Princeton Plasma Physics Laboratory Procedure									
Procedure Title: Field Period Assembly Component Receipt Inspection									
Number: D-NCSX-FPA-QA1-00	Revision: 0	Effective Date: April 27, 2006 Expiration Date: (2 yrs. unless otherwise stipulated)							
Procedure Approvals									
Author: Mike Viola ATI: John Edwards									
RLM: Larry Dudek									
Responsible Division: NCSX Proj	ect								
LABWIDE:	Procedure Ree Designated	juirements by RLM							
X Work Planning Form (ENG-032) W	P 1224	Lockout/Tagout (ESH-016)							
Confined Space Permit (5008,SEC.8	Chap 5)	Lift Procedure (ENG-021)							
Master Equip. List Mod (GEN-005)	X	ES&H Review (NEPA, IH, etc.) NEPA 1261							
RWP (HP-OP-20)		Independent Review							
ATI Walkdown X Pre-Job Brief									
X Post-job Brief *									
D-SITE SPECIFIC:									
X D-Site Work Permit (OP-AD-09)		Door Permit (OP-G-93)							
Tritium Work Permit (OP-AD-49) USQD (OP-AD-63)									
X Pre-Job Brief (OP-AD-79)		T-Mod (OP-AD-03)							
** DCA/DCN (OP-AD-104) #									

* Required for installations involving internal vacuum installations, critical lifts, and for the initial installation of repetitive work.

** OP-AD-104 was voided by procedure ENG-032. However, DCA's that were open at the time of adoption of ENG-032 are still considered valid for work approval purposes.

REVIEWERS (designated by RLM)	Rec'd/ Incorp. Comments
Accountable Technical Individual John W Edward	s X
Test Director	
Independent Reviewer	
D-Site Shift Supervisor	
Independent	
NCSX Dimensional Control Coordinator Brent Stratton	
Vacuum Vessel Cognizant Engineer Paul Goranson	
NCSX Field Supervisors Steve Raftopoul	los, Mike Viola X
Project Engineer for Stellerator Systems (WBS 1) Manager Brad Nelson (O	RNL)
FPA tooling and constructability Tom Brown	X
Quality Assurance/Quality Control Frank Malinows	ski X
Maintenance and Operations Division	
Energy Conversion System/Motor Control Division	
Engineering Wayne Reierser	n X
Environmental Restoration & Waste Management Division	
Environmental, Safety & Health Jerry Levine	X
Industrial Hygiene Bill Slavin	
Health Physics	
RLM Larry Dudek	

TRAINING (designated by RLM)									
No training required	Instructor:	<u>Johr</u>	n Edwards						
Personnel (group, job title or individual name)			Read Only	Instruction Pre-job Briefing	Hands On				
Lead Tech.				X					
Technicians performing task				X					
Field Supervisors				X					
Quality Control Representative			X						
Training Rep.									
RLM: Larry Dudek									

RECORD OF CHANGE

Revision	Date	Description of Change
00	4/27/06	Initial release

TABLE OF CONTENTS

1	Scor	De	. 1
2	Арр	licable Documents	. 1
3	Safe	ty Requirements	. 1
	3.1	Job Hazard Analysis	. 1
4	Prei	equisites & Conditions	. 1
	4.1	Pre-Job Briefing	. 1
	4.2	Daily Operations Startup and Shutdown	. 1
	4.3	Daily Startup Activities:	. 1
	4.4	Daily Shutdown Activities:	. 2
5	Rec	eipt and Inspection Process	. 2
	5.1	General FPA component Receipt Inspection	. 2
	5.2	Vacuum Vessel Receipt Inspection	. 2

1 Scope

The Field Period Assembly (FPA) task involves assembling 3 identical 120° Field Period Assemblies using 5 separate workstations. The field period assemblies include many small individual parts as well as major components being delivered by outside suppliers.

This procedure is used to describe the general FPA component receipt inspection and specifically addresses the Vacuum Vessel Sub Assemblies (VVSA) being delivered by Major Tool.

2 Applicable Documents

All work processes are governed by the "NCSX Manufacturing Facility Operations Plan", NCSX-PLAN-MFOP-00. All governing documents associated with this procedure, are identified in the MIT/QA Plan, NCSX-MIT/QA-185-01.

3 Safety Requirements

All work will be performed in a safe manner in accordance with PPPL Environmental Safety & Health Directives **ES&H 5008** and the "Integrated Safety Management" (ISM) policy.

3.1 Job Hazard Analysis

A JHA will be generated for each procedure, identifying existing or potential workplace hazards and to evaluate the risk of worker injury or illness associated with job tasks. (Reference document **ESH-004 "Job Hazard Analysis**") The IH representative will review the JHAs for accuracy as well as completeness. It will be reviewed with all activity participants at the Pre-Job briefings.

4 Prerequisites & Conditions

4.1 Pre-Job Briefing

A pre-job briefing will be held, describing the processes and safety issues prior to starting any part of this procedure. Attendance shall be documented via training sign-in sheet. All procedural records will be made in Appendix A – Document Sign-off Record

See Appendix A – Document Sign-off Record

4.2 Daily Operations Startup and Shutdown

Each working day, it is required to complete and initial the daily operations startup log to ensure that the station is ready to commence work activities for the day. The signoff log is located in the Daily Station Log.

4.3 Daily Startup Activities:

- **4.3.1** Check all daily supplies needed:
- **4.3.2** Verify operation of all equipment needed that day.
- **4.3.3** Check station for cleanliness
- **4.3.4** Check that safety equipment needed for day's activities are available
- **4.3.5** Check that the day's travelers and procedures are in their document holder.
- **4.3.6** Once completed, date and initial daily log at the back of the Station Log Book.

4.4 Daily Shutdown Activities:

- **4.4.1** Turn off power to equipment not in use.
- 4.4.2 Clean entire workstation area.
- **4.4.3** Verify that all Traveler and data sheet information is complete.
- 4.4.4 The Lead Technician shall verify that the Station's Log Book has been completed and signed for the day.
- **4.4.5** Once completed, date and initial daily log at the back of the Station Log Book.

5 Receipt and Inspection Process

This procedure is to be used as to receive, inspect and store NCSX FPA components. Appendix A serves as the document sign off for the Vacuum Vessel Receipt Inspection portion of this document which, because of the value of the contract, is covered step by step reflecting the VVSA specification requirements. Appendix B lists all material and/or equipment used with this procedure. It shall serve as a running log of items received, their drawing(s), Requisition or Contract number, and storage number/location.

5.1 General FPA component Receipt Inspection

Using Appendix B, list the item received, the requisition or contract number, type of material, any reference drawing numbers and then check the following indicating with a check mark that the item passed or make comments indicating an NCR was generated to reflect any unacceptable conditions. Use as many lines as needed to record these conditions.

5.1.1 Perform Receipt Inspection

Using Appendix B list each item and check items off as they are performed below.

- 5.1.1.1 Review item documents for completeness,
- 5.1.1.2 Check items for obvious damage,
- 5.1.1.3 Check proper quantity,
- 5.1.1.4 Check labeling or marking for future reference,
- 5.1.1.5 Check Material Certifications and file, if applicable
- 5.1.1.6 Arrange for QC to perform a visual inspection for surface finish, weld quality, if applicable
- **5.1.1.7** Arrange for QC to perform a permeability check, if applicable
- **5.1.1.8** Perform a dimensional check, if applicable

5.2 Vacuum Vessel Receipt Inspection

Three VVSA units, including all hardware in the referenced drawings, are to be fabricated and delivered by Major Tool. This contract has specific requirements in its specification, NCSX-CSPEC-121-02, and therefore its verification is being called out separately below. Appendix C is a copy of the relevant paragraphs associated with the delivery and quality requirements of the VVSA specification. The VVSA, SE120-002, consists of a vessel shell referred to as a Vacuum Vessel Period Assembly (Period Assembly), SE120-003, a Spacer Assembly (Spacer), SE121-014, two (2) Vacuum Vessel Blank Off Covers, SE121-102, two (2) Vacuum Vessel Seals, SE121-095, and the port extension assemblies with their associated blank flanges, seals, and fasteners.

- 5.2.1 Verify No Damage, Labeling, and Marking
- **5.2.1.1** Check off items against material shipping list.
- **5.2.1.2** Inspect for obvious damage to packaging.
- **5.2.1.3** Verify all components are sealed, packaged, and skidded to provide protection against contamination, deterioration and damage during shipment. Vacuum sealing surfaces shall be protected from damage during shipping and handling.
- **5.2.1.4** Verify that labeling provides a unique reference for each part and is recognizable at a later date. Subassemblies and components, except bolts and standard hardware, shall be marked with unique serial numbers to provide positive identification. Boxes containing loose parts, attachments, and accessories shall be marked identifying the assembly to which they belong.
- **5.2.1.5** Verify match marking is provided to uniquely identify the location and positioning of all port extensions relative to the Period Assembly.

See Appendix A – Document Sign-off Record

5.2.2 Verify Material Certifications

PQA shall spot check verify that material certifications have been received per the contract specification NCSX-CSPEC-121-02 Paragraphs 3.3.2.1 through 3.3.2.7 (See Appendix C).

See Appendix A – Document Sign-off Record

5.2.3 Perform Visual Inspections

QC shall perform spot checks of approximately 10% of the surface verifying the interior meets a 32 micro-inch finish and the exterior does not have any imperfections greater than 0.04 inches deep (See Appendix C).

See Appendix A – Document Sign-off Record

5.2.4 Perform Permeability check of welds components and shell surface

QC shall perform spot checks of approximately 10% of the surface verifying the relative magnetic permeability of all components does not exceed 1.02 except for welds (and heat affected zones) joining stainless steel to nickel chromium, which shall not exceed 1.2 (See Appendix C).

See Appendix A – Document Sign-off Record

****NOTE****: It may be necessary to mount the VVSA into Station 1 per D- NCSX-FPA-001 in order to perform these next steps.

- **5.2.5** Using tooling ball nominals supplied by the manufacturer, align to the VVSA. Compare the "measured" locations of the tooling balls to the nominal locations supplied by the manufacturer. They should not differ by more than 0.002"
- **5.2.6** Take spot measurements for the purpose of verifying the manufacturer's metrology data. E.g. end flange position. Note that it may be necessary to move the VVSA and/or the metrology equipment and re-align to several positions to complete this step.
- **5.2.7** At the discretion of either the Field Manager, Metrology Engineer or Dimensional Control Supervisor, take any additional measurements as needed or requested.

See Appendix A – Document Sign-off Record

Appendix A – VVSA Receipt Inspection

TASK Description	Acceptable or Comment	Print Last Name	Initials	Date
4.1 Pre job Briefing complete				
VVSA Field Supervisor				
5.2.1 Labeling and Marking				
Lead Tech				
5.2.2 Material Verification				
PQA				
5.2.3 Surface Finish				
QC				
5.2.4 Permeability				
QC				
5.2.5 Metrology Tooling				
datums				
Metrology Supervisor				
5.2.6 End flange positions				
Metrology Supervisor				

Appendix B – FPA Material Receipt List

Inspector/ Date	General Description	Requisition/ Contract Number	Material	Reference Document/ Drawing/ Metrology File	Documents	Damage	Quantity	Labeling	Material	Visual	Perm	Dimension	Location	Any NCRs?	Comments

Appendix C – VVSA Specification Reference

VVSA Labeling and Packaging

NCSX-CSPEC-121-02 Reference Paragraph

5.1 Labeling

Subassemblies and components, except bolts and standard hardware, shall be marked with unique serial numbers to provide positive identification. When such markings would impair proper functioning of the equipment, a metal, non-corrosive, non-magnetic tag shall be used. Match markings shall be provided to uniquely identify the location and positioning of all port extensions relative to the Period Assembly.

5.2 Packing and Skidding

All components shall be sealed, packaged, and skidded to provide protection against contamination, deterioration and damage during shipment. Vacuum sealing surfaces shall be protected from damage during shipping and handling.

5.3 Marking

Each shipping skid shall be marked with the name of the Seller, Laboratory Purchase Order Number, the component name, and gross weight. Boxes containing loose parts, attachments, and accessories shall be marked identifying the assembly to which they belong, and where possible, boxes are to be secured to the skid of the unit.

Identify each item and list the item in the Material log.

Material Verification

NCSX-CSPEC-121-02 Reference Paragraph

3.3.2.1 Sheet, Strip, and Plate

All as-supplied sheet, strip, and plate shall be annealed Alloy (UNS N06625) and meet the requirements of ASTM B 443.

3.3.2.2 Tubing and Piping

All Inconel tubing and pipe shall be seamless or welded Alloy (UNS N06625) and meet the requirements of ASTM B 444, or ASTM B 705. All austenitic stainless steel tubing shall be seamless or welded 316L alloy and meet the requirements of ASTM A 249/A 249 M-04A or ASTM A 213/A 213M-03.

3.3.2.3 Bar and Structural Shapes

All bar and structural shapes shall be annealed Alloy (UNS N06625) and meet the requirements of ASTM B 446.

3.3.2.4 Conflat Flanges

The conflat flanges shall meet the requirements of ASTM A 240.

3.3.2.6 Bolts

Conflat flange bolts shall be ASTM A 193, Grade B8; silver-plated, 12-point bolt kits provided with flanges from the flange manufacturer. Non-circular o-ring flange bolts, with the exception of the neutral beam port, shall use ASTM A453 Grade 660 bolts (A286) The neutral beam port, whose flanges are Inconel 625, shall use Inco 718 bolts per ASTM A1014.

3.3.2.7.1 Metal Seals

Seals for Conflat flanges shall use standard copper seals provided from the flange manufacturer.

3.3.2.7.2 Custom Flanges

Custom non-circular flanges, with the exception of the neutral beam port, will be sealed with two Viton A seals.

Visual Inspections

NCSX-CSPEC-121-02 Reference Paragraph

3.2.2.1 Interior (Vacuum) Surfaces

Interior of the Period Assembly wall, Spacer, and port extensions shall be polished to a 32 micro-inch finish. Interior weld beads, scratches, and tooling marks resulting from fabrication shall be polished to a 32 micro-inch finish. Interior wall surface weld beads shall be ground to within .032 inch of the surface prior to polishing.

3.2.3 Exterior Surface Finish

Mill finish on the exterior surfaces is acceptable, but any imperfections greater than 0.04 inches deep shall be weld repaired and ground smooth.

Permeability check of welds components and shell surface

NCSX-CSPEC-121-02 Reference Paragraph

3.2.4 Magnetic Permeability

Relative magnetic permeability of all components shall not exceed 1.02 except for welds (and heat affected zones) joining stainless steel to nickel chromium, which shall not exceed 1.2.

4.2.3 Verification of Magnetic Permeability

To verify conformance to Section 3.2.4, magnetic permeability shall be measured in accordance with the requirements of ASTM A 800, Supplementary Requirement S1, but with the measurements taken in relative permeability, rather than ferrite content. All surfaces and features shall be checked with a calibrated Severn Permeability Indicator₃ for compliance with Section 3.2.4. The surfaces of the VVSA components shall be checked and documented in a 6" x 6" grid. The weld seams in the shell wall, at the conflat flanges, and at the junction between the port extension, reinforcement, and shell shall be checked every 1/2" (both inside and outside surfaces wherever possible).