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Compact Compact stellarators stellarators (low A = R/<a>) offer:(low A = R/<a>) offer:

� Combination of the desireable features of
TOKAMAKS   (low A, high β, good confinement)

� with those of the STELLARATOR

(low recirculating power, disruption avoidance)

� Focus is on COMPACTNESS

(while preserving confinement/stability)



Features of low A = R/<a> Features of low A = R/<a> stellaratorsstellarators
� Lower cost near-term experiments while

maintaining a similar plasma radius as large
aspect ratio devices

� Longer term potential of a more economically-
sized, higher-power-density reactor

� Opens up a new regime of stellarator parameter
space with new physics expected in:
� transport

� equilibrium fragility

� plasma flow dynamics

� enhanced confinement regimes

� RF heating strategies

� microturbulence



Strategies for QOS Optimization

� Optimize an ultra low aspect ratio (A = 2.5 - 3),
low β configuration for a Concept Exploration
experiment
� most of the rotational transform supplied externally

� Optimize compact (A = 3 - 3.5) , high β
configurations as part of the longer-term QOS
program
� a larger fraction of the transform provided by

plasma currents



Methods

� Stellarator optimization
� Transport evaluation
� Energetic Particle Confinement
� Bootstrap Currents



Optimization  Process  Successfully  Integrates  a
complex, interacting set of  Physics  Criteria:

Targets   

(Physics/Engineering)
Example

Bounce-average omnigeneity
(drift surfaces and flux

surfaces aligned)

Bmin = Bmin (ψ)
Bmax = Bmax (ψ)

J = J(ψ)
Target nearby quasi-

symmetries
Minimize Bmn if m ≠ 0 (QP),

or if m/n ≠1 (QH)

Local diffusive transport D, χ from DKES

Current profile self-consistent IBS,
I(ψ) goes to 0 at edge

Limit maximum plasma current e.g., Imax < 40 kAmps

Iota profile i(ψ) = 0.5 (ρ = 0) to 0.8 (ρ = a)

Magnetic Well, Mercier V” < 0, DM > 0 over cross
section

Ballooning stability <β> ~ 2-4%

Aspect ratio R0/a ≈ 2.5 to 3.5

Limit outer surface curvature avoid strong
elongation/cusps

Control variables:

shape (30-40 Fourier
harmonics Rmn, Zmn)
for LCFS  +  profile

parameters

 Stellarator optimization



Transport optimizations using the DKES transport
target have resulted in confinement improvement.
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Transport tools

� General purpose stellarator particle simulation code (DELTA5D)

� thermal electron/ion transport, bootstrap current

� alpha particles

� neutral beams, ICRH tails

� uses MPI to achieve near linear speedup with number of processors

� Drift Kinetic Equation Solver (DKES)

� variation of bootstrap current with collisionality and electric field

� local particle fluxes          ambipolarity condition

� integrate over profiles to obtain global lifetimes

� uses shared memory OpenMP parallelism to achieve ~ x 3 speedup
(with Ed D�Azevedo, ORNL CCS Division)

� Other qualitative measures: J, Bmin, Bmax, |B| contours

 Transport analysis



The DKES (Drift Kinetic Equation Solver) provides the
full neoclassical transport coefficient matrix (multi-helicity)
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(i.e., to carry out the above integrals, one will need to
generate a 2-D matrix of Γ�s vs. these parameters for

each flux surface)

� W. I. Van Rij, S. P. Hirshman,
Phys. Fluids B 1, 563 (1989)

� Variational: provides upper
and lower bounds on dS/dt

� Expands f in Fourier-Legendre
series

 DKES Transport analysis



DELTA5D Monte Carlo code is used for both
thermal plasma and fast ion confinement studies

� Thermal plasma
� Global and local diffusive limits

� Various fast ion populations
� ICRF tails (quasilinear diffusion operator)

� Neutral beam ions (pencil beam approximation)

� Alphas

� Alfvén turbulence (to be added)

� Options for f and δf particle weightings

� Diagnostics: particle and energy losses, loss patterns, energy
slowing down, escaping pitch angle/energy/lifetime distributions

� Longer term goal: Multi-species (thermal, fast ion, impurity),
coupled transport and electric field evolution model

� Computational characteristics

� parallelization over groups of particles

� uses collective MPI communications, runs on T3E and IBM-SP

 DELTA5D Transport analysis



Configuration Development
� Ultra low A (2.5 - 3), near-term devices

� most of the transform supplied externally
� quasi-poloidal symmetry built-in

� Compact (A = 3 - 3.5) high β devices
� large fraction of transform comes from current
� quasi-poloidal symmetry enhanced by high β

� CE selection guidelines
� Compact:  A < 3

This ultra low aspect ratio range is lower than existing
stellarators (1/2 to 2/3 that of NCSX)

� Good confinement:  τneo at least > 2*τISS95

Drift-optimized      neoclassical transport not the dominant loss
 Cases normalized to:         and

� Stability:  MHD stable at β ~ 2%
Ballooning and Mercier analysis included in optimization to
ensure stability at β levels relevant to a CE

� Accessibility, Flexibility



Quasi-Poloidally Symmetric Cases
� Low aspect ratio: A < 2.5

�  Have obtained configurations
with aspect ratios in the range: A=2.1 to A=3.0

� Rotational transform below 0.5:  ι  ~ 0.3 - 0.4

�  Majority of the transform is from the coils, bootstrap current causes iota to
increase

� Max. Toroidal Currrent = 25 - 35 kA for <β> in the 1 to 1.5% range

�  Stable to neoclassical tearing modes

 Equilibrium
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QP Symmetry Cases

� Weak shear with iota
mainly from coils
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 Bootstrap current
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 DELTA5D Transport analysis
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Projected QO/CE heating scenarios include
both ECH and ICH regimes

<β>
(1) ECH 0.5 1 0.18 1.4 0.15 8.1 0.019 1.6 0.7

(2) ECH 1 0.5 0.045 2.1 0.2 1.5 0.0021 0.22 1

(3) ICH 1 1 0.83 0.5 0.5 11.7 0.68 0.64 2

(4) ICH 1 0.5 0.59 0.4 0.25 5.5 0.75 1.8 3.7

n/1020

(m-3)
Te

(keV)
Ti

(keV)
τISS95

(msec) ν*elec ν*ion

Pheat
(MW)

<B>
(Tesla)RF

� n = constant, Zeff = 1
� (1 - r2)2 Te, Ti profiles
� eφ(r)  varies inversely with kTe

� ion root and electron root investigated

Model used:
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 DELTA5D Transport analysis



ECH 1 16.2 17.4 16.2 8.1

ECH 0.5 4.27 1.95 2.1 1.5
ICH 1 27 ~100 41.7 11.7
ICH 0.5 7.7 ~55 16.4 5.5

Monte Carlo energy lifetimes
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 DELTA5D Transport analysis

Confinement in the 2 field period, A = 2.5 configuration
covers a range from τE,global = (1.4 to 3.6) τE,ISS95 for

different ECRF and ICRF heating scenarios



Energetic particle loss simulations show exit pitch angle, energy
and exit position of ions on outer flux surface
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Collisionality and electric field dependence of bootstrap
current coefficient (results shown are for Nfp = 2, A = 2.5 device)

DKES monoenergetic particle/energy
transport coefficient
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 DKES Transport analysis



Self-Consistent ambipolar electric field calculations
- initially DKES will be used offline for electrons and ion to obtain φ(r) for DELTA5D
- next step is to use DKES for electron flux coupled with DELTA5D for ion flux
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 DKES/DELTA5D Transport analysis
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High β Configurations

� A class of configurations with high β MHD stability limits

–  Rotational transform primarily from plasma current

�  Proper level of self-consistent bootstrap current and better
profile alignment than in advanced tokamaks

�  Stable at higher β than comparable tokamak due to lower
current

� Have obtained 3 field period configurations with ballooning
stability up to β=23%, Vertical/Kink stability up to β =15% (G.
Fu),
aspect ratios A~3.5 - 4.5



High β Case: 3 Field Periods

� 3 FP, A=3.6, β=15%, <|B|>=1 T, Max.Tor.Cur.= 155 kA
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High β Case: |B|/Flux Surface Alignment

� |B| surfaces align with flux surfaces at higher β
� Leads to improved omnigeneity/quasi-symmetry

β=0%:

β=23%:

NFP* ϕ=0° NFP* ϕ=90°  NFP* ϕ=180°

NFP* ϕ=0° NFP* ϕ=90°  NFP* ϕ=180°

 Equilibrium



|B| contours (given at r/a = 0.75) show a significant
improvement in poloidal symmetry with increasing <β>

<β> = 0% <β> = 23%

 Equilibrium



Through its modification of |B|, high β improves the thermal ion
neoclassical confinement time
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Increasing β leads to improved neoclassical transport
and to a decreased bootstrap current coefficient.

(results shown are for 3 field period, A = 3.4 device)
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α-particle slowing-down simulations show these devices
indicate very good confinement with increasing β.
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Summary
� Attractive 2 and 3 field period devices have been found for

A = 2.5 - 3.5
� Attain good confinement by being near quasi-poloidal symmetry

� Modular coils: good flux surface reconstruction, preserves physics

� Different heating options and magnetic field variation
(0.5 � 1T) allow exploration of different confinement
regimes
� ECH: τneo/τISS95 from 1.4 to 2

� ICH: τneo/τISS95 from  3 to 3.6

� Quasi-poloidal symmetry minimizes viscous damping in the
direction of the Er x B drifts
� lower parallel flows

� influences accessiblity of enhanced confinement regimes which rely
on Er x B  shear

� potential for more direct manipulation of Er x B than in a tokamak



Summary (contd.)

� High β configurations offer improved confinement
with increasing β
� Large fraction of the transform from plasma current

� Similar to advance tokamak, but bootstrap current is well
aligned and not too large (as it is in an axisymmetric device)

� Stability limits (ballooning, kink, vertical) allow operation at
<β> ~ 15% (second regime stability)

� Have achieved lowest alpha losses (~12%) of any of our
configurations


