Compact Stellarator Reactor Vision, FESAC Goal, and Program Requirements

G. H. Neilson

NCSX Physics Validation Review Princeton, NJ March 27, 2001

Compact Stellarator Reactors

Vision: A steady-state toroidal reactor with

- No disruptions
- No conducting structures or active feedback control of instabilities
- No current drive (\Rightarrow minimal recirculating power)
- High power density (~3 MW/m²)

Likely (based on today's knowledge) configuration features

- Rotational transform from a combination of bootstrap and externallygenerated. (how much of each?)
- 3D plasma shaping to stabilize limiting instabilities. (how strong?)
- Quasi-axisymmetric to reduce helical ripple transport, alpha losses, flow damping. (how low must ripple be?)
- Power and particle exhaust via a divertor. (what magnetic topology?)
- $R/\langle a \rangle \leq 4.4$ (how low?) and $\beta \geq 4\%$ (how high?)

Optimum design involves tradeoffs among features. Need to understand the physics to quantify mix, assess attractiveness.

Assessing Compact Stellarator Attractiveness

Reactors based on today's physics understanding

• Scaleups of NCSX plasma designs to 1-2 GW, R=7-8 m power plants show potential attractiveness. (Chapter 14)

Better physics understanding is needed to guide the tradeoffs \Rightarrow optimize reactor designs \Rightarrow assess attractiveness \Rightarrow decide on next steps.

The compact stellarator program, led by NCSX, aims to provide the needed knowledge base in ~10 years.

- Understand β -limits, β -limiting mechanisms and behavior.
 - Determine how high β can be. **(NCSX)**
 - Determine how much shaping and external iota are needed. (NCSX, QOS)
- Understand anomalous transport reduction mechanisms.
 - Determine if tokamak mechanisms transfer. (NCSX)
 - Determine how low the effective ripple has to be. (NCSX)

cont'd.....

GHN 20010327-3

Assessing Compact Stellarator Attractiveness, cont'd.

Compact stellarator physics goals, cont'd.

- Understand equilibrium limits with strong toroidicity.
 - Determine how low the aspect ratio can be. (QOS)
- Understand effects of 3D field structures on the boundary plasma and plasmamaterial interactions?
 - Determine what the divertor looks like. (NCSX)
- Understand conditions for high-beta, disruption-free operation.
 - Determine how much externally-generated iota is needed. (NCSX)
 - Determine how much internally-generated iota is possible. (NCSX, CTH)

Complementary approaches broaden the knowledge base and explore potentially high-payoff alternatives \Rightarrow more knowledge \Rightarrow better decisions.

- Benefits of QH symmetry? (HSX); of QP symmetry? (QOS)
- Value of non-toroidal component of flow? (HSX, QOS)

Summary

- Compact stellarators could be the most attractive solution for MFE.
- The physics needs to be better understood in order to quantify the tradeoffs, optimize designs, make meaningful assessments of attractiveness.
- The compact stellarator program as proposed is the best way to acquire the knowledge needed to assess concept attractiveness in ~10 years and decide on next steps.
 - NCSX is key.
 - CE's are both supportive and complementary. Both roles important.
 - Theory is critical for design and for understanding experimental results.
 - Collaboration on foreign stellarator takes advantage of unique capabilities.
 - Reactor design studies will be used to project implications of what is learned and to identify critical issues for further study.