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We present new ideas and a complete collection of tools for solving the difficult
problem of designing, under various physics and engineering constraints,
optimized coils for low aspect ratio stellarators. These include various upgrades
to enhance the abilities of the NESCOIL code to obtain a surface current
distribution which reproduces the desired plasma shape. We have also added the
capability to target, within NESCOIL, the resonant errors produced by the
current sheet. For the next design step of obtaining filamentary coils from the
surface currents, we present a novel use of the genetic algorithm which
Improves and hastens the search for a degp minimum in the optimization criteria
within avery large parameter space. For the final design step of obtaining finite-
size coils from the filaments, we present a series of ideas and codes to allow
efficient targeting of various engineering constraints. Taken together, this suite
of codes has enabled us to successfully design saddle coils for the optimized
guasi-axisymmetric (QA) plasma under consideration for the National Compact
Stellarator Experiment (NCSX) and modular coils for the gquasi-omnigenous
(QO) configuration.



1 Introduction

The relatively recent discoveries of compact (low aspect ratio) stellarators that are optimized to improve various
physical properties have opened up new and exciting branches of stellarator research. The general trend in
designing the new configurations is towards partially restoring some symmetry that would be otherwise lost at
low aspect ratios. The Quasi-Axisymmetric (QA)[2] and Quasi-Omnigeneous (QO)[3] stellarators are two leading
examples of such optimized configurations which can have very good orbit, transport, and stability properties.

Nature, however, extracts a price for this improvement in the form of generally increased difficulty in designing
suitable coils to produce these optimized configurations. We faced this hardship when we started designing coils
for a QA National Compact Stellarator Experiment (NCSX)[5] for Princeton Plasma Physics Laboratory (PPPL)
and a QO concept exploration (CE)[6] experiment. Using the Neumann Equation Solver code NESCOIL[1] we
could not complete even the first step of obtaining a surface current distribution from which realistic discrete
coils could be cut to create the plasma configurations. The current distributions required for an acceptable
plasma reconstruction (as defined by plasma properties such as good surfaces, stability, quasi-symmetry, etc.)
were too complex for realistic coils and there was no systematic way of smoothing them within NESCOIL. There
was also no way of systematically reducing the current density and the resonant errors created on the plasma
surface. Similar difficulties for QO configurations indicated that they may be generic to these optimized, compact
configurations, and that a better method was needed to overcome them.

We have solved these problems without abandoning the linear Green’s function method which is faster than
non-linear optimizers. We have written, tested, and successfully used for QA and QO an enhanced Green’s
function code NESVD. In it we replace the least-square solver in NESCOIL by a Singular Value Decomposition
(SVD) technique[4]. This method allows us to obtain an ordered set of progressively smoother “natural” current
distributions by varying the number of svd weights retained. An optimum solution can then be chosen from this
set to minimize any one of many targets (such as the surface current density) while the plasma reconstruction
stays within acceptable limits set by desired physical properties. We have also implemented a linear modification
of the NESCOIL Green’s functions for the minimization of resonant field errors within this SVD method. These
new capabilities along with the high speed of NESVD have enabled us to successfully tackle the task of exploring
many new QA and QO plasma configurations with good coil design feasibility and creating initial coil designs



which can be further engineered into realistic coils.

In the next section we describe the new NESVD code and describe a method of using NESVD which has
proved successful in actual coil designs. In Sec.3 we present NESVD results for some QA and QO configurations
which were not amenable to an attack with NESCOIL.

2 NESVD: Enhanced NESCOIL code
2.1 A brief review of NESCOIL[1]

NESCOIL solves the exterior Neumann problem of finding a current distribution j(u,v) on a fixed, plasma-
enclosing “coil winding surface” (CWS) which minimizes the normal component of the total magnetic field
B(u',v") on the plasma surface (PLS) (see Fig.1). For this it uses the Green’s function method described in
Ref.[1]. Here we give a quick summary of NESCOIL before explaining our modifications.

In this paper toroidal surfaces with N field periods will be mapped into poloidal (0 < u < 1) and toroidal
(0 < v < N) coordinates, with (u,v) and (u',v") denoting the current and plasma surfaces (CWS and PLS)
respectively. The current distribution at (u,v) on the CWS is given via the surface gradient of the scalar current
potential function ¢(u,v)

J(u,v) =n x Vo(u,v), (1)
where 7 is the outward normal to the CWS and ¢(u, v) can be written in terms of M F poloidal and N'F toroidal
fourier modes by

o(u,v) = Ag Jg o(m,n)sin(2x[mu 4+ nv]) — %v — L. (2)
m=0n=—NF

The secular terms I, and I; are the net poloidal and toroidal currents on the CWS. A direct application of
Biot-Savart law allows one to express the normal component B, of the total magnetic field B(u/,v') produced

at a point (u',v’) on PLS by the surface current j(u,v) on CWS in the form of a linear equation in ¢(m,n) and
the Green’s functions H(u',v') and G(u',v'|m,n) (see Ref.[1])

o 1o MENE 1o _
BJ_(U,U) —H(U,U)-i— Z G(U,U |m7n)¢(m7n) - _BJ—,el‘t? (3)
m=0,n=—NF



where H(u',v") comes from the “constant” term I,. The task is to minimize B,,, = (BL + By ), l.€., to
find ¢(m,n) for which the B, created by the surface currents cancels the B, .,; created by the plasma current
and any other fixed external coils (such as toroidal and vertical field coils). The linear equation 3 is solved in
NESCOIL by using the least-squares method where

NU' NV’

\*= [, ds'B, = > ds'(BL+Biew)’ (4)
is minimized by varying ¢(m,n). Here the integral is written as a sum over (NU', NV’) grid points on the
plasma surface and ds’ is the surface area element of that grid point. Differentiating y? with respect to the
independent variables ¢(m,n) leads to a linear matrix equation which is solved for ¢(m,n). The contours of
constant ¢(u,v) define the filamentary coils corresponding to the current potential (see Fig.2). After finding
¢(m,n) all dependent quantities such as the surface current density, coil curvature etc. can be directly calculated
from it.

2.2 Singular Value Decomposition (SVD) Method[4] used in NESVD

The least-square method used in NESCOIL is not the preferred method for solving linear problems like Eq.3
because it is neither flexible nor robust[4]. It is inflexible because the only freedom in trying to reduce the error
is changing the number of fourier modes used. The accuracy of a solution in NESCOIL can be increased by using
more fourier modes, but this also increases coil complexity (see Fig.2), and there is no way within NESCOIL to
disentangle the two effects. It is also not robust because it often fails when many combinations of the modes
are in the “null space”, i.e., many of the modes are not essential for reducing the errors. Only certain “natural”
combinations of the modes reduce the error significantly while other combinations have relatively little effect, but
the least-square NESCOIL does not provide a way to extract only the “natural” combinations. This redundancy
of modes suggests that there may be a better way to solve this problem.

The preferred way of solving Eq.3 is the Singular Value Decomposition (SVD) method where one directly
inverts it by decomposing the matrix G into a product of 3 matrices U, w, and V' (see [4])

G(NUV'|MNF) = U(NUV'|MNF)-w(MNF|MNF)-V(MNF|MNF) (5)



where M NF is the total number of fourier modes (0 < m < MF and —NF < n < NF), NUV' is the total
number of grid points on the PLS (1 < i’ < NU' and 1 < v’ < NV'), U is a column-orthogonal matrix, w
is a diagonal matrix of M NF non-negative svd weights ordered in decreasing magnitude, and V' contains the
corresponding M N F' svd basis vectors in its columns. The solution of the linear problem is then given by a
linear superposition of the weighted svd basis vectors

ot == 3 (P ) v Q

Coefficients of each basis vector correspond to one set of fourier components ¢(m,n). The basis vectors V; with

Wy

the largest svd weights w; contribute most to reducing the residual error y?. The svd decomposition provides a
set of basis vectors which are ordered by their importance in reducing the error. The vectors with zero or small
weights are combinations of fourier components that are essentially irrelevant for reducing the error, and can
simply be dropped to create smoother solutions without significantly increasing y2. This offers a systematic way
of smoothing the current contours while still keeping the field errors at nonzero but acceptably low values (see
Fig.2). This method is also robust, i.e., it always yields the best possible solution even when the least-square
NESCOIL method fails numerically due to the existence of a null-space (some weights are zero), or can give large
“probable error” due to a “near-null” space (some weights are nearly zero). It is also flexible because it allows
the quick exploration of various tradeoffs, e.g., between accuracy and current density. Finally, it is relatively
easy to implement within the existing NESCOIL code and runs just as fast as the least-squares NESCOIL.

A very productive way to use the smoothing information given by the svd decomposition is to use a large

“svd

number of fourier modes, perform the one necessary svd decomposition in Eq.5, and then calculate an
sequence” of solutions by partially summing Eq.6 up to the number of desired svd weights nsvd. Each step in
this “svd scan” procedure requires one fast matrix multiplication. For each solution one can then quickly calculate
various minimization targets such as B.,,, the maximum current density .J,4,, or the maximum curvature of
current lines. Since these quantities do not vary monotonically with nsvd, a plot quickly indicates the optimum
number of weights to keep. This can be seen in Fig.3 where a local minimum in .J,,,4, is seen at 121 out of 144
svd weights. Such “svd scans” often yield the smoothness normally obtained by using a small number of fourier
modes along with small errors normally obtained by using large number of fourier modes. These local minima

in svd number space are quite robust, i.e., the preferred number of svd weights changes quite smoothly as the



parameters of the problem are varied. This rapid svd scan technique has proved very effective in designing coils
for NCSX-QA and QO. It has produced configurations with lower maximum current density while keeping the
error below acceptable levels.

2.3 Linear NESVD Modifications to Control Resonant Field Errors

Although the procedures described so far minimize B.,, on the outermost plasma surface, they can also be used
to minimize any linear function of B,,.. If the mode structure in the residual B,,, resonates with the winding
number (¢) on the plasma surface, even small amounts of B,,, could create large displacements X.,,. of the field
lines from the surface, i.e, islands and stochastic regions. It is desirable to have the capability of reducing such
resonant errors within the above fast procedure because it can then be integrated in the initial scoping studies
for good plasma-coil combinations.

For regions with small islands, an approximate procedure for turning the normal error B, into field line
displacement X.,, involves solving the linearized equation:

B - VXerr = (Bgaﬁ + B¢a¢)Xerr(€7 ¢) = BJ_|Vp| (7)

on the outermost plasma surface. Here p, # and ¢ are the radial, poloidal, and toroidal coordinate. This equation
can be solved by using the functions A(6, ¢) (see Ref.[7]) to transform from the (4, ¢) coordinates to the straight
magnetic field line coordinates (u,v) given by

w=0+X0,06),v=0 (8)

In the (u,v) system, the normal field line displacement X.,,(u,v) satisfies

_ Bi/gVp

(10w 0) X, v) = g 3

= b(u,v) (9)
where /g and ®' are the Jacobian and the gradient of the toroidal flux respectively. These quantities are available
from the output of the VMEC code[7] which is used to generate the plasma equilibrium. The (u,v) derivatives
reduce to multiplication by the mode numbers in the straight-line coordinates and we get the fourier coefficients



of Xerr

Xepr(myn) = —%
b(m,n) = ;?//dudv sin(mu 4+ nv)b(u, v)
= 13 //—sin [0+ A(0,0)] +no)BL(0,9) (10)

Since b(m, n) is linear in ¢(m, n), and since its conversion to X (m,n) outlined above is also a linear operation,
we can transform the NESCOIL Green’s functions H and G of Eq.3 to new Green’s functions H, and G, to

write X,,.,.(m,n) as
MFNF
Xerr(mymn) = Hy(m,n) + > G$(m,n|m',n')¢(m',n'), (11)
m' =0,n'=—NF

where the modified Green’s functions are given in terms of the original functions by

Gy(m,n|lm',n') = 47?2(m1 ) // CI>’ sin(m[f + A\] + no)G (6, ¢|m', n')
H,(m,n) = ! // o sin(m[0 + A] +no)H (6, ¢) (12)

d72(m -1+ n)

After using Eq.12 to convert H and G to H, and G,, the linear Eq.11 can be solved (to make X, ~ 0)
with the direct svd inversion method discussed in Sec. 2.2. An “svd scan” can then be used to pick out a local
nsvd minimum in B, or J,,.. where X,,,. is also small. Coils designed with this procedure are close to those
designed to minimize B,,,, but they show some small wiggles which are critical for reducing X.,, (see Fig.6).
Applications to QA and QO have shown that these small changes are often important in getting a good plasma
reconstruction.

3 Applications of NESVD to QA and QO configurations

NESVD has been used as a starting point for designing coils for many QA and QO configurations. These
configurations arise as a result of the continuing effort to achieve plasmas with better physical properties. The



task of the NESVD code is to quickly assess the feasibility of designing realistic coils for each new configuration.
The results of NESVD become the starting point for a) cutting a small number of filamentary coils from the
NESVD surface current solution, b) further refining the coil selection by using the genetic algorithm[8], ¢) using
the COILOPT code[9] to further optimize this coil set by moving the current-carrying surface, and finally d)
passing the coil set to the engineering team for detailed design. This procedure is described in detail in Ref.[10].

Case Method MF NF, type | nsvd | Berr % Jmaw Cmplz

QA-C10-Sad | NESCOIL 8,8 - No Solution -
NESCOIL 20,20 - No Solution -

NESVD 20,20 200 0.14 1.2 2.1

QA-C82-Sad NESCOIL 10,10 - 0.22 1.17 3.24

NESVD 8,8 121 0.60 0.83 3.11

NESVD 10,10 194 0.22 0.94 3.13

NESVD 20,20 286 0.22 1.38 3.94

NESVD 32,32 300 0.19 1.35 4.53

QA-Li383-Mod | NESCOIL 8,8 - 0.4 1.0 2.1

NESCOIL 20,20 - 0.4 1.0 2.1

NESVD 8,8 121 0.5 0.6 1.8

NESVD 20,20 286 0.22 1.38 3.94

QO-2fp-Mod NESCOIL 8,8 - 0.4 1.0 2.1

NESCOIL 20,20 - 0.4 1.0 2.1

NESVD 8,8 121 0.5 0.6 1.8

NESVD 20,20 286 0.22 1.38 3.94

QO-3fp-Mod NESCOIL 8,8 - 0.4 1.0 2.1

NESCOIL 20,20 - 0.4 1.0 2.1

NESVD 8,8 121 0.5 0.6 1.8

NESVD 20,20 286 0.22 1.38 3.94

Table 1: NESVD and NESCOIL results for QA and QO. The “Sad” and “Mod” refer to saddle and modular coils respectively. Note that a) NESVD gets
solutions when NESCOIL cannot (QA-C10), b) NESVD solutions yield lower Jp,.5 and complexity as well as good Berr (QA-C82). ¢) NESVD advantage
pesists for all QA and QO cases.

The results of NESVD and NESCOIL calculations for some QA and QO cases are summarized in Table.(1).
For each configuration the number (mf,nf) of fourier modes used, the optimum number (nsvd) of svd weights
used in NESVD, the residual B,,,, the maximum current density (Jq.), and the complexity of the current
contours (Cmple = ¥, m*¢(m,n)/ Zmmo(m,n)) are shown. The NESVD code generally yields smoother



current contours with smaller .J,,,,, than NESCOIL solutions. It also gets solutions in cases where NESCOIL
fails, and allows exploration of tradeoffs between competing goals such as the reduction of B, or J,. or X,
Since NESVD does all this with a speed very close to NESCOIL, it is suitable for configuration scoping and
optimization tasks.

We show in Fig.1 one of the QA configurations along with a surface on which both NESCOIL and NESVD
calculations were performed. The resulting current contours are shown in Fig.2. For this case, the contours
required to keep B, below 0.5% are too complex for further coil design. Increasing the number of modes
MNF in NESCOIL to reduce B,,, further increases the complexity. For the same case, NESVD can rescue the
situation as shown in Fig.2. This is done by increasing M N F but keeping only a small number (200 out of 861)
svd weights. This is possible because NESVD can pick out the “natural” current distributions out of all possible
ones, while NESCOIL is forced to use all of them. A careful choice of the number of svd weights kept often
allows a smooth solution while also keeping the various errors within acceptable limits.

An example of the tradeoffs involved in choosing the right number of svd weights to keep (nsvd) is given in
another NESVD scan shown in Fig.3. Such scans are useful in picking out local minima such as the one in J,,,
at nsvd = 187 out of 861. We expect only the targeted B,,,. to be monotonic with nsvd, and it is seen to drop
quickly for nsvd > 184. Thus a NESVD scan lets us pick out just the right contours with small .J,,,, as well
as small B.,.. The resulting current contours are smoother than the NESCOIL contours, and can be used for
further coil design. This NESVD flexibility greatly enhaces the chances of a successful coil design.

Case Target | MF,NF | nsvd | Xepr% | Berr% | Cmple
QA-Li383 Berr 8,8 126 14.4 0.44 2.1
Xerr 8,8 126 2.1 0.57 2.2
Ratio between | X and B | cases 7.0 1.3 1.05
QA-C10 Xerr 8,8 118 0.11 0.8 2.77
Berr 8,8 126 3.63 0.5 2.35
Ratio between | X and B | cases 32.2 1.63 1.18

Table 2: X, vs B, targeted XNESVD results for QA and QO. The ratios indicate differeces in targeting X., abd B, for the same case. It is seen that
Xepr can be suppressed by large factors while Bepp, Jnae, and C'mplz increase only marginally. This suppression ratio is retained when a finite number of
coils are cut from the NESVD solution.

Finally, we show in Table 2 and Figs.4, 5, and 6 the results of targeting the resonant field line displacement



(Xerr) instead of the residual normal B field (B,,,). It can be seen that a dramatic reduction of X,,, (by a factor
of 30 in this case) is achieved while the B,,, still remains low. This improvement possibly depends on the value
of the rotational transform near the plasma surface, i.e, the proximity of a rational surface to the outermost
plasma surface as defined by VMEC[7]. In the few expensive PIES[12] code runs we have performed for coils
designed from X, targeted NESVD runs, we have found good correlation between the reduction of resonant
errors and plasma reconstructability (see Figs.4, and 5).

Since the X, targeting in NESVD is implemented within the svd scan capability, all the tradeoff methods
discussed above can be applied to designing coils which create small islands. We show an example of this in Fig.7
where we picked nsvd = 113 based on low J,,4,,. The X, targeting within NESVD reduces the X, by a factor
of 7 compared to B,,, targeting in this case. We then checked whether this gain of 7 in X,,, survives the process
of cutting finite numbers (from 8 to 20 per period) of coils carrying equal currents from this solution. Fig.7
shows that both X.,. and B,,, rise by only a factor of 3 even for as few as 6 coils per period, thus staying below
the B, targeted sheet current case. We then further lowered the error by applying the genetic algorithm (GA)
to this case. This algorithm chooses a set number of coils from all possible current contours and also optimizes
the current in each coil by using an svd technique (see Ref.[8] for details). In this case GA gave a good solution
with X,,, just 26% above the sheet current solution with only 8 coils per period.

4 Conclusions

In summary, we have developed and successfully used a new code NESVD which greatly enhances the capabilities
of the popular code NESCOIL. The new capabilities include a syatematic and robust method of smoothing the
coils, a fast method to control coil-generated resonant field errors, and a very useful technique to rapidly scan
many solutions to pick out ones that optimize many coil properties. Our experience shows that NESVD is a useful
and essential new tool for the design of compact stellarator coils for which NESCOIL is often inadequate. Its speed
also enables the fast assessment of the existence of realistic coils for the many new compact stellarator plasma
configurations that are currently being developed. It has been developed in a multi-university collaboration
for the National Compact Stellarator coil design task, and is a new resource available to the U.S. stellarator
community. Please contact pvalanju@mail.utexas.edu for further details of the code.
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NESVD Scan: QA/C82/mf,nf=20,2(
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Figure 3: An svd scan for the QA C82 configuration to find the nsvd at which there are local minima
of Jmae. The maximum number of independent fourier modes was 861 for mf = 20, nf = 20. At
nsvd = 187 we get good Jy4e as well as Bepp.



L1 383 Berr vs Xerr Targeted Coils
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Figure 4: PIES free boundary calculation for the B.,, targeted NESVD surface current solution.
Note the large islands near edge. The next figure shows the positive effects of targeting X, to
remove these islands.

12



-3.0 -Z.5 -1.0 G 1.0 2.0 3.0

Figure 5: PIES free boundary calculation for the X,,., targeted NESVD surface current solution.
The large islands near the edge (previous figure) have been suppressed by X, targeting.
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The stepsin this exercise were:

1. Run Xerror and Berror-targeted NESVD on d1826 surface for Li383 plasmato
produce two current potentials. Calculate all errors (X and B) and Jmax etc.

2. Cutn (6 £ n £ 20) uniform coils per period (fixed step in current potential), and for
each coilset calculate all errors (X and B) by using post-processor code B2xpp.

3. Use Berror+Jmax-targeted GA to cut n (8 £ n £ 14) coils per period with variable
currents and non-uniform (variable step in current potential) coils. GA uses svd to
choose best currents within GA to reduce combination of Berror and Jmax.

4. Make GA runs with different weights on Berr and Jmax (and soon Xerr) targets to
reduce Jmax below 20 kA while keeping Berr low.

Note that a capability to target Xerr along with Berr and Jmax within GA has been
implemented and is currently being benchmarked. It will be used when available.




L1383 |Xer-Targeted-NESVD Berr-Targeted-NESVD
Coilg/period| Low Jmax High Jmax Low Jmax High Jmax
8 19.75 26.2 15.66 21.7
Xerr 6.81E-04 8.78E-04 1.84E-03 1.56E-03
Xerr Max 2.55E-03 2.75E-03 5.20E-03 4.50E-03
Berr 8.99E-03 7.90E-03 8.74E-03 7.58E-03
Berr Max 4.15E-02 4.42E-02 3.79E-02 3.92E-02
Comments Promising J too high Bad Surfaces J,X,B all High
Low Xerr, high Berr High Xerr & Berr
Satus PIES 3-in progress Don't run PIES PIES 1-done Don't run PIES
14 18.2 33.45 16.25 22.23
Xerr 4.90E-04 1.03E-03 1.21E-03 1.12E-03
Xerr Max 1.55E-03 2.76E-03 3.74E-03 3.60E-03
Berr 9.11E-03 6.23E-03 7.90E-03 5.55E-03
Berr Max 4.23E-02 2.94E-02 3.82E-02 3.33E-02
Comments Best Xerr, high Berr Jtoo high Xerr High, Jlow Good Surf?
Too many coils? Berr not low J high, B lowest
Satus Try PIES Don't run PIES Try PIES? PIES-2-done?
1) All cases are with combinations of Berr & Jmax targeted in GA Table 1

2) For Surface Current: Xerr = 1.55E-4 for Xerr targeted and 9.45E-4 for Berr targeted NESVD




Li383 High Beta GA Coils Ratios of Errors to base case Table 2 Actual Errors made by GA coils Low
Case Coils XR MXR BR BXR COMMENTS <|Xerr|> Max |Xerr| <|Berr|> Max |Berr| Jmax
Base: d1826.12.113.| 60 1 1 1 1 Base Case 1.55E-04  9.49E-04  5.69E-03 2.89E-02
XB -GA = X err targeted NESVD & B err targeted GA Coils
ga.d1826.12.113.60.7.1.| 14 6.62 290 1.09 1.02 High Jmax 1.03E-03 2.76E-03 6.23E-03 2.94E-02 33.45
ga.d1826.12.113.60.6.1.| 12 591 345 117 1.17 Do NOT 9.16E-04 3.27E-03 6.63E-03 3.38E-02 24.53
ga.d1826.12.113.60.5.1.| 10 6.14 356 1.19 1.29 Run PIES 9.51E-04 3.38E-03 6.78E-03 3.74E-02 24.9
ga.d1826.12.113.60.4.1.| 8 567 290 1.39 153 High Jmax 8.78E-04 2.75E-03 7.90E-03 4.42E-02 26.2
XBJ -GA = X err targeted NESVD & B err+ J max targeted GA Coils
ga.d1826.12.113.60.7.9.| 14 3.16 163 1.60 1.45 Low Jmax 4.90E-04 1.55E-03 9.12E-03 4.19E-02 18.2
ga.d1826.12.113.60.6.9.| 12 6.96 369 1.81 1.67 Run PIES 1.08E-03 3.50E-03 1.03E-02 4.82E-02 16.59
ga.d1826.12.113.60.5.9.| 10 6.96 4.08 192 1.76 On These 1.08E-03 3.87E-03 1.09E-02 5.10E-02 15.6
ga.d1826.12.113.60.4.7.| 8 439 269 158 1.44 | PIES-3 ??? 6.81E-04 2.55E-03 8.99E-03 4.15E-02 19.75
BB -GA = B err targeted NESVD & B err targeted GA Coils
ga.d1826.11.126.60.7.1.| 14 7.24 379 098 1.15 | PIES-2 good 1.12E-03 3.60E-03 5.55E-03 3.33E-02 22.23
ga.d1826.11.126.60.6.1.| 12 877 458 1.01 1.18 Surfaces 1.36E-03 4.35E-03 5.72E-03 3.40E-02 22.37
ga.d1826.11.126.60.5.1.| 10 | 11.07 5.55 1.09 1.25 | But Jmax is 1.72E-03 5.27E-03 6.18E-03 3.62E-02 22.71
ga.d1826.11.126.60.4.1.| 8 10.09 4.74 1.33 1.36 Too High 1.56E-03 4.50E-03 7.58E-03 3.92E-02 21.70
BBJ -GA = B err targeted NESVD & B err+ J max targeted GA Coils
ga.d1826.11.126.60.7.9.| 14 7.84 394 139 132 Low Jmax 1.21E-03 3.74E-03 7.90E-03 3.82E-02 16.25
ga.d1826.11.126.60.6.9.| 12 9.66 469 143 1.35 Run PIES 1.50E-03 4.45E-03 8.16E-03 3.89E-02 16.28
ga.d1826.11.126.60.5.9.| 10 | 10.13 5.09 1.44 1.21 On These 1.57E-03 4.83E-03 8.19E-03 3.49E-02 16.1
0a.d1826.11.126.60.4.7.| 8 11.88 548 154 1.31 PIES-1 bad 1.84E-03 5.20E-03 8.74E-03 3.79E-02 15.66




Li383 High Beta NESVD Ratios of Errors to base case Table 3 Actual Errors From uniform coils
X-NES = Uniform Coils cut from Xerror targeted NESVD is Case 12

Case Coils XR MXR BR BXR COMMENTS <|Xerr|> Max |Xerr| <|Berr|> Max |Berr]| Jmax
Base: d1826.12.113.| 60 1 1 1 1 Base Case 1.55E-04 9.49E-04 5.69E-03 2.89E-02 0.7605
d1826.12.113.[ 20 4.31 1.99 1.10 1.02 These are 6.67E-04 1.89E-03 6.24E-03 2.95E-02 Note
d1826.12.113.[ 19 3.06 175 1.18 1.07 uniform 4.75E-04 1.66E-03 6.72E-03 3.09E-02 This is
d1826.12.113.[ 18 487 226 1.10 1.03 coils cut 7.55E-04 2.14E-03 6.26E-03 2.98E-02  in NESVD
d1826.12.113.| 17 3.49 1.89 1.24 1.12 from nesvd 5.41E-04 1.79E-03 7.07E-03 3.23E-02 units
d1826.12.113.[ 16 6.51 315 1.17 1.06 | Xerr-targeted | 1.01E-03 2.99E-03 6.63E-03 3.06E-02 Surface
d1826.12.113.[ 15 3.75 2.05 1.37 1.12 Case 12 5.80E-04 1.95E-03 7.82E-03 3.24E-02 current
d1826.12.113.| 14 4.50 2.27 1.37 1.29 which is 6.98E-04 2.15E-03 7.79E-03 3.72E-02 density
d1826.12.113.( 13 5.10 2.47 1.56 1.21 used as the 7.91E-04 2.34E-03 8.88E-03 3.49E-02 All coils
d1826.12.113.[ 12 456  3.02 1.56 1.43 Base Case 7.06E-04 2.86E-03 8.88E-03 4.12E-02 have equal
d1826.12.113.[ 11 7.28 3.21 1.84 1.41 for GA runs 1.13E-03 3.05E-03 1.05E-02 4.08E-02 current
d1826.12.113.[ 10 473 275 1.80 1.55 7.33E-04 2.61E-03 1.03E-02 4.49E-02  GA gives
d1826.12.113.[ 9 12.78 6.32  2.38 1.76 1.98E-03 6.00E-03 1.35E-02 5.09E-02  current
d1826.12.113. 8 9.46 564 227 2.08 1.47E-03 5.35E-03 1.29E-02 6.01E-02 in coils
d1826.12.113. 7 16.24 801 3.33 237 2.52E-03 7.60E-03 1.89E-02 6.86E-02  A/cm”2
d1826.12.113. 6 19.21 976 3.08 292 2.98E-03 9.26E-03 1.75E-02 8.45E-02

B-NES = Uniform Coils cut from Berror targeted NESVD is Case 11

d1826.11.126. 60 6.10 3.18 0.78 1.23 Berr-Nesvd 9.45E-04 3.02E-03 4.41E-03 3.57E-02 0.8214

d1826.11.126.[ 20 6.75 364 095 1.23 These are 1.05E-03 3.45E-03 5.39E-03 3.55E-02 Note
d1826.11.126.| 14 731 381 124 114 uniform 1.13E-03 3.61E-03 7.07E-03 3.29E-02 This is
d1826.11.126.| 13 524 292 176 146 coils cut 8.11E-04 2.78E-03 1.00E-02 4.22E-02  in NESVD
d1826.11.126.| 12 8.21 4.47 1.40 1.22 from nesvd 1.27E-03 4.24E-03 7.95E-03 3.53E-02 units
d1826.11.126.| 11 7.33 420 215 1.78 | Berr-targeted | 1.13E-03 3.98E-03 1.22E-02 5.15E-02  All coils
d1826.11.126.[ 10 769 402 1.65 1.48 Case 11 1.19E-03 3.81E-03 9.37E-03 4.27E-02  have equal
d1826.11.126.| 9 13.17 6.24 286 2.25 2.04E-03 5.92E-03 1.63E-02 6.51E-02 current

d1826.11.126. 8 8.89 4.30 2.14 2.04 1.38E-03 4.08E-03 1.22E-02 5.89E-02




Jmax kA per sg. cm

Plot 1: Jmax for GA Li383 d1826 from Xerr and Berr-targeted-NESVD
Within GA: Berr or Jmax is targeted for each coilset
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Plot 2: <|Xerr|> Normalized to <|Xerr|> for Xerr-Targeted-NESVD
Normalized <|Xerr|> for Berr-targeted surface current = 6.1
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Plot 3: Max_Xerr Normalized to Max_Xerr for Xerr-Targeted-NESVD
Normalized Max_Xerr for Berr-targeted surface current = 3.18
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Plot 4: <|Berr|> Normalized to <|Berr|> for Xerr-Targeted-NESVD
Normalized <|Berr|> for Berr-targeted surface current = 0.78
Note that GA targets Berr and hence suppresses it
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Plot 5: Max_Berr Normalized to Max_Berr for Xerr-Targeted-NESVD
Normalized Max_Berr for Berr-targeted surface current = 3.18
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