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Gyrokinetic calculations of the neoclassical radial electric field
in stellarator plasmas
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A novel method to calculate the neoclassical radial electric field in stellarator plasmas is described.
The method, which does not have the inconvenience of large statistical fluctuations~noise! of the
standard Monte Carlo technique, is based on the variation of the combined parallel and
perpendicular pressures on a magnetic surface. Using a three-dimensional gyro-kineticd f code, the
calculation of the radial electric field (Er) in the National Compact Stellarator Experiment@G. H.
Neilson et al., Phys. Plasmas7, 1911 ~2000!# has been carried out. It is shown that a direct
evaluation ofEr based on a direct calculation of the radial particle flux is not tractable due to the
considerable noise. ©2001 American Institute of Physics.@DOI: 10.1063/1.1370363#
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I. INTRODUCTION

The lack of toroidal symmetry of stellarators requires
fully three-dimensional description of the plasma. The dep
ture from axi-symmetry in stellarator plasmas leads to
hanced neoclassical losses in the low-collisionality regim
Another related feature of the effect of the non-axisymme
of the plasma is to strongly modify the drift orbits of th
particles~see the reviews by Sadgdeev and Galeev1 and by
Kovrizhnykh2!.

Over the past few years, there has been a renewed i
est in the so-called quasi-axisymmetric~QA! stellarator con-
cept; that is the equilibrium magnetic field strength is a
proximately symmetric in the magnetic toroidal anglez,
after transformation to Boozer coordinates.3 A stellarator ex-
periment based on the QA concepts is currently being
signed in the United States;4 the National Compact Stellar
ator Experiment~NCSX!5 is a three-field period, low-aspec
ratio configuration which has good transport and stabi
properties.5–7 One important feature of the QA concept
that the plasma can rotate in the direction of qua
axisymmetry, and it may be possible to exploit and cont
the formation of transport barriers, as in advanced tokam
plasmas.8 Since the radial electric field is a major contende9

in the formation of transport barriers, an accurate calcula
of the radial electric field is an important aspect of QA pla
mas. The reader who is not familiar with current trends
stellarator design can consult Ref. 10.

In this article we describe a novel method to calcul
the neoclassical radial electric field in asymmetric toroi
plasmas. The low-noise method, which exploits the adv
tages of thed f algorithm,11–14 is based on the variation o
the combined parallel and perpendicular pressures (Pi and
P') on a magnetic surface. As an example, we have ca
lated the radial electric fieldEr for the C82 configuration of
2841070-664X/2001/8(6)/2849/6/$18.00
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the NCSX plasma.5 It is shown that a direct~Monte Carlo!
calculation of the radial electric field based on the rad
particle flux is not tractable due to the large statistical flu
tuations; interestingly, the gyrokinetic calculation using t
variation ofPi andP' on a given magnetic surface does n
exhibit large statistical deviations, which allows for a dete
mination ofEr .

The article is organized as follows; in Sec. II, we d
scribe the method used to calculate the radial particle fl
The numerical method, the computational details and the
sults are given in Sec. III. Concluding remarks and futu
application of the method are presented in Sec. IV.

II. THE METHOD

In this section, we describe the method used to de
mine the radial electric field based on the local variation
the parallel and perpendicular pressures (Pi andP' , respec-
tively!. The quantitiesPi and P' are evaluated by taking
appropriate velocity moments ofd f [ f 2 f 0 , wheref is the
total distribution function whereasf 0 is its equilibrium part
~usually f 0 is taken to be a Maxwellian distribution!. The
perturbed part of the distribution function,d f , evolves due to
the combined effects of magnetic drifts and spatial inhom
geneity. Another subtle point regarding the numerical cal
lation is that the velocity moments forPi andP' are carried
out in small annulus~i.e., finite volume! around a magnetic
surface of reference; this point is discussed in more deta
Sec. III.

In stellarator geometry, it is convenient, both for analy
cal and computational purposes, to use magnetic coordin
The confining magnetic fieldB is written in Boozer
coordinates3 as
9 © 2001 American Institute of Physics
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B5i~c!“z3“c1“c3“u,
~1!

B5g~c!“z1I ~c!“u1b!“c,

whereu and z are the poloidal and toroidal angles, respe
tively; c is proportional to the enclosed toroidal flux;i is the
rotational transform; andg(c) andI (c) are, within a multi-
plicative constant, the poloidal and toroidal currents, resp
tively. In these coordinates the Jacobian of the transfor
tion, J[@“c•(“u3“z)#21, satisfies JB25g(c)
1i(c)I (c)[F(c). Consider the momentum of the balan
equation for the ions

r
dV

dt
52“•P1enS E1

V3B

c D1F1R, ~2!

whereV is the fluid velocity,r is the mass density,R is the
force due to collisions,F represents the~possible! applied
force, andP5Pib̂b̂1(I2b̂b̂)P' is the pressure tensor; he
b̂5B/B is the unit vector alongB, Pi and P' are, respec-
tively, the parallel and perpendicular pressures. We note
Eq. ~2! can be obtained by taking the first-order veloc
moment of the kinetic equation in the small gyro-radi
limit. Taking the scalar product ofez[]r /]z ~wherer is the
position vector! with Eq. ~2!, and operating with^ . . . &
5** . . .J(c,u,z)dudz, we obtain

i~c!

c

dQ

dt
2 K dLz

dt L 5K ] P̂

]z L 2Tz , ~3!

where P̂[(Pi1P')/2, Tz5^(R1F)•ez& is the torque due
to applied forces and collisional drag;Lz is the toroidal com-
ponent of the canonical momentumL5rV1eA/c, where
A5c“u2x“z is the vector potential and 2px is the po-
loidal flux. In deriving Eq.~3! we have assumed that th
electrostatic potential~yet to be determined! is of the form
F5F(c), and we have neglected the loop voltage (]x/]t
.0). Using Eq.~1!, the first term on the left-hand side o
Eq. ~3! can be obtained from

K enez•S V3B

c D L 5
e

cE E nV•~B3ez!Jdu dz

5
e

c
i~c!E G•dsn5

i~c!

c

dQ

dt
.

Here Q is the total charge,G5nV is the particle flux, and
dsn[J“cdu dz is an area element normal to the magne
surfacec5const and pointing outwards. The first term o
the right-hand side of Eq.~3!, which is related to the pressur
tensor term in Eq.~2!, is derived in the Appendix. The par
allel and perpendicular pressures which enter

S[^] P̂/]z&

are calculated from the velocity moments ofd f which, in
turn, depends on the particle trajectories. The particle tra
tories being affected by the applied electric fieldE5
2(dF/dc)“c, we may writeS5S(Er ,t). After a few col-
lision times the distributiond f will relax and S`(Er)
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5S(Er ,t°`) will provide a measure of the time variation o
the chargeQ. For one-species simulation, one can then
termine the radial electricEr

(0) by solving

S`@Er
(0)#50. ~4!

Alternatively, one can measure the flux surface-averaged
dial particle flux^G r&(Er) and determineEr

(0) such that the
particle flux vanishes. However, in quasi-axisymmetric t
oidal configuration, the large statistical fluctuations inG r can
be comparable to, or larger than, the time-averaged sig
As will be shown in the next section, a direct measurem
of the radial particle flux is too noisy to be of practical us
Alternatively, a dynamic calculation using the global gyrok
netic toroidal code~GTC!,15 which has been rigorously
benchmarked against analytical tokamak neoclassical tr
port theory,16 shows that S(Er ,t) reaches a low-noise
asymptotic value after a few ion-ion collision times. Th
general behavior of S is of the form S(Er ,t).S0

3exp(2Ct/tii)1S̀ @12exp(2Ct/tii)#, wheret i i is the ion-ion
collision time,S0(Er)5S(Er ,t50), andC is a constant of
the order of unity. It is interesting to note thatS provides
information on the asymmetric part of the particle transpo
As it turns out,S strictly vanishes in an axisymmetric con
figuration ~such as an ideal, two-dimensional tokam
plasma!. To show this, we use the definition of the flux
surface average and perform an integration by parts:

S52E E P̂
]J
]z

du dz52 K P̂J 21
]J
]z L .

Noting that JB2 is a flux surface quantity it follows tha
J 21]J/]z522B21]B/]z and

S5 K Pi1P'

B

]B

]z L , ~5!

showing thatS[0 in an axisymmetric configuration. W
note that the off-diagonal contributions in the pressure ten
have been neglected~in terms of the smallness paramet
r i /R0). The inclusion of finite Larmor radius~FLR! effects,
such as in the paper of Rosenbluthet al.,17 can lead to non-
ambipolar transport.

III. NUMERICAL METHOD AND RESULTS

In this section, we describe the low-noise numeric
method used to evaluateS(Er ,t), which provides a measur
of the radial particle flux. The computational domain and t
collision operators are also discussed. Finally we pres
specific numerical results for the NCSX plasma.

It is convenient to write the parallel and perpendicu
pressures in terms of their respective Fourier components~on
a given magnetic surface!; for example, the perpendicula
pressure can be written as

P'5(m,n~P'!m,n exp@ i ~mu1nNpz!#, ~6!

whereNp is the number of field periods of the configuratio
and the Fourier coefficients are calculated according to
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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~P'!m,n

5
*0

2pdu*0
2pdz~mv'

2 /2!d f exp@2 i ~mu1nNpz!#d3v

*0
2pdu*0

2pdz
.

~7!

In practice the particle trajectories are integrated in a volu
enclosed between two neighboring toroidal flux surfacesc̄

2Dc/2 andc̄1Dc/2 ~Fig. 1!. Herec̄ is a magnetic surface
of reference andDc is chosen so thatDc/cb , wherecb is
the toroidal flux at the plasma boundary, is much less t
unity. However, due to the combined effects of magne
drifts and background inhomogeneity, the particles will dr
outside the layerDc, the number of Lagrangian marke
within the layer will decrease in time, and the statistics
sociated withPi andP' will become poorer. To bypass thi
difficulty, particles are uniformly loaded in the layerDc but
the perpendicular and parallel pressures are monitored in
annulusdc!Dc ~Fig. 2!. Introducing the radial coordinat
r 5Ac/B0 ~where as beforec is the enclosed toroidal flux!,
one hasDc5c(r 1Dr )2c(r )'2B0rDr from which we
get Dr'Dc/(2AB0c). The radial component of the curva
ture drift velocity is of the order ofVd'v th(r th /R), where
v th is the thermal velocity,r th is the associated thermal gy
roradius andR is the major radius; here we have usedRc

FIG. 1. Computational domain ford f calculations of the radial electric field
The magnetic coordinates arec, u andz. The particles are initialized at the

toroidal flux surfacec̄. The width of the annulus is such thatdc/cb!1,
wherecb is the toroidal flux at the plasma boundary.

FIG. 2. The Lagrangiand f markers are uniformly distributed in the layer o
width dC; the radial width is chosen such that the typical drift time of
ion in the layer is larger than the relaxation time of the perturbed para

and perpendicular calculated in the annulusdc centered atc̄.
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[u“B/Bu21;R as the typical scale length of the magne
field inhomogeneity. Therefore the typical drift time withi
the layer Dc is td'Dr /Vd , which is chosen so thattd

@t r , wheret r is the relaxation time~typically a few ion-ion
collision time!. Alternatively, one can assume periodicity
the radial direction, that is the particle that escapes the ra
domaindc can be put back in the same domain; in this ca
the number of Lagrangian markers remains constant. Dif
ent schemes can be used and compared to randomize
position (c,u,z) and the pitch of the particle. However, as
a real experiment, one is interested in theglobal radial pro-
file of the electric field; one important aspect of the meth
previously described is that it can easily be extended to
entire plasma volume, without additional assumptions
garding the boundary conditions.

The guiding center motion and the collisions will spre
the particles toward equal density in pitch and over the m
netic surface; therefore it is convenient to make the repla
ment ~again using the particular form of the Jacobian
Boozer coordinates and the definition of the volume elem
in magnetic coordinates,d3x5Jdcdu dz)

**du dz ⇒ *J 21~dc!21d3x ⇒ @F~ c̄ !dc#21*B2d3x.

Therefore one can calculate the Fourier coefficients for
perpendicular pressure according to

~P'!m,n5E *d3x~mv'
2 /2!d f B2 exp@2 i ~mu1nNpz!#

*d3xB2
d3v.

~8!

The same method was used to evaluate the parallel pres
on the magnetic surfacec̄.

As is well known in neoclassical theory, the momentu
and energy conservation properties of the collision opera
are important for accurate calculation of quantities such
the radial particle flux. The gyrophased collision operator
like-species collisions can be written as18

C~d f !5
]

]v i
~n id f !1

]

]v'
2 ~n'd f !1

]2

]v iv'
2 ~n'

i d f !

1
]2

]v i
2 ~n i

id f !1
]2

~]v'
2 !2

~n'
'd f !, ~9!

where

n i5n0v iF,

n'5n0@v'
2 ~2F2H2G!22v i

2G#,

n'
i

52n0v'
2 v i~H2G!,

n i
i
5n0~v i

2H/21v'
2 G/2!,

n'
'52n0v'

2 ~v'
2 H1v i

2G!. ~10!

In Eq. ~10!, n054pnbqa
2qb

2 lnLab /(ma
2v3) is the basic fre-

quency for collisions of test particlesa with background
particleb. F, G, andH are dimensionless functions that ca
be written in terms of the Maxwell integralQ(x)
52p21/2*0

xy1/2exp(2y)dy, wherex5v2/v thb
2 andv thb is the

thermal velocity of the background particles. The functio
l
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2852 Phys. Plasmas, Vol. 8, No. 6, June 2001 Lewandowski et al.
F, G, andH are F(x)5(11ma /mb)Q(x), G(x)5Q(x)@1
21/(2x)#1dQ/dx and H(x)5Q(x)/x. The test-particle
drag and diffusion can be implemented by utilizing a Mon
Carlo method due to Xu and Rosenbluth.18 The particle
weights are modified such that the collision operator ann
lates a shifted Maxwellian.16 For ion-electron collisions a
Lorentz collision operator is used, and its Monte Ca
implementation has been discussed elsewhere.19

For the simulations presented in this article, the trajec
ries of a set of 23105 Lagrangian markers have bee
integrated20–22 with a time stepDt/t i i 5431024. Colli-
sional effects are calculated every ten time steps. The c
fining B field and the shape of the magnetic surfac
(R,Z,f) have been specified in terms of Fourier series~Fig.
3!; a set of 30 Fourier harmonics have been retained in
calculations. Other parameters are the on-axis magnetic
B051.263104 G, central ion temperatureTi(0)52.76 keV,
central electron temperatureTe(0)52.14 keV and centra
plasma densityn056.7331013 cm23 ~these parameters ar
the typical design parameters for NCSX!. The magnetic sur-
face of reference is located atc̄/cb50.7. At each time step
the local~i.e., within dc; see Fig. 2! perpendicular and par
allel pressures from each processor element~PE! are col-
lected onto a single PE~say PE50!; the Fourier coefficients
for Pi and P' are then calculated according to Eq.~7!. All
numerical parallel computations reported here have car
out with 16 PEs.

The radial particle flux obtained from a direct measu
ment of the radial particle flux~arbitrary units! is shown as
the jagged curve in Fig. 4~in this case the applied radia
electric field is 0 and the background distribution functionf 0

has been loaded as a Maxwellian with^Vi&50). It is noted
that the noise is comparable to the signal; to determine
relationG r5G r(Er) from a direct measurement is not acc
rate. As a comparison, the thick line in Fig. 4 represents

FIG. 3. Magnetic surface of the three-field period National Compact S
larator Experiment~NCSX!. Although the shape of the magnetic surface
largely different for that of a comparable tokamak, the equilibriumB field is
approximately symmetric inz ~magnetic toroidal angle! after transformation
to Boozer coordinates.
Downloaded 28 Jan 2003 to 198.35.3.187. Redistribution subject to AIP
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radial particle flux calculated from the velocity momentsPi

andP' .
The electron current density~calculated for larget! as a

function of the normalized radial electric fieldEr5

2ād/dr(eF/Ti(0)) is shown in Fig. 5. The electron curren
density displays an almost linear dependence onEr . The ion
current density, shown in Fig. 6, shows, however, a stro
dependence on theEr parameter. The largest ion flux is ob
tained forEr.20.2. We note that the ion flux is typically
two orders of magnitude larger than the electron flux
small electric field~note the scale difference between Figs
and 6!. By inverting the relationG i@Er

(0)#5Ge@Er
(0)#, we ob-

tainedEr
(0).20.87 statvolt/cm, that isEr

(0).226.2 kV/m
~which corresponds to the stable root!. For illustrative pur-

l-

FIG. 4. Radial particle fluxes~arbitrary units! at the magnetic surface

c̄/cb50.7 as obtained from a direct measurement~thin, broken line! and
from the fluid moment approach~thick line!. The perpendicular and paralle
pressures relax on a time scale of the order of a few ion-ion collision tim
The applied radial electric field is zero and the time has been normalize
the ion-ion collision timet i i .

FIG. 5. Electron current density as a function of the normalized rad

electric fieldEr52ād/dr(eF/Ti(0)), whereā is the average minor radius
of the last closed magnetic surface, andTi(0) is the ion temperature at the
magnetic axis.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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poses, the calculations have been carried out for a si
magnetic surface~more precisely, for a single annulus!, but a
global calculation would lead the variation ofEr with the
radial coordinate.

IV. CONCLUDING REMARKS

In this article, we have presented a method to calcu
the radial electric field in stellarator plasmas; our method
particularly useful for toroidal plasmas which depart wea
from axisymmetry~e.g., the ‘‘quasi-asymmetric concept’’!.
It is has been shown that a direct measurement of the ra
particle flux is very noisy, and not of much practical use
a direct calculation ofEr . The moment approach, howeve
shows a relatively smooth behavior and reaches
asymptotic value after a few ion-ion collision times.

The method presented in this article can be improved
including the off-diagonal terms~which are;r i /R0 times
smaller than the diagonal terms! in the pressure tensorp.
However, since the dominant symmetry breaking term in
Bmn spectrum is much larger than the smallness param
r i /R0 , one can, in first approximation, neglect the o
diagonal terms in the pressure tensorp.

An extension of the method presented in this article c
be used to determine the damping rates of toroidal and
loidal flows in stellarator plasmas; this is left for future wor

ACKNOWLEDGMENTS

One of us~J.L.V.L.! would like to thank W. W. Lee for
encouragement. The method for carrying out reduced-n
d f Monte Carlo calculations in single-helicity magnetic co
figurations is part of the doctoral thesis of one of us~J.W.!.

APPENDIX: DIVERGENCE OF THE PRESSURE
TENSOR

The pressure tensor,P, can be written as

P5Pib̂b̂1P'~ I2b̂b̂!, ~A1!

FIG. 6. Ion current density as a function of the normalized radial elec
field ~plasma parameters are the same as in Fig. 5!.
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whereb̂5B/B is the unit vector alongB, I is the unit dyadic,
andPi andP' are, respectively, the parallel and perpendic
lar pressures. We can also write Eq.~A1! as P5 P̃BB
1P'I , whereP̃[(Pi2P')/B2. The divergence of the pres
sure tensor then reads

“•P5B~B•“ P̃!1 P̃“•~BB!1“P' , ~A2!

where the second term on the right-hand side can be ca
lated using the relation“B2/25B3(“3B)1(B•“)B so
that

“•BB5 1
2“B22B3~“3B!. ~A3!

Using Ampere’s law, 4pJ5c“3B, and the radial force bal-
ance,J3B5c“P0 , one getsB3(“3B)524p“P0 and
the divergence of the pressure tensor now reads

“•P5B~B•“ P̃!1 P̃~ 1
2“B214p“P0!1“P' . ~A4!

Taking the scalar product of Eq.~A4! with ew[]r /]w where
r is the position vector andw5$u,z% one gets

ew•~“•P!5Bw~B•“ P̃!1
P̃

2

]

]w
B21

]P'

]w
, ~A5!

where we used the fact that the equilibrium pressure is a
surface quantity,P05P0(c). In Boozer coordinates, the
product of the Jacobian and the magnetic field stren
squared is a flux surface quantity, that is,JB25F(c), where
J5@“c•(“u3“z)#21 denotes the Jacobian andF(c) is a
linear combination of the poloidal current, toroidal curre
and safety factor. We introduce the flux-surface average
erator^•& as

^•&[E E J~• !dudz. ~A6!

It is easy to show that̂•& annihilates theB•“ operator, that
is,

^B•“G&50 ~A7!

for any functionG5G(c,u,z). Noting that, in Boozer co-
ordinates,Bu and Bz are flux-surface quantities, the flux
surface average of Eq.~A5! is

^ew•~“•P!&5
1

2 K ]

]w
~Pi1P'!L , ~A8!

where we used Eq.~A7! and

c
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K P̃
]B2

]w L 5K Pi2P'

B2

]B2

]w L
5K B2~P'2Pi!

]

]w S 1

B2D L
5K F~c!

J ~P'2Pi!
]

]w S 1

B2D L
5F~c!E E ~P'2Pi!

]

]w S 1

B2D du dz

5F~c!E E 1

B2

]

]w
~Pi2P'!du dz

5E E J ]

]w
~Pi2P'!du dz

5 K ]

]w
~Pi2P'!L . ~A9!
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