# Coil Design to Achieve Physics Goals of NCSX

#### Presented at NCSX PVR by S. P. Hirshman

## Status of NCSX Modular Coil Design

- Methods have been developed to design practical modular coils that achieve the desired physics properties of NCSX while satisfying realistic engineering criteria necessary for their manufacture, construction, and accessibility.
- Modular configuration M1017
  - selected for pre-conceptual design and engineering studies

### MI017 Modular Coils



$$N_p = 3$$
  
 $N_{coils} = 21$ 

3/24/01

## Modular vs Saddle Coils

- At previous PAC, configurations based on saddle coils were thought to be likely candidates for reference coil configuration
- Since then, it was found that modular coils reproduced the desired physics performance of NSCX better than the saddle coils
- Decision was made to concentrate efforts on producing best possible modulars for PVR

# NCSX Coil Design Philosophy

- Reverse engineering (J.Nuehrenberg 1980's)
  - Separate physics optimization from coil design
  - Efficient exploration of large parameter space
  - Procedure confirmed (for large A) in HSX\* (pg 22)
- Method generalized for low *A*, to include coil design targets in the physics optimization
  - NESCOIL current sheet targets added to other (physics) stellarator optimization targets

# NCSX Coil Design Criteria

- Realize NCSX Physics Goals
  - Reconstruct reference (S3) design parameters
  - Demonstrate flexibility for startup, intermediate states
- Minimize Coil Current Density
  - Improve accessibility, reduce stresses
  - Achieved by maximizing coil-to-coil spacing

# Design Criteria (cont'd)

- Minimize N<sub>coil</sub> / N<sub>period</sub>
  - Reduces number of coils (cost) and independent coil types (power supplies)
  - Potential for improved accessibility for NBI, diagnostics
- Maximize (bend) radius of curvature
  - Engineering limits ρ<sub>min</sub> > 10 cm for NCSX dimensional parameters

## **Coil Design Process**





### Coil Design Is A Multi-Step Process

- Step 1: ΣB<sub>norm</sub> = 0 on optimized plasma boundary
  - B<sup>p</sup><sub>norm</sub> from internal plasma currents
    - BNORM code (Virtual Casing Principle, P. Merkel code)
  - $-B^{c}_{norm} = B \bullet n_{S}$  from external coils
    - COILOPT code (D. Strickler, L. Berry)
      - varies shape of filamentary coils (and currents)
      - minimize  $\mathbf{B}_{norm}$  mismatch
      - Matches engineering constraints

## Methodology (cont'd)

- Step 2: Free-boundary VMEC Reconstruction
  - Compare fixed/free boundary plasma shapes
    - Approximate criterion
  - Detailed evaluation of optimized physics targets
    - Transport (quasi-axisymmetry), stability (kink, etc.)
  - Evaluation of non-targeted physics figures-ofmerit
    - Energetic particle confinement, vertical stability
- Step 3: Free-boundary PIES Evaluation
  - Maximize volume of good surfaces
  - For reference state (full current, β), determine modifications to modulars to "trim-out" resonant B<sub>normal</sub> components

3/24/01

## Development of COILOPT Crucial To Success of this Process

- COILOPT a flexible coil optimization tool
  - Varies shape (winding law, inductance) of coil filaments within a winding surface
  - Varies winding surface
    - takes advantage of "underdetermined" nature of matching problem: high harmonics of current potential decay rapidly (do not effect plasma shape) but can impact engineering of coils
  - Minimizes B<sub>normal</sub> mismatch and various engineering criteria, for fixed N<sub>coil</sub> and predetermined coil symmetry planes (v=0,1/2)

# Engineering Properties of MI017 Modulars

- M1017 coils evolved from M0907 to satisfy engineering constraints
- N<sub>coil</sub> /N<sub>period</sub> = 7, with a coil at the toroidal symmetry plane v = 0

| ID    | $\delta B_{avg}$ (%) | $\delta \mathbf{B}_{\max}$ (%) | $\Delta_{\rm cc,min}({\rm cm})$ | $\rho_{\min}(\mathbf{cm})$ | $\Delta_{\mathrm{cp,min}}(\mathrm{cm})$ |
|-------|----------------------|--------------------------------|---------------------------------|----------------------------|-----------------------------------------|
| M0907 | 0.57                 | 2.55                           | 13.4                            | 11                         | 23.3                                    |
| M1017 | 0.61                 | 2.61                           | 14.8                            | 12.3                       | 23.3                                    |

### M0907 vs M1017 Modulars





M0907

M1017

#### MI017 Solves NBI Access Problem With Minimal Stray Fields



#### MI017 Generates High Quality Boundary Reconstruction



# Second Optimization of MI017 Coils

- "Exact" boundary agreement is sufficient, but not necessary, to preserve physics
- Improved physics performance obtained by free-boundary optimization varying modular coil currents
  - 4 independent coil types (power supplies)

#### Vary Coil Currents (2<sup>nd</sup> Optimization)

|                                                     | Reference plasma (LI383) | M1017              | M1017 (M8)                  |  |
|-----------------------------------------------------|--------------------------|--------------------|-----------------------------|--|
|                                                     |                          | (uniform currents) | (variable modular currents) |  |
| Α                                                   | <b>A</b> 4.36            |                    | 4.17                        |  |
| β (%)                                               | 4.19                     | 4.15               | 4.09                        |  |
| R (m)                                               | (m) 1.734                |                    | 1.726                       |  |
| <a> (m)</a>                                         | 0.397                    | 0.396              | 0.414                       |  |
|                                                     |                          |                    |                             |  |
| ι <b>(0)</b>                                        | 0.394                    | 0.406              | 0.429                       |  |
| ι <b>(a)</b>                                        | 0.655                    | 0.651              | 0.648                       |  |
|                                                     |                          |                    |                             |  |
| λ, Kink (x10⁴)                                      | Stable                   | 0.23               | Stable                      |  |
| $\lambda$ , Ballooning, $\zeta$ =60                 | 0.91-0.96                | 0.91-0.96          | Stable                      |  |
|                                                     |                          |                    |                             |  |
| ε <sub>eff</sub> <sup>3/2</sup> (x10 <sup>4</sup> ) |                          |                    |                             |  |
| S=0.5                                               | 5.6                      | 6.4                | 7.1                         |  |
| S=0.8                                               | 32                       | 30                 | 39                          |  |
|                                                     |                          |                    |                             |  |
| f <sub>NB</sub> (%), 40KeV NBI, 2T, H               | 14.4                     | 19.4               | 15.4                        |  |
|                                                     |                          |                    |                             |  |

### Plans to Improve Modular Coils

- Continue development of less expensive coils with improved access that are easier to fabricate
  - Reduce number coils per period
  - Reduce maximum J (increase coil-coil spacing)
  - Increase radii of curvature where it is tight
  - Fit smoother shell to coils
    - Present shell design based on coil winding surface is difficult to engineer
- Continue to optimize modulars *together* with TF/PF coils to improve flexibility and physics preservation

3/24/01

# Improving Modulars (cont'd)

- Perform analysis of finite thickness coils
- Merge Physics Optimization (VMEC, Free-boundary) with COILOPT coil description
  - Use current filaments as independent variables to directly optimize physics
  - Reverse-engineered coils provide a good "starting point" for this procedure

#### **Evolution of Modular Coil Sets**

| Engineering Property              |       | Original M0907 | M1017      | Remove coil  | Variable Imod | Reduce             |
|-----------------------------------|-------|----------------|------------|--------------|---------------|--------------------|
|                                   |       | no NBI access  | NBI access | at v=0 plane | added co-TF   | N <sub>coils</sub> |
|                                   |       |                |            |              |               |                    |
| N <sub>coils</sub> / Field Period |       | 7              | 7          | 7            | 7             | 6                  |
| Symmetry coil, v=0                |       | Y              | Y          | N            | Y             | Y                  |
| Symmetry coil, v=1/2              |       | Ν              | N          | Y            | N             | Y                  |
| NBI access                        |       | Ν              | Y          | Y            | Y             | Y                  |
|                                   |       |                |            |              |               |                    |
| Avg. Field Error                  | %     | 0.57           | 0.61       | 0.63         | 0.48          | 0.59               |
| Max. Field Error                  | %     | 2.55           | 2.61       | 3.02         | 1.95          | 3.06               |
|                                   |       |                |            |              |               |                    |
| Min. Coil-Coil Separation         | cm    | 13.4           | 14.8       | 15.5         | 15.6          | 16.4               |
| Min. Plasma-Coil Separation       | cm    | 23.3           | 23.3       | 21.5         | 21.2          | 20.9               |
| Min. Radius of Curvature          | cm    | 11             | 12.5       | 10.3         | 9.4           | 9.3                |
|                                   |       |                |            |              |               |                    |
| TF (+=parallel, -=antiparallel)   |       |                |            |              | +             | +                  |
| I-mod,max/C-C,min                 | kA/cm | 36.4           | 33         | 32.9         | 28.2          | 33.8               |
| (measure of current density)      |       |                |            |              |               |                    |

# Summary

- A set of modular coils (M1017) has been designed which is capable of reproducing the physics requirements of NCSX over a wide range of operating parameters.
- Work is underway to further improve this coil set.

## HSX Confirmation of Reverse Engineering (at $\beta = 0$ )



HSX: electron beam mapping of the magnetic surfaces - image shows 4 nested well formed surfaces - outer red dots are reference LEDs. (Magnetic surfaces – not shown – are accurately mapped – see J. Talmadge, IAEA 2000)