Modular Coil Manufacturing

J. H. Chrzanowski for the NCSX Project
Modular Coil Types

Winding form weight: approx 5400 lbs
Finished weight: approx. 6600 lbs
PHASES of MODULAR COIL FABRICATION

- Custom alloy similar to CF8M (cast 316LN) Stel-alloy
 - Low permeability ($\mu < 1.01\mu_0$) & good structural properties at operating temp.
- Provides continuous support for strength and accuracy of winding
- Single machined part provides winding form and assembly features
 - “Tee” machined to follow physics-specified coil trajectory within ±0.25 mm.
- Winding never removed from coil form

Castings fabricated & machined by outside vendor

Coils wound and VPI by PPPL

Modular coils tested and ready for installation

Presentation to W-7X Group
October 6-7, 2008 J.H. Chrzanowski- page 3
Manufacturing Steps for a Modular Coil

Step 1: Installation of the copper chill plates onto the winding form.

Step 2: An outer wrap of fiberglass cloth is installed and the conductor layers are laid in place.

Step 3: Special winding clamps are used to hold the conductors during the winding.

Step 4: Outer copper chill plates are installed. And cooling lines attached.

Step 5: A silicone bag is built around the coil. This is the mold for the VPI process.

Step 6: Epoxy/Glass Shell mold applied over silicone bag.
Modular Coil Conductor

- Flexible copper “rope” conductor wound onto “tee”-shaped guide on the MCWF.
 - The rectangular compacted copper conductor will be fabricated using 34-gauge oxygen free copper wire. Its rope construction is [12 x 5 x 44 x 34] with an external 0.004-inch thick nylon serve.
 - Once cabled, the copper rope was compacted to dimensions of 0.350 in. x 0.391 in. +/- 0.010 inches. [Note: dimensions include the nylon serve].
 - The vendor then applied (2) half-lapped layers of dry S-2 glass insulation around the completed conductor.
 - Conductor supplied by New England Wire Technologies, Inc.

- Conductor trials demonstrated good epoxy fill between strands
R&D Winding/VPI Development

Univ. of Tenn. Coil
- First use of selected epoxy system for VPI

Straight Tee Section
- First use of “Bag Mold” -VPI

Racetrack Coil
- First winding experience & use of copper cladding

Production Coils
- First use of final manufacturing processes

Twisted Racetrack Coil
- Develop winding & metrology techniques & tooling
- First use of autoclave for VPI

Inch-Worm Winding
- Develop conductor handling methods
- Train crews
- Develop procedures

Presentation to W-7X Group
October 6-7, 2008 J.H. Chrzanowski
Twisted Racetrack (TRC) Accomplishments

- **Manufacturing lessons learned:**
 - Tolerance control
 - Manufacturing procedures
 - Tool development
 - Verification of the VPI plan
 - Training of key personnel

- **Testing results:** [Exceeded insulation design requirements]
 - Verification of thermal performance [single phase liquid nitrogen -81 °K]
 - Operating current at 31.5 KA
 - Verified integrity of electrical insulation:
 - >10 KV groundwall
 - >5 kV turn to turn
Modular Coil Winding Fixture

- Coils were wound on vertical turning fixture that allowed for operations to be performed on both sides simultaneously.
- Turning fixture also served as modular coil lifting fixture.
Modular Coil Winding Activities
Maintaining Required Tolerance

- Flexible copper “rope” conductor wound onto “tee”-shaped guide on the MCWF.
 - “Tee” machined to follow physics-specified coil trajectory within ±0.25 mm.
 - Small conductor (9x10 mm), wound 4-in-hand, minimizes keystoning.
 - Winding pack dimensions are measured with portable CMM and adjusted with clamps to position current center within ±0.5 mm.
 - Turns are temporarily held in position using glass tape [Lacing]
Bag Mold Method

- “Bag Mold”: is a mold where high tolerance outside dimensions are not required; it can accommodate more difficult configurations. It is constructed using silicone bag for vacuum boundary and chopped fiberglass and epoxy for the structural shell.
VPI Activities

- VPI was performed in autoclave
- Multiple epoxy feeds were used to ensure total fill
- Approximately 6 hours to fill coil
- Eleven gals of epoxy to fill coil/ 22 gals mixed
- VPI operation takes approx. 60 hours:
Post VPI Activities

- Once coils have been VPI’d the bag mold is removed, final coil clamps, thermocouples are then installed and the coils were electrically tested to 7.5 kV.

Removing bag mold & shell

Final Coil Clamps
In Summary....

- **18 modular coils have been successfully wound, VPI’d and tested**
- **Close to 3 years to complete the winding and VPI of the modular coils**
- **Metrology played an enormous part of the operations**
- **All technological challenges were successfully addressed.**
- **Safety was in the forefront of all planning and performance of field activities**