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Compact stellarators (low A = R/<a>) offer:
|

« Combination of the desireable features of
TOKAMAKS (low A, high (3, good confinement)

« with those of the STELLARATOR
(low recirculating power, disruption avoidance)
* Focus is on COMPACTNESS
(while preserving confinement/stability)
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Features of low A = R/<a> stellarators
e
* Lower cost near-term experiments while

maintaining a similar plasma radius as large
aspect ratio devices

» Longer term potential of a more economically-
sized, higher-power-density reactor

* Opens up a new regime of stellarator parameter
space with new physics expected In:
— transport
— equilibrium fragility
— plasma flow dynamics
— enhanced confinement regimes
— RF heating strategies
— microturbulence



Strategies for QOS Optimization

Optimize an ultra low aspect ratio (A = 2.5 - 3),
low 3 configuration for a Concept Exploration

experiment

— most of the rotational transform supplied externally
Optimize compact (A =3 -3.5), high 3
configurations as part of the longer-term QOS
program

— a larger fraction of the transform provided by
plasma currents



Methods

 Stellarator optimization

* Transport evaluation

» Energetic Particle Confinement
» Bootstrap Currents



Optimization Process Successfully Integrates a
complex, interacting set of Physics Criteria:

Stellarator optimization
Targets Example
(Physics/Engineering)
Bounce-average omnigeneity Bumin = Bmin (1)
(drift surfaces and flux B, = B, ()
surfaces aligned) S .
J=JW) Control variables:
Target nearl?y quasi- Minimize B, if m # 0 (QP),
symmetries : :
or it m/n #1 (QH) shape (30-40 Fourier
Local diffusive transport D, X from DKES harmonics R, Z..,)
I(P) goes to O at edge parameters
Limit maximum plasma current e.g., |l <40 kAmps
lota profile i(W)=0.5(p=01t00.8(p=a)
Magnetic Well, Mercier V” <0, Dy > 0 over cross
section
Ballooning stability <B> ~ 2-4%
Aspect ratio R/a=2.5103.5
Limit outer surface curvature avoid strong
elongation/cusps




Transport optimizations using the DKES transport

tar= et have resulted in confinement imi rovement.
Stellarator optimization
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Transport tools

» General purpose stellarator particle simulation code (DELTAS5D)

— thermal electron/ion transport, bootstrap current

— alpha particles

— neutral beams, ICRH tails

— uses MPI to achieve near linear speedup with number of processors
 Drift Kinetic Equation Solver (DKES)

— variation of bootstrap current with collisionality and electric field

— local particle fluxes == ambipolarity condition

— integrate over profiles to obtain global lifetimes

— uses shared memory OpenMP parallelism to achieve ~ x 3 speedup
(with Ed D’Azevedo, ORNL CCS Division)

« Other qualitative measures: J, B, ., B,..«» |B| contours



The DKES (Drift Kinetic Equation Solver) provides the
full neoclassical transport coefficient matrix (multi-helicity)

DKES Transport analysis
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DELTA5SD Monte Carlo code is used for both

thermal plasma and fast ion confinement studies
DELTASD Transport analysis

 Thermal plasma
— Global and local diffusive limits

Various fast ion populations
— ICREF tails (quasilinear diffusion operator)
— Neutral beam ions (pencil beam approximation)
— Alphas
— Alfvén turbulence (to be added)

* Options for f and of particle weightings

» Diagnostics: particle and energy losses, loss patterns, energy
slowing down, escaping pitch angle/energy/lifetime distributions

* Longer term goal: Multi-species (thermal, fast ion, impurity),
coupled transport and electric field evolution model
« Computational characteristics
— parallelization over groups of particles
— uses collective MP| communications, runs on T3E and IBM-SP



Configuration Development

* Ultra low A (2.5 - 3), near-term devices
» most of the transform supplied externally @
* quasi-poloidal symmetry built-in
* Compact (A = 3 - 3.5) high 3 devices
* large fraction of transform comes from current
* quasi-poloidal symmetry enhanced by high [3

« CE selection guidelines
 Compact: A<3
This ultra low aspect ratio range is lower than existing

stellarators (1/2 to 2/3 that of NCSX)
» Good confinement: 1., at least > 2*T oo

Drift-optimized = neoclassical transport not the dominant loss

Cases normalized to: and
« Stability: MHD stable at B ~ 2%

Ballooning and Mercier analysis included in optimization to
ensure stability at (3 levels relevant to a CE

 Accessibility, Flexibility




Quasi-Poloidally Symmetric Cases
— Low aspect ratio: A< 2.5 m

« Have obtained configurations
with aspect ratios in the range: A=2.1 to A=3.0

— Rotational transform below 0.5: 1 ~0.3-0.4

« Majority of the transform is from the coils, bootstrap current causes iota to
increase

« Max. Toroidal Currrent = 25 - 35 kA for <3>in the 1 to 1.5% range
« Stable to neoclassical tearing modes
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Bootstrap current

QP Symmetry Cases

— Weak shear with iota
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Free boundary A2.5 M2 _B1.3 configuration (from coils)
preserves similar transport as original fixed boundary case:
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Projected QO/CE heating scenarios include
both ECH and ICH regimes

DELTA5D Transport analysis

Preat <B> n/1020 T T Tssos

RE (MW) (Tesla) (m3) (keV) (keV) (msec) Vegeo Veion <B>

(1) ECH 0.5 1 0.18 1.4 0.15 8.1 0.019 1.6 0.7

(2) ECH 1 0.5 0.045 2.1 0.2 1.5 0.0021 | 0.22

(3) ICH 1 1 0.83 0.5 0.5 11.7 0.68 0.64 2

(4) ICH 1 0.5 0.59 0.4 0.25 55 0.75 1.8 3.7
Model used: \

08| T

*n = constant, Z 4 = 1

*(1-r2)2T,, T, profiles

« e@(r) varies inversely with kT,

* ion root and electron root investigated
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Confinement in the 2 field period, A = 2.5 configuration
covers a range from Tg gpy = (1.4 10 3.6) Tg ;5595 fOr

different ECRF and ICRF heating scenarios

DELTASD Transport analysis

=
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Energetic particle loss simulations show exit pitch angle, energy
and exit position of ions on outer flux surface

DELTASD Transport analysis
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Collisionality and electric field dependence of bootstrap
current coefficient (results shown are for N, = 2, A = 2.5 device)

DKES monoenergetic particle/energy DKES Transport analysis
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Self-Consistent ambipolar electric field calculations
- initially DKES will be used offline for electrons and ion to obtain ¢(r) for DELTAS5D
- next step is to use DKES for electron flux coupled with DELTASD for ion flux

lon, electron fluxes from DKES
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High 3 Configurations

» A class of configurations with high 3 MHD stability limits
— Rotational transform primarily from plasma current
— Proper level of self-consistent bootstrap current and better
profile alignment than in advanced tokamaks
— Stable at higher 3 than comparable tokamak due to lower
current

— Have obtained 3 field period configurations with ballooning
stability up to =23%, Vertical/Kink stability up to 3 =15% (G.
Fu),

aspect ratios A~3.5-4.5
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High 3 Case: 3 Field Periods

IOTA

3 FP, A=3.6, B=15%, <|B|>=1 T, Max.Tor.Cur.= 155 kA
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High 3 Case: |B|/Flux Surface Alignment
 |B| surfaces align with flux surfaces at higher 3 m

 Leadsto |mproved omnlgenelty/qua5| symmetry ‘
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Through its modification of |B|, high 3 improves the thermal ion
neoclassical confinement time

DELTASD Transport analysis

Monte Carlo calculation of
energy lifetimes
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Increasing (3 leads to improved neoclassical transport
and to a decreased bootstrap current coefficient

(results shown are for 3 field period, A = 3.4 device
DKES Transport analysis

DKES monoenergetic particle/energy DKES monoenergetic bootstrap
transport coefficient L,, current coefficient L,
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a-particle slowing-down simulations show these devices
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DELTA5D Transport analysis

The configuration was scaled to <B> = 5T and R, = 10m
for alpha confinement studies
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Summary

|
» Attractive 2 and 3 field period devices have been found for
A=25-35
— Attain good confinement by being near quasi-poloidal symmetry
— Modular coils: good flux surface reconstruction, preserves physics

« Different heating options and magnetic field variation
(0.5 — 1T) allow exploration of different confinement
regimes
— ECH: 1,.,/Tjgg95 from 1.4 to 2
— ICH: 1,,/T|gg95 from 3 to 3.6

* Quasi-poloidal symmetry minimizes viscous damping in the
direction of the E, x B drifts
— lower parallel flows

— influences accessiblity of enhanced confinement regimes which rely
on E. x B shear

— potential for more direct manipulation of E_ x B than in a tokamak



Summary (contd.)

« High 3 configurations offer improved confinement
with increasing [3

— Large fraction of the transform from plasma current

— Similar to advance tokamak, but bootstrap current is well
aligned and not too large (as it is in an axisymmetric device)

— Stability limits (ballooning, kink, vertical) allow operation at
<[>~ 15% (second regime stability)

— Have achieved lowest alpha losses (~12%) of any of our
configurations



