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Outline

• Motivation – The Compact Stellarator Opportunity

• Configuration Design, Characteristics
− Stability, Transport, Flux surface quality

• Coil Design & Flexibility

Definitions:
• β = 2µ0 p / B2

,

• Aspect ratio A = R / a , where a is the average minor radius,

• Iota (ι ) and iota-bar (ι = 1/q) are used interchangeably

• s = normalized toroidal flux
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Motivation

• Tremendous advances in understanding of both
tokamak and stellarator confinement

• Compact stellarator opportunity: combine best
features of both, synergistically, to advance both
• Stellarators: Externally-generated helical fields; no need for external

current drive; generally disruption free.
• Advanced tokamaks: Excellent confinement; low aspect ratio –

affordable, high power density; self-generated bootstrap current
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Stellarator Advances

• Understanding of how to design for orbit confinement, good flux
surfaces

• Numerical design to obtain desired physics properties
• Experience in accurately constructing experiments at a range of

scales (CE -> PE), with good confinement and stability

Allows effective use of Stellarator Advantages:
– Steady-state compatible, lack of need for external current drive
– Disruptions typically not observed, can be avoided by design.
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Stellarator Fields Can Suppress Disruptions
External transform applied to current-
carrying stellarator:
• 3-fold increase in density limit.
• q<2 with no disruptions.

total ι (a) = 0.35
Ohmic current, low β, high aspect ratio.

W VII-A Team, Nucl. Fusion 20 (1980) 1093.

Stellarators typically do not disrupt
if stable to global tearing mode.

(W VII-A and W7-AS)

Experiments are needed to extend to
high ββββ, low aspect ratio.

External Transform
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LHD Has Obtained Very Good Results
Confinement
• Enhanced confinement, > 2×ISS95 (multi-

device global confinement)
• τE up to 0.3 s.

Peak Parameters:
• Te ≤ 4.4 keV, Ti ≤ 2.7 keV, ne≤1020 m-3

• Pulse length over 2 minutes.

Beta
• βT = 2.4%(IAEA), BT=1.3T with pellet
• βT = 2.2% sustained, BT=0.8T, Te0~700 eV
• Exceeds theoretical high-n stability limit.

Observe saturated m/n=2/1 mode.
• Now >3%, B = 0.5T, PNB = 3.4 MW

Can these good results be extended to low aspect ratio configuration with
current and good ion confinement? Can confinement be further improved?

~
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Two strategies for Orbit Confinement in 3D
3D shape of standard stellarators ⇒

orbits can have resonant perturbations, become stochastic ⇒ lost
B is bumpy every direction ⇒ rotation is strongly damped

• Non-symmetric drift-orbit omnigeneity
− Toroidal and helical drifts cancel; align drift orbit with flux surface
− Principle of W-7X, new German superconducting experiment (A=11)

• ‘quasi-symmetric’
− Boozer (1983) Drift orbits & neoclassical transport depends on variation of

|B| within flux surface, not the vector components of B !
− If |B| is symmetric in “Boozer” coordinates, get confined orbits like tokamak

⇒ neoclassical transport very similar to tokamaks, undamped rotation

Boozer coord: straight field-line coordinates, Jacobian ∝ 1/B2
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Helically Symmetric Experiment (HSX):
Neoclassical Transport Reduction via

Quasi-Helical Symmetry

R=1.2 m, B=1 T, 4 periods,
R/〈〈〈〈a〉〉〉〉 = 8

Univ. of Wisconsin

In Boozer coordinates,
magnetic field looks like
straight helix

First test of quasi-symmetry

started operation in 2000
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Tremendous Advances in Tokamak
Experiments and Understanding

• General confirmation of ideal MHD equilibrium and stabilty theory
• Confirmation of neoclassical transport theory
• Development and understanding of neoclassical tearing
• Stabilization and manipulation of turbulent transport
• Importance for shear-flow stabilization of turbulence, zonal flows

• βT~12% achieved with large externally driven currents (incl. Inductive)

Exciting Challenges

− βT ~ 5% steady state without disruptions (e.g. ARIES-RS)
− sustainment of current with minimum recirculating power

→ depend on bootstrap current (current driven by pressure gradient)

⇒ Focus of “Advanced Tokamak” and Spherical-Torus Research
using conducting walls, feedback stabilization of resistive-wall and
neoclassical tearing modes
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Compact Stellarators Offer Innovative Solutions
Compact Stellarators Opportunity →→→→ NCSX Goals

Use 3D shaping flexibility of stellarators to

• Passively stabilize external kink, vertical, neo-tearing, ballooning
instabilities

− expand safe operating area to β ≥ 4%,
without need for conducting walls or feedback systems

− prevent disruptions?

• Good confinement. Quasi-axisymmetry to close orbits, allow flow
Take advantage of tokamak advances; Use bootstrap to raise iota

• Steady state without current drive. Aspect ratio: ~ 4

• Control of iota (q) and shear via coils

Using Advances in Theory and Numerical modeling; parallel computing
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NCSX Mission

Understand…

• Beta limits and limiting mechanisms in a low-A current carrying stellarator

• Effect of 3D fields on disruptions

• Reduction of neoclassical transport by QA design.

• Confinement scaling; reduction of anomalous transport by flow shear control.

• Equilibrium islands and neoclassical tearing-mode stabilization by choice of
magnetic shear.

• Compatibility between power and particle exhaust methods and good core
performance in a compact stellarator.

• Explore Alfvenic-mode stability in reversed shear compact stellarator

Demonstrate…
• Conditions for high-beta, disruption-free operation

Acquire the physics data needed to assess the attractiveness of
compact stellarators. (adopted as 10-year goal by FESAC-1999)
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NCSX Design Process Similar to W7-X, HSX

Fixed Boundary
Equilibrium Optimization

Coil Design
(to reproduced Fixed Bdry

Equilibrium)

Free Boundary Analysis
• Robustness/Flexibility
• Discharge Evolution

(S.Hirshman)

(N. Pomphrey, E. Lazarus)

In depth analysis
• Flux surface quality (A.Reiman)
• Transport (D.Mikkelsen)
• Stability (G.Fu)

Engineering Analysis (B.Nelson)

In depth analysis
• Flux surface quality
• Transport
• Stability

• Transport, stability, flux surface quality
• Engineering
• Edge analysis (P.Mioduszewski)

• Same general process as first developed for W7-X, used on HSX
– extended to address finite β, current, and low A
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Method: Design for High β
• Plasma shape and coils are designed for desired properties at

〈β〉 ~ 4% including effect of bootstrap current; low aspect ratio

• Most stellarator designs have been optimized without net plasma
current, coils designed for vacuum configuration

• Required substantial tool development
− Improved 3D equilibrium codes – PIES and VMEC
− Kink & ballooning stability, quasi-symmetry, bootstrap current,

coil engineering metrics incorporated into plasma optimizer
− New coil-design tools to reduce complexity, current density,

heal island and preserve good physics properties

→ Wide range of configurations explored, evaluated
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Established Codes and Methods used for
Analysis

• VMEC - an ‘inverse’ equilibrium solver, which solves directly for
the shape of the flux surfaces. Representation presumes that
the flux surfaces are simply connected, without islands or
stochastic regions. see S. Hirshman

• PIES - is a ‘forward’ equilibrium solver, directly calculating the
3D magnetic field and current distribution, including simulating
the effect of islands and stochastic regions by flattening ∇ p.
Flux surface topology and shape determined by integrating the
field-line orbits. see A. Reiman

• TERPSICHORE, CAS-3D - low-n stability codes see G. Fu
• COBRA, VVBAL - infinite-n ballooning codes
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Fixed Boundary Equilibrium Optimization

3D Equilibrium Calc.
(VMEC)

Ballooning stability
(COBRA)

Low-n stability; n ≤ 7
(TERPSICHORE)

Transport
(χ2

Bmn, NEO, DKES,...)

Coil Characteristics
(NESCOIL)

Magnetic Well Depth

. . .

Optimize Boundary Shape
(Levenberg-Marquardt)
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NCSX Plasma Configuration Has Attractive Physics

• 3 periods, R/〈a〉=4.4, 〈κ〉~1.8
<indented>

• Good magnetic surfaces.

• Quasi-axisymmetric: low helical

ripple transport.

• Stable at β=4.1% to kink,
ballooning, kink, vertical, Mercier,
neoclassical-tearing modes

• Recent study with many more
equilibrium & stability modes found

an unstable n/m=11/17 edge mode.

Can be stabilized with slight shape
change. See G. Fu.
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Hybrid Configuration Combines Externally-
Generated Fields with Bootstrap Current
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3D Shaping Predicted to Stabilize Kink
in Several Ways

• Via global shear, similar effect to shear variation in tokamak
-- but now independent of current, due to external transform

• Large local shear on low-field side increases field-line bending
energy

• Depth of magnetic well

• Edge current density is not de-stabilizing (!) (see N. Pomphrey)
[Mikhailov & Shafranov, NF 30 (1990) 413.]
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Quasi-Axisymmetric: Low effective ripple
• εeff from NEO code by

Nemov-Kernbichler

• In 1/ν regime, neoclassical
transport scales as εeff

3/2

• Edge εeff ~ 3.4%

• Allows balanced-NBI

24% loss at 1.2T, drops as B↑

• Should give low flow-damping

- manipulation of flows for

flow-shear stabilization
- zonal flows like tokamaks

• Linear microstability similar to
tokamaks [Rewoldt; Jost et al.]
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Low εh,eff ⇒ Low Helical transport

• Helical transport is sub-dominant with self-consistent Er

• Assume B=1.2 T, Pinj=6 MW , R=1.4m, HISS95=2.9 (HITER-97P=0.9)

⇒ β = 4%, ν* ~ 0.25. B=1.7T gives access to ν* ~ 0.1, Ti(0)~2.3 keV
• Shaing-Houlberg for helical transport, benchmarked with Monte-Carlo.

• Uniform anomalous χ used. Similar results obtained with Lackner-Gottardi
See D. Mikkelsen
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Wide Range of Plasmas Accessible

B = 1.2 T
• Contours of H-ISS95,

H-ITER-97P, and min ν*I

• β=4%, ν*I =0.25 requires
HISS95=2.9, HITER-89P=0.9

• β=4% at Sudo ‘density-limit’
requires HISS95=1.8

• HISS95=1.0 gives β=2.2%
sufficient to test stability theory

• 3MW gives β=2.7%, ν*I =0.25
with HISS95=2.9;

β=1.4% with HISS95=1.0
sufficient to test stability theory
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Island Removal Method
• Calculate coupling between

plasma boundary shape and
island widths by perturbation,
using PIES

• Invert coupling matrix to find
(small) shape modification to
remove islands

• Modification had no effect on
calculated stability or transport

• In experiment, neoclassical
effects should heal islands

(see A. Reiman)
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NCSX Modular Coils Provide Good Physics Capability

• Wide range of coil designs explored

• Modular coils best preserve physics

properties of reference plasma:

– stable at reference β (4%).

– Good magnetic surfaces.

– A=4.1, modest increase in ripple.

• Also include Poloidal Field coils

and weak Toroidal Field, for

flexibility

• Outer coil-leg displaced for

tangential NBI and diagnostics

• Stable to β > 6.5% with some

increase in ripple

1017

see S. Hirshman
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A Number of Coil Designs are Being Considered

Coil ID Ref. LI383 0907 (m2) 1017 (m3) 0105 (m8)
Extended for NB Access No Yes Yes

A 4.36 4.25 4.16 4.17
β 4.19 4.24 4.10 4.09
λ, Kink (x104) upto n=11 Stable Stable Stable Stable
λ, Ballooning, ζ=60 0.91-0.96 0.92-0.96 Stable Stable
ε

h,eff
(%)
s=0.3
s=0.5
s=0.8

0.22
0.68
2.2

0.36
0.89
2.6

0.45
1.1
3.4

0.30
0.79
2.5

fNB (%), 40KeV NBI, 2T, H 14.4 17.7 17.2 15.4

• Analysis to date has concentrated on 0907 and 1017 coils
• 1017 produces higher ripple than desired for baseline
• 0105 and later improved designs appear favorable.

Will be analyzed in depth after PVR.
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Coils Produce Good Flux Surfaces

• Free-boundary equilibria (PIES)
• IP values for BT=1.2 T
• Coils designed to produce good surfaces at full current. Island in

middle case can be eliminated with trim coils. See A. Reiman

Vacuum IP=125 kA
β =4.1%

IP=83 kA
β =2%

0907
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Trim Coil Array Controls m=5 and 6 Resonances

• For supression of equilibrium islands over wide range of iota and shear profiles

• Tested on vacuum and finite β configurations. More underway.
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Free-Boundary Optimizer used to
Assess Flexibility

Free-boundary
3D Equilibrium Calc.

(VMEC)

Ballooning stability
(COBRA)

Low-n stability ; n ≤ 7
(TERPSICHORE)

Transport
(χ2

Bmn, NEO, DKES,...)

Inside Limiting
surfaces?

Magnetic Well Depth

. . .

Optimize Coil Currents
(Levenberg-Marquardt)

• How to use coils to
achieve physics goals?

•Very similar to how one
operates an experiment

•General tool, useful on
existing experiments
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Modular Coils are Flexibile
• External rotational transform

controlled by plasma shape
at fixed plasma current &

profile.

• Can adjust to avoid iota=0.5,

or hit it

• 1017 coils shown.

Similar results for 0907 coils

• Can externally control shear

• Can accommodate wide

range of p,j profiles

• Can use to test stability,

island effects

See N. Pomphrey

β=0, full current
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Coil Flexibility Gives Control of Kink β-limit

• External-kink marginally stable
β changed from 3% to 1% by
modifying plasma shape

– either at fixed shear or fixed
edge-iota !

• Free-boundary equilibria, fixed
pressure and current profiles

• Useful for testing understanding
of 3D effects in theory &
determining role of iota-profile

• Similarly, can find stable
equilibria with effective ripple
varying by factor ~ 5. For
testing transport optimization &
flow damping
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Modeling of Discharge Evolution Shows
Stable Access

• Stable evolutions calculated for high
and low temperatures (confinement)
• Stable evolution with

– iota(a) crossing 1/2
– iota(a) always > 1/2

See E.Lazarus; E. Fredrickson
0907
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β-limit is Very High for Free-boundary

• For both 0907 and 1017 coils, free-
boundary equilibria have been found for  β
≥ 6.5%. Limit not yet found.

• Case shown has had pressure locally

flattened near edge to stabilize high-order

11/17 mode. See G. Fu

• Effective ripple increase by factor of 2.8

Requires HITER-97P=2.3 with 6MW

• No systematic profile optimization has

been attempted. Presumably, would

further increase β-limit.

1017
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• Total loss of IP or β only causes a
small shift in equilibrium (few cm), for
fixed coil currents.

• For comparable tokamak,

loss of β ⇒ radial shift of ~ 30cm.
Similar shift for ~ 20% drop in IP.

• Any NCSX disruptions will not lose
radial equilibrium, should give unique
insight into tokamak disruption
dynamics.

• Possibility of passive disruption
stability!

Equilibrium Maintained even with
Loss of IP or β
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Edge shows Large Flux Expansion Near Tips

• 11 Field lines in scrape-off launched
across 2 cm at outer midplane of
elongated cross-section

• Followed through 2 toroidal transits
(5 more crossings)

• Flux expansion in the tips ~ 10:1

Maximum flux expansion appears to be

slightly away from tips

• No separatrix observed

• May allow divertor-like solutions with
neutral baffling in tips

• May facilitate H-mode transitions,
similar to JET

See P. Mioduszewski
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NCSX Research Advances Fusion Science in
Unique Ways

• Can limiting instabilities, such as external kinks and neoclassical tearing
modes, be stabilized by external transform and 3D shaping? How are
disruptions affected? How much external transform is enough?

• Can the collisionless orbit losses from 3D fields be reduced by designing the
magnetic field to be quasi-axisymmetric? Is flow damping reduced?

• Do anomalous transport reduction mechanisms that work in tokamaks transfer
to quasi-axisymmetric stellarators? How much effective-ripple is too much?

• How do stellarator characteristics such as 3D shape, islands and stochasticity
affect the boundary plasma and plasma-material interactions?

NCSX provides unique knobs to understand toroidal confinement
fundamentals: rotational transform, shaping, magnetic symmetry.



MCZ 010326 35

NCSX Proposed Design
upgrades in ( )

• Major radius 1.4 m., Magnetic field 1.2 →1.7 T (1.24s ; 0.46s flattop)
> 2T at reduced ιexternal

• Flexible coil set: modular, poloidal, toroidal, trim.

• Plasma heating:

– OH, IP up to 420 kA

– Neutral beam: 3 MW (→6 MW) tangential co- & ctr-; from PBX-M

– (Ion cyclotron RF: 6 MW; mode conversion or high-harmonic).

• Heating pulse length 0.3 s (→ 1s)

• Carbon plasma facing components, bakeable to 350 C.
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Conclusions
Compact Stellarators provide both interesting science and solutions

for the physics challenges of magnetic fusion energy.

A sound physics basis has been established for NCSX
• Attractive configuration has been identified

– passive stability to kink, ballooning, vertical, Mercier, neoclassical tearing
with β > 4%

– very good quasi-axisymmetry

• Robust, flexible coil system for testing understanding and exploring

NCSX would be a valuable national facility for the fusion science
program.

Ready for the next phase: conceptual design.


