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The radially local magnetohydrodynamiMHD) ballooning stability of a compact, quasiaxially
symmetric stellaratofQAS), is examined just above the ballooning beta limit with a method that
can lead to estimates of global stability. Here MHD stability is analyzed through the calculation and
examination of the ballooning mode eigenvalue isosurfaces in the 3-spacé)); s is the edge
normalized toroidal fluxq is the field line variable, and, is the perpendicular wave vector or
ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator
magnetic field geometry causes localization of the ballooning mode eigenfunction, and gives rise to
new types of nonsymmetric eigenvalue isosurfaces in both the stable and unstable spectrum. For
eigenvalues far above the marginal point, isosurfaces are topologically spherical, indicative of
strong “quantum chaos.” The complexity of QAS marginal isosurfaces suggests that finite Larmor
radius stabilization estimates will be difficult and that fully three-dimensional, highHD
computations are required to predict the beta limit. 2@02 American Institute of Physics.
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I. INTRODUCTION The National Compact Stellarator ExperimgéNCSX)*
N _ _ _is a hybrid configuration which is intended to combine the
The stability and confinement of plasma configurationspest features of drift-orbit-optimized stellarators, and ad-
are key issues for the success of the magnetic confinemeptnceq tokamaks. For the new stellarators, global kink and

fusion energy program. CIagsicaI steI.Iarators were found Qertical mode higm MHD stability can be calculated in the
have unacceptably poor particle confinement many decad‘?&eal linear limif® for fully three-dimensional configura-
ago, but new concepts and methods for designing magnetic . . . . .
' . X . ns. Simpler, one-dimensional, radially local, balloonin
configurations, due to Nuenberd and Garabediah,have ons. Simpler, one-dimensional, radially local, ballooning

. . . . .. calculations provide rapid estimates of MHD stabilitput
led to quasisymmetric stellarators with computationally drift- . . . .
are likely to underestimate the maximum averghachiev-

orbit-optimized confinement. Just as symmetry is known to o . .
govern particle transport and system stability throughoufble' The quasiaxially symmetric stellarat@AS) design

mathematical physicge.g., Noether's theoret and all 0" NCSX hasg limited by highn kink and ballooning in-
branches of contemporary physics, it is central to the deveiStaPilities. Consequently, a detailed study of ballooning sta-
opment of these new stellarator designs. Plasma i®tis(a ~ Pility is of interest for this QAS design, with the aim of
measure of performance, defined as the confined plasma Kfderstanding and increasing tadimit.

netic energy divided by the confining magnetic energy of a [N this paper we report on the application to the QAS of
fusion device. The problems of disruptions and magnetohy@ Well-known approachto investigating ballooning mode
drodynamio(MHD) stability which limit 8 for axisymmetric  SPectra which has recently been applied to stellarétts,
tokamak performance are also central to stellarator desiginhanced by new high performance computing and visual-
and, like particle transport, can be targeted with computaization tools. The method makes use of the additional geo-
tional optimization techniques. Here we explore some asmetric and profile information contained in the results of a
pects of the effect of symmetry and optimized stellaratorarge set oflocal ballooning eigenvalue calculations to infer
design on MHD ballooning mode stability properties for aglobal mode stability. Ballooning eigenvalue isosurfaces
proposed, next generation, medium size stellarator experhave been found which exhibit radial, poloidal, and toroidal

ment. localizatior? for the H-1NF heliat' at The Australian Na-
tional University and for 10 field period stellarattts? re-
apaper QI15, Bull. Am. Phys. S0a6, 247 (2001. lated to the large helical (_jewcé_HD) in Japan. Given
lnvited speaker. Electronic mail: redi@pppl.gov these isosurfaces, ray tracing can be used to predict the oc-
1070-664X/2002/9(5)/1990/7/$19.00 1990 © 2002 American Institute of Physics
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currence of kinetic stabilization g8 for a plasma configura-
tion.

The symmetry breaking localization of the unstable bal-
looning mode eigenfunction in stellarator plasmas has been
shown to be analogous to the disorder-driven Anderson
localizatiort* of one dimensional quantum systems. This
eigenfunction localization, driven by departure from period-
icity in the equilibrium, is important in condensed matter
physics, as well as in acoustics and nonlinear optics. Abstract
mathematical concepts and terminology, not usually found in
plasma physicgbroken symmetry, localization of eigenfunc-
tions, quantum chaos, eigenvalue isosurface topolpgies
have crossed the boundaries of scientific subfields and preqg 1. The outermost flux surface of the three field period quasiaxially
vide new methods with which to investigate stability in symmetric stellarator.
plasma physics.

The paper is organized as follows. In Sec. Il we describe
the QAS configuration and discuss MHD instability calcula-

tions of ballooning mode stability. Section Il presents resultsfor each poloidal circuit around the torus. An axisymmetric

for the localized eigenfunctions and structures found in the[okamak has alh+0 B,,, terms negligible; the quasihelical
QAS energy spectra above the design point avefagehese symmetry of HSX requnJFres aB,,, terms \;vith m#n to be

are compared to other stellarators and to axisymmetric toka?-mall and the quasiaxially symmetric design of a QAS

maks. In Sec. IV we discuss these results, the possibility Orequires allB,.. terms withn0 to be small. The design

_f|n|te Larmor radius stabilization of the baII_oonmg instability QAS axial symmetry is broken byi: 0,m=0) components
in the QAS and comment on the connections between sym=<, . - -

. . 7 'which are~1% of the strength of then(=0,m=0) compo-
metry breaking and the practical problems of plasma particle In Fia. 1 is sh he sh f the | losed f
confinement and MHD stability hent. In Fig. 1 is s own the shape of the 'ast closed flux

' surface for the QAS, with one half of one field period re-

moved. The cross-section continuously deforms as the toroi-
Il. QAS BALLOONING MODE STABILITY dal angle changes, as is apparent from the two cross sections
CALCULATIONS shown at the cut. The configuration analyzed, denoted LI383,

h ) I has led 1o | %as a major radius of 1.4 m, an aspect ratio of 4.4, a toroidal
e symmetric stellarator concept has led to Improve agnetic field 1.2—1.7 T and 6 MW of neutral beam heating.

]'Eproidal plﬁsm% configfura'gions, fpr which goosvpﬁrticlg_ con- Ballooning mode stability theory is based on the linear,
inement has been of primary importance. With su 'C'emideal, MHD energy principle, with which minimized plasma

field line rotational transform iota€=1/q), good neoclassi- energy,oW,,, describes destabilized ballooning and other in-
cal particle confinement is assured. Unfortunately, to"amak'?ernal modpes

require a large toroidal current to provide rotational trans-
form, but such high current, necessary for high performanc%W
plasmas, leads to instabilities and disruptions. The new de-
signs for the QAS stellarator are planned to provide rota-
tiognal transform by modular field cgils as well gs bootstrap TBAV-£ 424197+ yP(V- 9. @)
current, and so are both more stable to the kink mode anth this equation for the variation in plasma energy resulting
support steady state operation. from a deformation in the plasma flux surfagg, the first
The National Compact Stellarator ExperiméMCSX)  term is the stabilizing magnetic energy of field line bending.
design poirttis similar to the three-dimensional QAS plasma The second term is the free energy from the current profile
configuration we examine. The stellarator plasma configuraand drives kink instabilities. The third term, proportional to
tion at 4% is found to have good particle confinement asVP, is the energy potential for interchange or ballooning
well as kink, vertical and ballooning stability. This drift— instabilities. This term is destabilizing W P and« are in the
orbit optimized experiment would be complementary to thesame direction £-VP>0), at the outer edge of a tokamak,
large experiments underway in Jap@tD) and under con- for example. The fourth term is the energy in field compres-
struction in GermanyWendelstein-7-X(W-7X)],*> as well  sion for fast magnetosonic waves and the last term is the
as to a smaller symmetric stellarator in Wiscorlghe Heli-  energy in compressional sound waves. Minimizatio®\df,
cally Symmetric StellaratofHSX)]. in the limit as the component of the wave vector perpendicu-
A stellarator plasma configuration is described by thelar to B, k, , approaches infinity yields a second order ordi-
harmonic spectrum of the magnetic fieB=23B,,,cosm® nary differential Euler—Lagrange equation, if the compres-
—nN;¢), whereN; is the number of field periods. In mag- sional terms are neglected.
netic flux coordinates, B=V{XVy—qVOXVy=Va Calculations of ballooning stability provide a relatively
XV ¢, where the field line labek= ¢ —q6 and is a measure simple and rapid method for evaluating the performance of
of the toroidal location. 2 represents the poloidal mag- an MHD limited, plasma configuration, and are often used
netic flux, andg=q(s) is the safety factor, equal to the av- for initial estimates of stability expected for plasma experi-

erage number of toroidal circuits traversed by a field line

p=(1/2)J dr{Q? —jj(£xB)/B=2(&, - VP)(&. - x)
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ments. The ballooning mode is driven by the plasma pressure O—T— T T T T T T T T 4
gradient interacting with the magnetic field. lons are as-
sumed to have negligible Larmor radius and to be localized
to a particular magnetic field lin&diamagnetic drift negli-
gible). Although this is a one-dimensional, ideal MHD
model, effectively localized to a field line, valid on the
Alfvén time scale, with long parallel and short perpendicular
wavelength, it contains information about the three-
dimensional equilibrium through the plasma equilibrium gra-
dients. The ballooning mode instability eigenvalugs.are
found by solving the ballooning equation in magnetic
coordinate$

Al 36[(Cp+Co(0— 6) +Cy(0— 6,)%) 3¢l 96]
+(1=M)[dp+dg(6—6,)]1£=0. 2 -01f

The coefficients|C,, Cs, Cq, d,, ds} depend on the equi- [ beta = 6.8%
librium magnetic geometry. The coefficietsandC; of the :

beta = 4.3%

Pressure derivative

linear secular terms in EqQ.(2) are proportional to R
g’ (s)/¥’(s), the (global magnetit shear, while that of the 0 0.5 1.0
quadratic secular tern€,, is proportional to the square of edge normalized toroidal flux
the shear. The radial coordinatg,is the edge normalized . _ _ _
toroidal flux, W(r)/¥(a), which is proportional ta2. The :ZIG 2. Derivatives of the pressure profile for two ballooning unstable equi-
: . . ibria of the QAS, obtained with fixed boundary VMEC. Steeper pressure
parameterg, is related to the direction of the mode wave resuits in highes, but also drives MHD instability.
vector. The secular terms cause localization when the shear is
nonzero: very roughly, the eigenfunction is localized around
6~ 6. The calculation results in an eigenvalue at each fludnagnetic field and plasma iota to increase. Two such equi-
surface which implies instability if positivex>0. The dis- libria, confirmed by convergence studies, will be compared,
placement of the flux surface increases with a notionaPh€ just above marginal stability #=4.3% and one far
growth ratey= A =i w, aséxexp(wt)<exp(/rt). The nor- above marginal stability, aB=6.8%. These cases are not
malization of the kinetic energy on which E¢®) is based, ©nly ballooning unstable but also Mercier unstable. Figures 2
leads to isosurfaces valid at the marginal pot=©0), and and 3 show profiles of the pressure derivatives and iota, for
qualitatively correct for unstable valuesof Further work is ~ these equilibria. The TERPSICHORE code suite module

needed to verify the structures in the stable spectrum. ~ VVBAL " was used to find the eigenvalues of the ballooning
The ballooning equation can also be transformed into £quation. In Fig. 4 is shown the radial dependence of the

Schrainger-type forrf growth rates, for a range of betas above the marginal stability

point, parametrized by = 6,=0.

[d%/d6?+E—V]AY%=0 3)

with the “potential” V and the coefficientd expressed in

terms of the ballooning coefficients. The secular terms due to 0. R

magnetic shear provide a “potential well,” modulated by the ?

poloidal and toroidal variations in the equilibrium quantities 6.8% beta

on the given field line. In the axisymmetric cafee., no F

toroidal variation this shear localization is the only effect i

giving localization and hence a discrete spectrum:imvhen lota f

shear vanished/ is periodic and thé. spectrum consists of 0.6

continuum bands$“Brillouin zones”). However, in the non-
axisymmetric case the incommensurate periodicity of the to- -
roidal and poloidal modulationsvheng is an irrational can
give rise to Anderson localization and a discrete spectrum
even when the shear vanishes.

4.3% beta

I1l. BALLOONING MODE SPECTRUM RESULTS AND 0.
VISUALIZATION

High-B equilibria for the QAS were obtained with the 0 0.5 1.0
VMEC codel’ keeping the fixed boundary coordinates of the S

marglnally stable deSIQn point and scallng the pressure anqu. 3. lota profiles of two ballooning unstable equilibria of the QAS.

curren'; pmﬁles_ together. Ag increases, the bootstrap CUI™ Higher pressure drives bootstrap currents which increases the field line
rent driven by increased plasma pressure causes the poloideinsform iota at 6.8% compared to 4.3%
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Eigenvalue

0 05 1.0

Radial Flux Coordinate (s)

FIG. 4. Ballooning eigenvalues as a function of the radial coordinate gor a FIG. 5. (Color) Ballooning spectrum of 4.3%8 QAS configuration: The
scan above the ballooning limit of QAS3_L1383. 129 radial flux surfaces areeigenvalue isosurface near the plasma edge for the unstable mode at
used. Singular points occur where rational valuesjare found and for  \(s,«,6,)=0.25, comprises two topologically spherical surfaces. Also
locations of very low shear. shown is the plane ins(«) at 6,=0. The color map at the bottom of the
figure identifies stable eigenvalues in blue and green and unstable eigenval-
ues in red and beige. A cross section of the marginal isosurface is located on
the (s,a) plane at the separation between red and green contours. The full
The resultsA (s, «, 6y), of ballooning stability calcula-  3-space is reduced to show toroidal flsfrom 0.8 to 1.0; field line vari-

tions were assembled into databases for the 4.3% and 6.88&le« from 0 to 27/3; ballooning parametef), from 0 to 2.

B equilibria. Calculations were made for 129 flux surfaces

in the radial coordinate, and for 101 values of the parameter ) ) ) o

«, from 0 to 2r/3, and for 21 values of the parameiy, tures are found in the different ranges )o,f.wnh §|mll_ar
from O to 27 The resulting three-dimensional isosur- structures occurring for both Fhe low and h|§h§qun|br|a_.
faces\ (s, a, 6,) for stable(\<0) and unstablgx>0) bal- At 4.3% B fpr A=-0.2, the |sosurface exh|b|ts_ a hellcal
looning modes show features of localized structures, quit§tructure which rotates about an axis along thelirection.

different from those seen for other stellarators or the rippled' N€ Structure is radially and toroidally localized within a
tokamak. small range ofa with the isosurface helix open toward the

In Figs. 5 and 6 are shown examples of the threeplasma center. At 4.30/)8 gnd )x=_—0.45,_ sta_ble isosu_rface
dimensional structures found at 4.3% for unstable and (ubes are found, again aligned in thg direction, localized
stable values of the ballooning eigenvalue. Additional figured’ S @nd a. At 6.8% f, similar isosurface structures in the
illustrating the features described below for the QAS con-
figurations and the tokamak case, with a slightly different
colormap, may be viewed at the AIP Electronic Publication
Auxiliary Publication ServicEPAPS.8

In general the unstable spectra at both 4,8%nd 6.8%

B are less complex than the stable spectra. The unstable bal-
looning spectra consist primarily of bands or continuous tu-
bules of instability near the outer edge of the plasma, where
shear is very low and instability is more easily driven. For all
cases there is weak dependence on the ballooning angle,
stronger dependence on the field lim@nd strongest depen-
dence ors, the magnetic surface. At 4.3% (Fig. 5 we find
topologically spherical isosurfaces»t0.25 which become
topologically cylindrical surfaces at lower positixevalues.

As \ decreases toward 0, the cylindrical surfaces narrosv in
and extend toward each other alamgalong with the appear-
ance of a connecting plane wher=0.025. The marginal
isosurface \=0, is shown in Fig. 6 with thickness corre-
sponding to data cube grid spacidgs=0.01: two cylinders
connected by a plane. At 6.8% planar (, 6,) isosurfaces

are found ai=0.05, which break up into shreds as the eI'FIG. 6. (Color Ballooning spectrum of 4.3%8 QAS configuration: the

genvalue is increased above 2.4. _ o marginal isosurface at(s,a,6,)=0, for the same color map and reduced
In the stable spectra, unusual topologically distinct strucs-space as in Fig. 5. Also shown is the 4) plane atf,=27/3.
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E (@) ) - The QAS is next compared to a related axisymmetric
o eigenfunction A
L <—0.09 case. A plasma equilibrium based on the pressure and bound-
1oof ary parametrizations used for the 4. QAS configuration,
£ [ is obtained, keeping only toroidal=0 plasma major radius
*“g’ - and boundary harmonics. This leads to a two-dimensional
ok =l b e equilibrium, 8=7%, with similar values 0B, A, R,s. The
- field line transform, iota, is much lowdr(0)=0.02, «(1)
£ (b) eigenfunction =0.22] because there is no external transform as previously
s localized by broken provided by the stellarator coils and described by three-
100F symmetry of . . . . . .
_"F ballooning potental dimensional boundary coefficients. A distinct difference in
% F the isosurfacea (s, «, 6,) and the ballooning mode stability
3 is found as expected. Most dramatic is the simplicity of the
op tokamak isosurface structures. The axisymmetric case shows

167 0 6 167 no « dependence, no toroidal localization, as there are no
driving terms with this symmetry.

FIG. 7. The localization of the ballooning mode eigenfunction for 4,8%
and the ballooning potentials on flux surfaces near the magnetic axis and the
plasma edge. The eigenfunctions are normalized to the same maximum

value. The ballooning potential is increasingly aperiodic far from the mag-|\VV. DISCUSSION AND CONCLUSION
netic axis, where axial symmetry is more strongly broken.

In solutions of the ballooning equation, expected to limit
high B8 performance for the compact quasiaxially symmetric
stable spectrum occur, although more global in extent, andtellarator, we find toroidal localization of ballooning mode
located at two planes ig corresponding to low order ratio- eigenvalue isosurfaces with new, topologically distinct struc-
nal flux surfacegsee Figs. 3 and)4The complex structure tures not seen in previous studies of other stellarator configu-
of the datacube for the QAS ballooning mode spectra hagations. The relative complexity of the QAS ballooning spec-
been examined with the powerful visualization tool, AVS- trum isosurfaces for NCSX is driven by the complexity of
EXPRESS. the magnetic configuration, since boundary coefficients with
When the maximum eigenvalue for all flux surfaces isonly n=0 components lead to isosurfaces with no toroidal
plotted for the 4.3%p case, the usual choice®=0,«  dependence. Anderson localization and spherical isosurfaces,
=0) are found to correspond to average levels of instabilityindicative of strong quantum chaos, have been identified and
and do not represent anomalously low or high eigenvaluesare discussed below.
Stellarator symmetry is apparent with reflection about  Anderson localization occurs in response to broken sym-
a=7l/6 and 37/6. The alpha dependence of the eigenvaluemetry(here axisymmetry as seen in the localization of elec-
for the 4.3%g equilibrium repeats after23 and is symmet- tron wave functions in disordered solids. It was first identi-
ric abouta=0, #/3, 27/3, 3m/3, etc. Contours of unstable fied as localized structures in the electron conduction band
eigenvalues for both equlibria show the localizationviand  arising from disorder in a crystalline matrix due to impurity
s of the unstable modes. doping. In one-dimensional quantum systems it is now well
In Fig. 7 is shown the ballooning eigenfunction and po-known that disorder results in normal modes that are expo-
tential,V, of Eq.(3), for flux surfaces near the magnetic axis nentially localized. In plasmas several auti®fé have
and the plasma edge. Eigenfunction localization is seen tehown that Anderson localization arises from quasiperiodic-
increase near the plasma edge where the magnetic shearitis of equilibrium quantities along a field line.
weak or zero. Similar low-shear localization of the eigen-  The iota profiles in Fig. 3 show weak and reversed shear
function was also found by Dewar and CuthBefdar the  near the QAS plasma edge. Weak shear reduces the strength
H-1NF heliac. They showed that the localization was not duef the secular terms;-(6— 6,), in the ballooning equation
to magnetic shear by setting it artificially to zero, instead(2), which in axisymmetric systems are responsible for local-
attributing it to Anderson localization. ization of the ballooning eigenfunction. In contrast, localiza-
For the stable and unstable spectra of equilibria abovéion of the QAS ballooning eigenfunction increases in re-
the ballooning limit, there is weak dependence\¢$, «, 6,) gions of reduced plasma shear as seen in Fig. 7,
on the ballooning angle, strong dependence on the field lindemonstrating that something other than the well known
alpha and strongest dependencespithe magnetic surface shear localization is responsible. In fact the eigenfunction
radial coordinate. These findings are similar to those frombecomes most peaked where plasma shear is zero, at the
the ballooning stability analysisfor H-1INF, while the 10 surface where:=0.631. The eigenfunctions for the 4.3%
field period stellarator ballooning stability datactfbe case are shown fa#,=0. Each surface has a different shape
showed stronger dependence @nands, but weak depen- so that the poloidal angle at which the eigenfunction is maxi-
dence ona. While localized structures have been found formum changes witls. Localization correlates with increasing
the 10 field period stellarator, for Heliotron2Jand the aperiodicity of the ballooning potentigFig. 7). The effec-
H-1NF heliac, it is somewhat surprising to find them also intive toroidal ripple?? which is one measure of this breaking
the QAS because this is supposed to have tokamak-like propf axisymmetry, changes by nearly three orders of magnitude
erties. across the plasméFig. 8. We conclude that as has been
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0.1 T y y T Work is in progress to develop new methods for regularizing

: ; the WKB ray tracing and quantization conditions in this case,
Effective Ripple to estimatek, and possible FLR stabilization. The ray trac-
ing for the QAS surfaces may not follow simple paths, as the
0.01} 3 rays may trace out paths on either or both of the cylinders,
transiting through the connecting plane and moving onto and
off the cylinders in a random and stochastic fashion. The
complexity of the marginal isosurface suggests that the WKB
0.001} | method of higha ballooning stability calculations breaks
down, and that fully three-dimensional, MHD codes such as
CAS3D, TERPSICHORE and Spector3D are required to pre-
dict a maximumg for the QAS.

0.0001 + | Can this new way of looking at a stellarator provide
) insight into improving the QAS concept? The QAS, with a
complex harmonic magnetic spectrum, exhibits complex lo-
calized, unstable isosurface structures for the MHD balloon-
ing modes, which will also affect calculations of the anoma-
o ' ' .0 lous transport of particles and kinetic energy in the QAS, for

s example, with gyrokinetic ballooning calculatioffs.For
representative nonaxisymmetric cases, collisionless, electro-
static drift mode calculations have shown laffgctors>2)
changes in instability growth rates, which depend on the field
found in H-1INF and HSX, the QAS also exhibits Andersonline variable «.>?° To achieve optimal stellarator perfor-
localization, occurring where shear is reduced and axial symmance it will be important to verify that the complex mag-
metry is broken. netic spectrum, which provides good neoclassical particle

At 4.3% g, at the highest eigenvalues, we have foundconfinement and MHD stability, does not cause unacceptable
topologically spherical isosurfaces. Ray tracing in such casei§icreases in anomalous transport.
shows strong “quantum chao$® This description for the
paths of rays of higlk, MHD waves or instabilities does not ACKNOWLEDGMENTS
mean that the plasma behavior is chaotic, but that the ma_th- We would like to thank M. C. Zarnstorff, C. Hegna, and
ematics of quantum cha_los the_ory must be u_s_eo_l for instabilip b, for discussions and S. P. Hirshman for use of the
ties far above the marginal point of the equilibrium. An ad'VMEC code.
ditional complication in using ideal MHD with ray tracing to Research supported by U.S. DOE Contract No. DE-
construct global ballooning modes iskespace runaway. In- - Ac2_ 76CcH0373. John Canik held a U.S. DOE National
troduction of a reflecting cutoff irk, to model numerical Undergraduate Fellowship at Princeton Plasma Physics

truncation or finite_ L_armor radiug-LR) yields chaoFic ray Laboratory, during the summer of 2000.
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