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Abstract

An analytic stability criterion is derived for the vertical mode in a large aspect

ratio stellarator. The effects of vacuum magnetic field generated by helical

coils are shown to be stabilizing due to enhancement of field line bending

energy. For wall at infinite distance from the plasma, the amount of external

poloidal flux needed for stabilization is given by f = (κ2 − κ)/(κ2 + 1) where

κ is the axisymmetric elongation and f is the ratio of vacuum rotational

transform to the total transform.
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It is known that tokamak plasmas suffer from vertical instability when plasma shaping is

sufficiently elongated. On the other hand, the tokamak beta limit tend to increase with elon-

gation as implied by the well known Troyon limit [1]. Thus, advanced tokamak operations

require feedback stabilization of the vertical mode in order to achieve high beta.

Recent numerical calculations have shown that the vertical mode is robustly stable in

a current-carrying quasi-axisymmetric stellarator [2,3] whereas an equivalent tokamak is

unstable. In this work, we show analytically that the vertical mode is much more stable in

a current-carrying stellarator than in an equivalent tokamak. The stabilization comes from

vacuum magnetic field generated externally by helical coils. The external poloidal magnetic

field enhances the field line bending energy of the vertical motion relative to the current-

driven term. In the following, we will derive an analytic stability criterion of the vertical

mode in a current-carrying stellarator plasma.

We start from the energy principle [4]. The perturbed plasma energy is a sum of plasma

potential energy δWp and vacuum magnetic energy δWv,

δWp =
1

2

∫
p
dv[B1

2 + J · (ξ ×B1)] (1)

δWv =
1

2

∫
v
dvB1

2 (2)

where B1 is the perturbed magnetic field, J is the equilibrium plasma current, ξ is the

plasma displacement. We have also assumed that the perturbation is incompressible.

For simplicity, we consider a large aspect ratio, low beta stellarator plasma. The plasma

shape can then be approximated by a cylinder with cross-section shape varies along the

axial direction due to helical coils. Using the stellarator expansion [5] via averaging along

the axial direction, the equilibrium and stability problem is reduced to a two dimensional

one. Then, the equilibrium and perturbed magnetic field are reduced to

B = z×∇Ψ + Bzz (3)

B1 = z×∇Ψ1 (4)

where we have used a cartesian coordinates (x, y, z) with z the coordinate along the axial
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direction, and z is the unit vector. Here, Ψ and Ψ1 is the equilibrium and perturbed

poloidal magnetic flux respectively. The equilibrium flux Ψ = Ψc +Ψv is a sum of internally

generated flux Ψc due to current and externally generated one Ψv due to helical coils. To

make further analytic progress, we assume uniform current density and uniform vacuum

rotational transform, then the total equilibrium flux can be written as

Ψ = (Ψv0 + Ψc0)(
x2

a2
+

y2

b2
) (5)

for an elliptical shape with κ = b/a being the ellipticity. Here Ψv0 and Ψc0 are the flux values

at the plasma edge due to helical coils and plasma current respectively. The corresponding

equilibrium current is J = J0z with

J0 = 2Ψc0(
1

a2
+

1

b2
) (6)

We consider the vertical perturbation as a rigid shift along the y direction (i.e., the

direction along the elongation). Then ξ = ξyy, and Ψ1 = −2ξyΨ0y/b2 where Ψ0 = Ψv0+Ψc0.

The potential energy is reduced to

δWp =
1

2

∫
p
dv[|∇Ψ1|2 + J0ξy

∂Ψ1

∂y
] (7)

= 2V ξ2
y [

1

b4
Ψ2

0 −
1

b4
(κ2 + 1)Ψc0Ψ0] (8)

where V is the plasma volume. The vacuum energy is reduced to

δWv =
1

2

∫
v
dv|∇Ψ1|2 (9)

where Ψ1 satisfies

∇2Ψ1 = 0 (10)

in the vacuum. Equation (10) can be solved conveniently using confocal coordinates (θ, µ)

as

x =
√

b2 − a2 sinh(µ) cos(θ) (11)

y =
√

b2 − a2 cosh(µ) sin(θ) (12)
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The solution is then given by

Ψ1 = −2ξy
Ψ0

b
sin(θ)e−(µ−µ0) (13)

in absence of a conducting wall. Here µ = µ0 defines the plasma boundary shape with

tanh(µ0) = a/b. The integral in Eq. (9) can be evaluated straightforwardly and gives

δWv =
2V ξ2

ab3
Ψ2

0 (14)

Then the total perturbed plasma energy is given by

δW =
2V ξ2

b4
[(1 + κ)Ψ2

0 − (κ2 + 1)Ψc0Ψ0] (15)

Physically, the first term in the bracket is the sume of the field line bending energy and

vacuum magnetic energy, and the second term is the destabilizing term driven by current.

The externally generated poloidal flux is stabilizing because it enhences the field line bending

energy and the vacuum energy by a factor of (Ψ0/Ψc0)
2 whereas the current driven term is

only enhanced by a factor of Ψ0/Ψc0. This is true when the external poloidal flux adds to

the internal flux. In case of external flux subtracts the internal flux, the external poloidal

flux can be destabilizing when 0 < Ψ0/Ψc0 < 1. When Ψ0/Ψc0 < 0, the plasma is always

stable regardless of value of Ψ0/Ψc0.

Equation (15) gives the following stability criterion for the fraction of external rotational

transform f = ιext/ι needed for stabilization,

f =
κ2 − κ

κ2 + 1
(16)

Note that f = 1 − Ψc0/Ψ0. This result has been confirmed by the numerical calculations

using the 3D global stability code Terpsichore [6]. For f = 0, this stability criterion (i.e.,

κ = 1) reduces to that of a tokamak without conducting wall stabilization [7,8].

Finally, we note that effects of stellarator field on positional stability of a current-carrying

plasma had been investigated experimentally by Sakurai and Tanahashi [9]. It was found

that the stellarator field produced a large negative vertical field index which made the plasma
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much more stable in the horizontal direction. It was also found the plasma was vertically

stable although the vertical field index was negative. Thus, it was concluded [9] that the

field index can not be used as a stability criterion for the vertical mode in a stellarator.

This work here explains how a stellarator plasma can be more stable vertically than in an

equivalent tokamak plasma.

In conclusions, we have derived an analytic stability criterion for the vertical mode in a

current-carrying stellarator plasma. The vertical mode can be stabilized by the externally

generated poloidal flux due to enhancement of field line bending energy.

The author is indebted to Dr. Neil Pomphrey for sharing his derivation of an analytic

stability criterion of the vertical mode in a straight tokamak and for valuable discussions.

The author also acknowledges valuable discussions with Drs. Allen Boozer, Steve Jardin,
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Department of Energy under Contract No. DE-AC02-76-CHO-3073.
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