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The question to be addressed: Is there a plausible, stable path from the
vacuum state to a high β NCSX equilibrium?

A more specific goal is to accomplish this in a 0.3 second beam pulse
when the current relaxation time is about 1 sec in the core of the plasma.



Simulation Process

•  Build “equivalent tokamak” - <NCSX>

1. The “equivalent tokamak” will have the toroidally averaged NCSX

shape.

2. The volume will be equal to NCSX as will A=<R>/<a>.

3. There will be a fixed (not diffusing) current density, JEXT, which

represents the vacuum transform.

•  Study the discharge evolution in this 2-D device, <NCSX>

1. neutral beam physics

2. poloidal flux diffusion, ITOT  = IEXT + IP

3. discharge programming

4. power balance

•  Put resulting profiles, p(ρ) and JTOT(ρ) - JEXT(ρ) back into NCSX.

1. Find free-boundary equilibria that have desirable stability properties

and quasi-symmetry.
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The equivalent tokamak, <NCSX>
For the vacuum (β=0,  IP=0) we compute ι , then make an axisymmetric shape,

demand that same ι  and solve the equililibrium. Since the 3-D shaping is now removed,

the equilibrium requires a current density profile to produce the ι .



The 2-D evolution modeling is done with TRANSP.

The “vacuum” current density shown above is modeled as lower hybrid
current (LHCD) in TRANSP. I t is assumed to be stationary and driven by an
unspecified external source – it will not diffuse. We will refer to this current
as IEXT  ( = ∫JEXTdA )

Other assumptions in modeling discharge evolution.

•  Te(ρ,t) is completely specified, magnitude is similar at high β to
    that in talk by D. Mikkelsen
•  ne shape is specified, amplitude is adjusted to give desired β.

•  χi = 3 χi
neo results in TI as in Dave’s talk.

Computations in TRANSP
•  Poloidal flux diffusion
•  Beam deposition and slowing down, NBCD
•  Power balance => TI only
•  Fast ion pressure

Manual iteration of TRANSP runs to get desired discharge.



Results in 2-D

The dominant characteristics of <NCSX> are shown in the next few slides:

•  Evolution of primary quantities

•  β and   l i

•  balance of NBCD and OHCD

•  iota and pressure
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1.) Beams are balanced to 
      minimize NBCD.

2.) External is a large fraction
     of the total current.

3.) Bootstrap is dominant 
      plasma component.

4.) All that remains is to artfully 
      balance OHCD against NBCD

Balance deteriorates after 0.75 s
JNB
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Careful Discharge Programming will allow nearly constant iota over 
the duration of the neutral beam pulse.
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Results in 3-D

The profiles generated in 2-D are now used in a series of free-

boundary optimizations.To find coil currents that result in attractive
physics, we have used two approaches to this task with the 0907a2

coil set (21 modular coils, 4 types; 14 polodial coil pairs).

•  The first was to simply target a shape which had shown good physics
properties in the full current, high β state. Then, after the optimization

evaluate the physics properties are examined.

•  The second is to directly target the physics properties in the optimization
process (R·B, kink stability, ballooning stability  and quasi-symmetry).

Both have led to satisfactory results, typified below. As discussed in the
PVR document, Chapter 10; this optimization is directly on the physics
properties and we chose to lower the aspect ratio to 4.1 to obtain these
results. In earlier work to β ≈ 3 1/2 % we obtained good results at A=4.4



 

Modular Coil Currents
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The modular coil current variations are modest and gradual.



Results in 3-D

Time
(ms)

A <β> IP (A)
‡N=1 & N=0
Max γ x10-5

χ2
Bmn εh (s=1/2)

Effective Ripple

Ballooning
Unstable Zones

li383 4.365 0.043 150000 0 0.0151 0.61% 42,43,45,46,47

0041 4.118 0.001 6590 3.00 0.0291 - 0

0061 4.123 0.002 18580 0 0.0303 2.38% 0

0081 4.123 0.006 42860 0 0.0337 1.55% 0

0106 4.123 0.016 71860 1.38 0.0327 1.37% 0

0131 4.123 0.022 68340 8.40 0.0324 1.39% 2

0151 4.123 0.025 69980 9.11 0.0334 1.25% 2

0211 4.122 0.032 80700 7.52 0.0356 1.14% 2,3

0315 4.123 0.042 100200 6.10 0.0407 1.25% 2,3
0420 4.122 0.042 105500 10.7 0.0515 1.55% 2,3

0525 4.122 0.042 109000 7.45 0.0353 0.89% 2,3

0630 4.123 0.042 111800 5.70 0.0300 0.96% 2,3,48

0735 4.132 0.043 114000 3.18 0.0298 1.21% 2,3,48

0842 4.122 0.043 116900 5.74 0.0330 0.88% 2,3,48
‡The goal is γ<10-4. This is judged as sufficiently low – an art of experiment is avoiding weak

instability.
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LI383 Reference
Simulation 314 ms

Reference: A= 4.4, β= 4.25 %
Simulation: A=4.1, β= 4.21 %

Simulation results are qualitatively similar to li383 reference.
Differences result largely from fast ion physics.
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Other Coil Sets
The successful development was done with the 0907a2 coil set
Efforts with other sets, notably 1017a2, have not been as
successful.
•  It is not known at this time whether stable solutions at the

desired parameters do not exist or the methodology used for
0907a2 is inadequate.

•  We have obtained solutions for 1017a2 allowing some
deterioration in physics goals.
1.  We have solutions where B is allowed to rise , lowering β to

3.6%.
2. We have solutions where β is preserved, but the quasi-

symmetry is reduced, χ2
Bmn~0.05.

Future work will focus on resolving this issue and then proceeding

to determining the simplest adequate PF coil set.



Summary

1. We have developed a plausible scenario to evolve from the
vacuum state to approximately the reference scenario in the

0.3s beam pulse length. The path is sufficiently stable and has
adequate quasi-symmetry.

•  The evolution is studied in an “equivalent tokamak” using
TRANSP. A calculation of 3-D flux evolution is not currently

available. For a QAS device we expect the 2-D evolution is quite
adequate.

•  The pressure and current are self-consistent and include
(OHCD, NBCD, Bootstrap and Pfirsch-Schluter Currents.

•  Monte-Carlo beam deposition and slowing-down.

•  Diffusion of poloidal flux using neo-classical resistivity.

•  The key to rapid equilibration of iota is to minimize the Ohmic

flux in the cold startup plasma.



Summary (cont’d)

•  There is no expectation of difficulty when ι=1/2 passes through

the plasma boundary based on cylindrical calculation of island
width. The shear is sufficient to keep the island at ~1% of the

minor radius.

•  An alternative startup was developed where ι=1/2 does not pass

through the boundary by changing the shape during the Ip ramp.
This path is sufficiently stable and has adequate quasi-symmetry.

•  Within the uncertainty in confinement this scenario is

energetically plausible, H89p≤2 at B=1.4 T. Lower B would require
less confinement, resulting in a colder plasma and a wider
tolerance in matching Ip(t) to β(t).

•  Other scenarios for a colder plasma (Te(0)~1.1 keV) have been

examined up to β~3.5% with similar results and easier discharge

programming will equilibrate to the bootstrap current in a 0.4 s

pulse.


