto
off the cylinders in a random and stochastic fashion. T
complexity of the marginal isosurface suggests that the W
method of high-n ballooning stability calculations break
down, and that fully three-dimensional, MHD codes such
CAS3D, TERPSICHORE and Spector3D are required to p
dict a maximumb for the QAS.

Can this new way of looking at a stellarator provid
insight into improving the QAS concept? The QAS, with
complex harmonic magnetic spectrum, exhibits complex
calized, unstable isosurface structures for the MHD ballo
ing modes, which will also affect calculations of the anom
lous transport of particles and kinetic energy in the QAS,
example, with gyrokinetic ballooning calculations.24 For
representative nonaxisymmetric cases, collisionless, elec
static drift mode calculations have shown large~factors.2!
changes in instability growth rates, which depend on the fi
line variable a.25,26 To achieve optimal stellarator perfor
mance it will be important to verify that the complex ma
netic spectrum, which provides good neoclassical part
confinement and MHD stability, does not cause unaccepta
increases in anomalous transport.
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