Transport Assessment

D. R. Mikkelsen, D. A. Spong and M. C. Zarnstorff March 26, 2001, NCSX Physics Validation Review

- Will confinement be adequate to test <β> limit predictions? Can the optimized <β> limit of 4% to be challenged? Can low collisionality and high <β> be achieved simultaneously?
- Will thermal neoclassical ripple transport be negligible?
- Will the pressure profile shape be inside the stability envelope?

Global confinement scalings

• ISS-95 scaling of typical energy confinement (no H-modes,...). Five stellarators not optimized for low neoclassical ripple transport. Ripple transport is typically larger than axisymmetric transport. Based on total stored energy, so $\tau_{\rm E}$ can be directly related to < β >. NCSX is largely within the parameter range of the ISS-95 database.

LHD represents a large extrapolation beyond ISS-95 stellarators, and it immediately exceeded the ISS-95 prediction.

LHD record H_{ISS-95} =2.0 for $\dot{W}_{dia} < 0.05 P_{abs}$, and H_{ISS-95} =2.4 for $\dot{W}_{dia} < 0.13 P_{abs}$ W7-AS record H_{ISS-95} is 2.5.

• ITER-97P scaling of L-mode energy confinement in 13 tokamaks. NCSX is largely within the parameter range. Use the effective plasma current that produces the same edge *t* with the toroidally averaged NCSX shape: $I_p^{eff} = (\frac{B_o}{1.2T})(\frac{R_o}{1.4m})0.5$ MA.

Confinement enhancement techniques

• NCSX will employ standard techniques:

Wall conditioning.

Edge biasing.

Unbalanced neutral injection to generate flow shear.

Pellet injection.

Limiter placement in region of high flux expansion to reduce cx losses.

H-mode power threshold <1 MW.
Small enhancement in stellarators, will NCSX be more like a tokamak?

Fast ion confinement; net heating power

D. Spong's orbit calculations use 3-D geometry and predicted profiles. All co losses are due to imperfect quasi-axisymmetry. Thermal transport is less sensitive to ripple than fast ion orbits. Orbit losses place a lower bound on the product $B_0R_0 \propto I_p^{eff}$. For $B_0=1.2$ T, and $R_0=1.4$ m, balanced injection orbit loss ~24%.

Global confinement model

Energy confinement is directly related to $<\beta>$:

$$\tau_{\rm E} = W_{\rm tot} / P_{\rm heat}; W_{\rm tot} = 1.5 < \beta > (B_o^2 / 2\mu_o) V_p; V_p = 2R_o (\pi a)^2.$$

High $<\beta>$ \Leftrightarrow high H_{ISS-95}.

Normalized collisionality,

$$v_{i}^{*} = v_{coll} / v_{bounce} \propto n/T^{2} \propto n^{3} / B_{o}^{2} < \beta >^{2},$$

is scaled from profiles shown below (from the minimum of the v_i^* profile). Low $v_i^* \Leftrightarrow$ low density and high < β >.

Maximum density is at the Sudo density 'limit'.

< β > limits are testable

 H_{ISS-95} =1 allows < β > up to 2.2%; sufficient to test predictions of MHD stability for de-optimized shapes.

< β >=4% at v_i*=0.25 requires H_{ISS-95}=2.9; H_{ITER-97P} =0.9

< β >=4% possible at H_{ISS-95}=1.8, but with large v_i^*

Lower < β > limits are testable even at Pinj= 3 MW

$$v_i^*=0.25 \text{ and } H_{ISS-95}=2.9 \Rightarrow <\beta>~2.6\%$$

 $H_{ISS-95}=2.9 \Rightarrow <\beta>~2.6\%$; but large v_i^*

H_{ISS-95}=1 allows <β> up to 1.4%,
but with large
$$v_i^*$$

Profile prediction methodology

The electron and ion power balance equations are each of the form

$$\frac{1}{V'}\frac{\partial}{\partial\rho}(<|\rho|>V'q_{tot})=Q_{heat}\pm Q_{ie}$$

 Q_{heat} is based on TRANSP; power fluxes are divided into three parts,

$$q_{tot} = q_{ripple}^{neo} + q_{axisym.}^{neo} + q_{anom.}$$

neoclassical ripple and axisymmetric transport, and 'anomalous' transport

The analytic neoclassical ripple model is discussed on the following page. The Chang-Hinton model is used for neoclassical axisymmetric transport, and has been re-normalized to THRIFT/NCLASS (Strand/Houlberg). Stellarator plasma cores are frequently close to neoclassical predictions.

Anomalous transport is modeled with either a radially uniform diffusivity, or the version of the Lackner-Gottardi model that has been applied to W7-AS

An anomalous multiplier is adjusted to match a target < β >, or H_{ISS-95}; $q_{anom.}$ is compared to $q_{ripple}^{neo} + q_{axisym.}^{neo}$ to assess anomalous transport margin

Effective ripple is very low

Single helicity theory can be extended in the 1/v regime, where $q_{ripple}^{neo} \propto \varepsilon_{eff}^{\frac{3}{2}}$, ε_{eff} is the effective ripple amplitude.

 ε_{eff} is calculated by the NEO code using the 3-D magnetic configuration (Nemov, Kernbichler).

In W7-X ε_{eff} ~ 0.01 at all radii.

Fast ions and flows determine the allowable level of ripple.

Neoclassical ripple transport is not intrinsically ambipolar, so the plasma charges up until it finds an E_r that does produce ambipolar particle flux. This E_r is very important in reducing the ion's ripple transport.

In the 1/v regime with the 'ion root' $q_{ripple}^{neo} \propto T^{\frac{9}{2}}$, so high density is favorable. The electrons are in the 1/v regime of validity, but not the bulk ions.

Benchmark validates analytic ripple model

The Monte Carlo code GTC calculates transport fluxes using the full 3-D magnetic geometry, with no assumption about the collisionality regime. GTC benchmarked with single helicity theory and axisymmetric theory. E_r is prescribed; particle fluxes vs. E_r are compared (Lewandowski).

Analytic and numerical predictions of ambipolar E_r are close to each other Electron fluxes are close, so ambipolar fluxes are close.

DKES confirms axisymmetric transport is dominant

DKES code (Hirshman) predictions confirmed by W7-AS (Maaßberg). Monoenergetic diffusivities are strongly reduced by E_r; and asymptotically approach the axisymmetric result. With the ambipolar E_r the neoclassical ripple transport is negligible.

Large margin for anomalous transport

High $<\beta>$ and moderate v_i^*

$$<\beta_{thermal}>=2.9\%, <\beta_{fast}>=1.2\%$$

 $q_{axisym.}^{neo}$ normalized to THRIFT/NCLASS

 $q_{ripple}^{neo} << q_{axisym.}^{neo}$

Spatially constant χ_{anom} =1.7 m²/s

$$q_{anom} > q^{neo}$$
 for r > a/3

<β>=4%, moderate ν_i*, (cont'd)

Ambipolar E_r is used in ripple transport calculation.

minimum $v_i^*=0.25$

minimum $v_e^* < 0.5$

CX losses not serious

Neutral transport simulation (Stotler) used n_e , T_e , T_i profiles similar to those shown above.

Neutrals launched from outboard midplane (or tip) of crescent cross sectio

Neutral influx is normalized by assumed $\tau_p = \tau_E$.

```
Thermal P<sub>cx</sub>~0.04 (0.01) MW
```

Fast ion cx losses ~0.3 (<0.1) MW

For either limiter placement charge exchange losses are acceptable.

Plan to place limiter near crescent tip to reduce cx losses.

More detail in P. Mioduszewski's talk.

Spoiled quasi-axisymmetry: 5 times higher ϵ_{eff}

Typical configuration changes raise effective ripple ≤ 2 times nominal value.

Intentional efforts can raise effective ripple by ~5 times.

With χ_{anom} fixed, $<\beta_{th}>$ drops from 2.9 to 2.5%. Ripple transport still negligible for r<a/2.

Temperature change would be marginally detectable.

Increased ripple is a potential problem for fast ions and flow damping.

Pressure profile shapes within envelope of stellarator and tokamak experiments

Lackner-Gottardi model produces a slightly more peaked pressure than the spatially uniform χ_{anom} .

Predicted pressure profile shapes also in the range used in flexibility study.

Summary

• Confinement is expected to allow tests of $<\beta>$ limit predictions. Even with $H_{ISS-95}=1$, $<\beta>$ up to 2.2% would be possible with $P_{inj}=6$ MW. With $P_{inj}=3$ MW, $H_{ISS-95}=1.5$ is needed to reach $<\beta>=2\%$.

Challenging a more optimized < β > limit ~4% requires H_{ISS-95}=1.8, but v_i* \geq 3. v_i*~0.25 and < β >~4% requires H_{ISS-95}=2.9, but H_{ITER-97P} is only 0.9.

Large margin for anomalous transport even with high H_{ISS-95} . $H_{ITER-97P} \leq 1$ across the operating range considered here.

- Neoclassical ripple transport expected to be small.
- Pressure profile shapes are not unusual, and in stability envelope.