

Critical Decision 3

for the

National Compact Stellarator Experiment

Princeton Plasma Physics Laboratory Oak Ridge National Laboratory

Greg Pitonak

DOE Federal Project Director

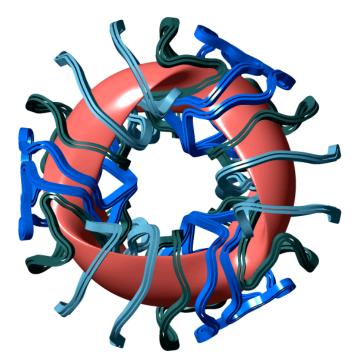
Princeton Area Office

September, 2004

Presentation Outline

- Background and recent project history
- Status and performance metrics
- Recent project challenges with Modular Coil Winding Forms (MCWF) and Vacuum Vessel Sub Assembly (V VSA)
- ISM & ISSM considerations
- Project subsystems and site related issues
- Readiness to proceed with NCSX fabrication

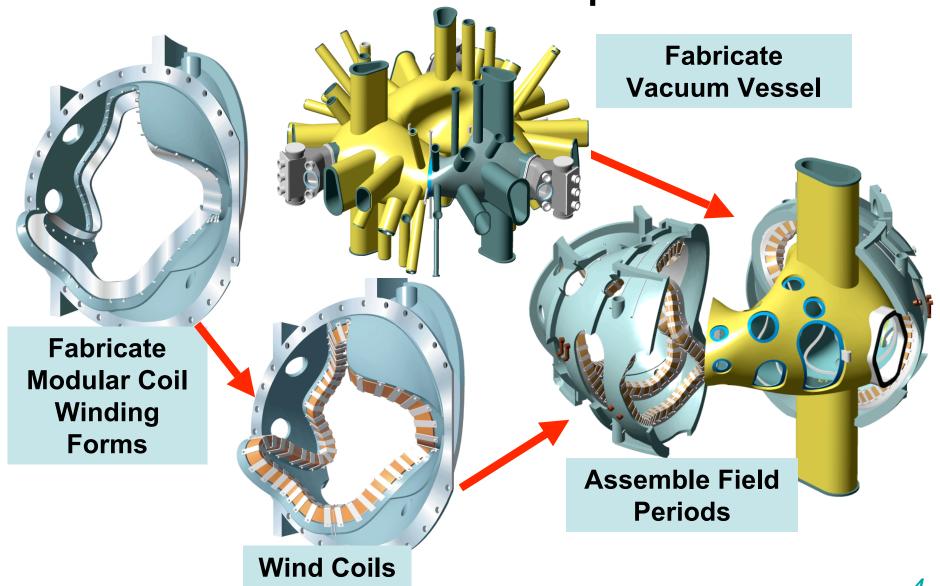
Compact Stellarator Vision


Stellarators solve critical problems for magnetic fusion.

- Steady state without current drive.
- Stable without feedback control or rotation drive. No disruptions.
- Advances 3D plasma physics understanding.

Compact Stellarators improve on previous designs.

- Magnetic quasi-symmetry:
 - good energetic particle confinement.
 - link to tokamak physics.
- Lower aspect ratio.


3D geometry produces benefits & costs Need to assess risk & manage both.

3-Period NCSX Plasma and Coil Design

The Basic NCSX Device Concept is Robust

The Baseline Scope is Defined for CD3

NCSX Major Item of Equipment (MIE) scope includes...

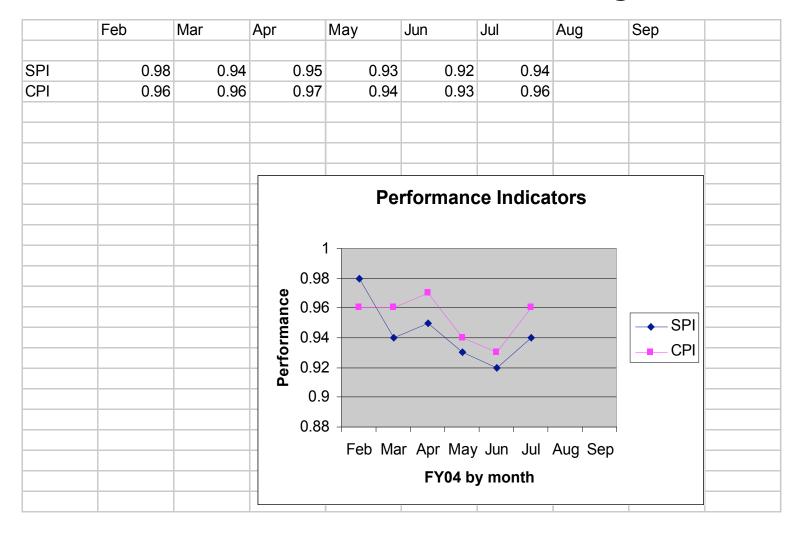
- Equipment required to achieve First Plasma, begin research program.
- Systems to support operation w/ coils at cryogenic temperature.
- Examination and testing of 1.5-MW NBI equipment.
- Integrated system testing, including flux surface mapping and startup.
- Design effort to ensure facility can accommodate required upgrades when needed by the program.

Not in MIE scope...

 Research program planning and preparation of long-lead equipment upgrades.

Recent NCSX Project History

- ✓ CD-0 (Mission Need) approved June, 2001.
- ✓ CD-1 (Acquisition Plan, Cost Range) approved November, 2002.
- ✓ Fabrication Project Started April, 2003
- ✓ Preliminary Design Review October, 2003
- ✓ EIR & Performance Baseline (SC) Review November, 2003.
- ✓ CD-2 Establish Performance Baseline approved February, 2004
- √ Final Design Review completed May, 2004
- ✓ Independent Project Review (Execution Readiness) June, 2004
- ✓ Receipt of vendor proposals (V VSA & MCWF) July, 2004
- ✓ Independent Project Review Update September, 2004
- CD-3 Start of Fabrication September 2004



The Project Status is Sound

- The project is progressing and baseline established at CD2 is valid.
- The project organization and management systems are working well.
- Requirements, scope, and objectives are well established and stable.
- Estimates have a sound technical basis. (Successful Reviews and fixedprice agreements for major procurements)
- Risks have been assessed and mitigation plans developed.
 - Adequate cost and schedule contingencies maintained.
 - Risk assessment is a continual process in the NCSX culture. Critical issues list identifies coil winding (40%) & assembly (32%).
- Resource-loaded schedule has been developed and maintained.
- Earned-value performance measurement system has been validated and implemented.
- PARS EVMS reporting started March, 2004 NCSX is Green !!

Performance Metrics Thru August 1

Project Control Systems are In Place

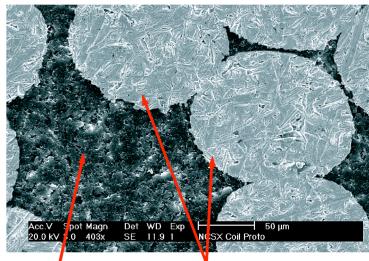
Engineering Changes and Contingency Calls Since CD2

<u>ECP #</u>	<u>Title</u>	<u>Date</u>	Contingency out		
04-004	Est. Performance Baseline(CD2)	3/04	\$630k		
04-005	VV & Field period assembly mods	3/04	\$560k		
04-006	Add VV ports and Coil test mods	4/04	\$630k		
04-007	Twisted racetrack VPI mods	4/04	\$ 0k		
04-008	Production costs of 5&6 above	6/04	\$540k		
04-009	Project replanning WBS 1	7/04	\$ 0k		
04-010	Twisted racetrack design change	7/04	\$ 0k		
04-011	MCWF design costs & variances	7/04	\$1485k		
04-XXX	Replan to accommodate proposals	9/04	(\$700k)		
	Remaining Contingency through ECP 04-XXX (~24% of remaining work)		\$13400K		

High Risk Areas and Challenges as We Approach CD3

- Technical Tolerances.....always tolerances
 Complex geometries
 Modular coil cooling scheme & components
- Cost VVSA & MCWF prices received and evaluated.
 Proposed costs were higher than expected.
 Close attention to contingency usage and contract changes.
- Schedule Level 2 milestones to date have been met.
 MCWF production time exceeds plans.
- Management Resource availability bears watching.
 Some non-critical work may move to FY05/06 due to BA limitations.

Modular Coil Technical Risks Addressed Through R&D


Many Issues Have Already Been Resolved

- Conductor handling, placement, and clamping on a 3-D winding surface (top photo).
- Conductor and insulation system design to minimize keystoning.
- Epoxy impregnation methods (bottom photo).
- Construction, cooldown, and energizing of a racetrack-shape demonstration coils.
- Conductor mechanical properties tests.

Twisted racetrack demonstration coil will be manufactured and tested prior to production.

Winding facility has been established in the former TFTR test cell.

Vendor Proposals Higher Than Estimated

- Cost estimate for critical components increased \$4.4M (from \$8.1M to \$12.5M)
 - MCWF actual \$8.0M vs. \$5.1M (+57%)
 - VVSA actual \$4.5M vs. \$3.0M (+50%)
- Agreements on fixed prices retires \$2.0M of risk.
 - Contingency assessment reduced from \$3.25M (40% of previous estimate) to \$1.25M (10% of negotiated fixed price).
- This increase was offset by \$5.1M of reductions in other work, in order to improve the project's contingency position and respond to concerns of SC reviews.
- 10% on MCWF and VVSA to cover risk of project-directed changes.
- 28% average contingency on all other work, consistent with joblevel risk assessments developed and reviewed prior to CD-3.

Vendor Proposals Required Revisions to Project Planning

 We challenged the project team to develop a sound plan for completing all NCSX CD-4 scope and performance requirements within the approved performance baseline:

TEC = \$86.3M, CD-4 in May, 2008.

- Plans were modified to offset cost and schedule challenges in the VVSA and MCWF procurements.
 - Some of the changes were under consideration at the June review.
 - Additional savings/reductions identified during planning exercise
- We have selected very capable suppliers for the Vacuum Vessel Sub-Assemblies (VVSA) and Modular Coil Winding Forms (MCWF).
 - Negotiated prices and schedules are in place between Princeton and suppliers as the basis for fixed-price and -schedule subcontracts to be awarded in mid-September.
 - A major project risk is now much better defined.

Cost Offsets Overview

Planning changes were made to achieve the needed \$5.1M savings.

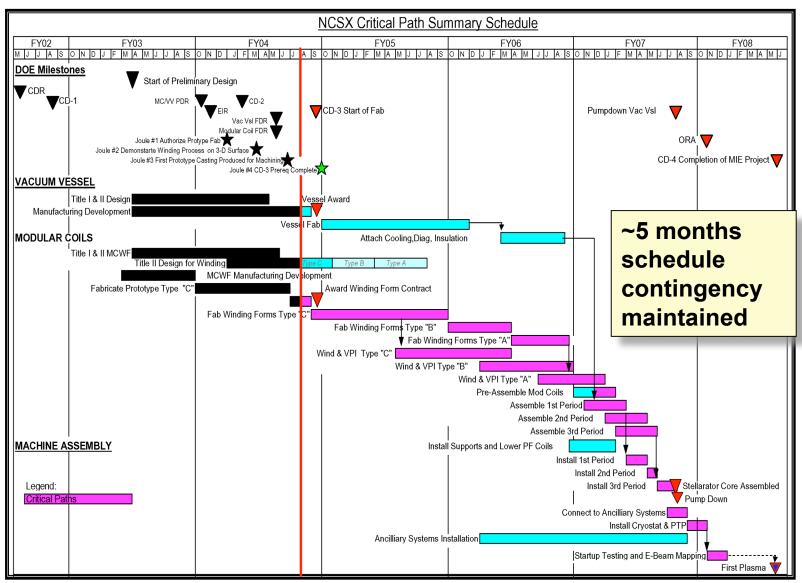
- C-Site power supplies instead of D-site, -\$1.63M.
- Diagnostic interface goals satisfied, -\$0.83M
- NBI testing goals satisfied, -\$0.83M
- Basic I&C system, -\$0.4M
- Simpler cryogenic supply system, -\$0.3M
- Reduced metrology tool set, -\$0.13M
- Induction bakeout system, -\$0.5M
- Proportional reduction in Mgmt & Integration, -\$0.5M
- New Plan satisfies all project requirements.
- No risk to safety or research mission.
- Meets, but does not exceed, all CD-4 scope and performance requirements.
- At CD-4, the facility is ready to start research operations.

New Plan Offsets 5-Month Delay in Delivery of Last MCWF

- Schedule for completing field period and machine assembly (>1 year) was optimized by paralleling activities and some use of second shift. (-1.5 mos.)
- Construction-to-ops transition tasks are taken off critical path and completed in parallel with final assembly tasks including cryostat installation. (-2.0 mos.)
 - Last-minute construction items ("punch list").
 - Sub-system pre-ops. tests (incl. CD-4 vacuum tests) and configure for operation.
 - Safety reviews and approvals, preliminary readiness assessment.
 - Compares favorably with actual experience on NSTX.
- E-beam mapping is limited to only CD-4 requirements: confirmation that basic magnet system produces magnetic surfaces. (-1.0 mos.)

5 months schedule contingency is maintained

Estimated Cost is \$86.3M w/ 24% Contingency


WBS	Description	
1 Stel	larator Core Systems	49.4
11 -	In-Vessel Components	0.1
12 -	Vacuum Vessel	8.5
13 -	Conventional Coils	4.2
14 -	Modular Coils	25.2
15 -	Structures	1.4
16 -	Coil Services	1.0
17 -	Cryostat and Base Support Structure	1.3
18 -	Field Period Assembly	5.0
19 -	Stellarator Core Management and Integration	2.7
2 Heat	ting, Fueling, and Vacuum Systems	8.0
3 Diagnostic Systems		1.2
	ver Systems	3.7
5 Cen	tral I&C / Data Acquisition Systems	2.2
6 Fac	ility Systems	1.1
	Cell Prep & Machine Assembly	4.3
8 Proj	ect Management & Integration	<u>10.2</u>
Sub	total	72.9
Con	tingency (24% of remaining work from 8/1/04)	13.4
Tota	al Estimated Cost	86.3

Contingency
estimate is
supported by
WBS managers'
assessments of
subsystem
technical, cost,
and schedule
risks.

Risk
management is a
continuing
Integrated
Project Team
focus.

NCSX Critical Path Summary Schedule

Project Performance Baseline Remains Valid

- We are able to maintain cost baseline and accommodate higher component costs, but near term contingency is tight.
- We are able to maintain schedule baseline with longer delivery schedule on MCWF's, but schedule is success oriented.
- Funding profile constrains progress and results in delaying start of some non-critical path work.
- We have addressed the above concerns & will continue to look for ways to optimize as we proceed with fabrication and assembly activities.

ISM & ISSM for NCSX

- Integrated Safety Management
 - NCSX is governed by lab-wide ISM standards
 - Line management accountability
 - Project specific engineering & administrative controls implemented as required to enhance safety of workers, the public, & the environment
- Integrated Safeguards & Security Management
 - NCSX governed by lab-wide security standards based on threat risk assessment
 - Line management accountability
 - Systems include sitewide physical access controls (ACAMS), Operational interlock systems, Cyber security controls, Foreign visits & assignments procedures, and Centralized material control.

The Stellarator Device is the Heart of the System

Device Threshold Ratings at CD-4:

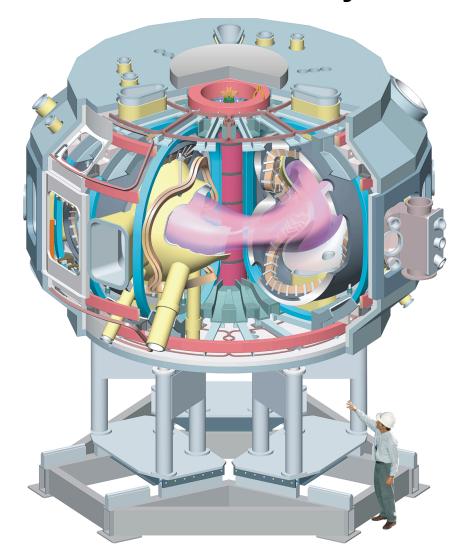
Major radius: 1.4 m

Magnetic Field Strength (B):

1.6 T (0.2 s pulse) / 1.2 T (1.2 s)

Vacuum base pressure (p):

8×10⁻⁸ torr


Flexible

Good Access

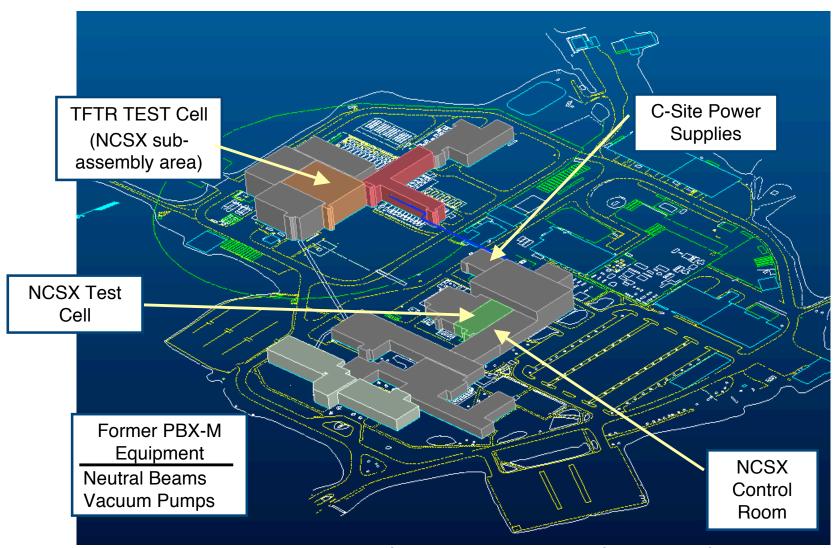
Design targets aim at higher performance for additional physics value and margin:

B = 2.0 T (0.2 s pulse)

 $p = 5 \times 10^{-8} \text{ torr}$

Baseline Scope: Stellarator Device

WBS 1. Stellarator Core Systems


- Vacuum Vessel.**
- Modular Coils**, Conventional Coils, Coil Structures & Services.
- Field Period Subassembly.
 - TF and modular coils, trapped magnetic sensors, vacuum vessel.
- Cryostat and machine base.

WBS 74-76. Machine Assembly

- Construction management and support
- Final Stellarator Core Assembly.

**The Recent Final Design Review focused on these items

Science NCSX Uses Many PPPL Site Assets

Project scope includes refurbishment and reconfiguration of existing

Baseline Scope: Ancillary Systems

WBS 21-22. Fueling & Vacuum Pumping

H/D/He gas injection, turbomolecular pumping system.

WBS 25. Neutral Beam Injection (NBI) Heating

Equipment for one 1.5-MW beam, refurbished and tested.

WBS 3. Diagnostics

 Ex-vessel magnetic sensors, fast camera, field mapping system, design integration for upgrade diagnostics.

WBS 4. Power Systems

Coil power, AC power, monitored ground system.

WBS 5. Central I&C

 Facility control, timing, computing, data acquisition, control room, safety interlocks.

WBS 6. Facility Systems and 71-73. Test Cell Prep

 Water, cryogen system, 150 C bakeout, utilities, machine platform, control room refurbishment.

Project Management and Integration Scope WBS 8:

- Project Management/Risk Management
- Project Control
- Engineering Management
- System Engineering
- Design Integration
- Technical Assurance
- Safety and Environment*
- Quality Assurance*
- Procurement*
- Project Physics
- Integrated System Testing ⇒ First Plasma (CD-4)

^{*} Project support costs indirectly charged.

CD-4 Performance Metrics Are Fixed

First Plasma

• B = 0.5 T, I_P = 25 kA, $\iota_{ext}/\iota_{tot} \ge 0.5$, Ohmically heated.

Coils and Power Supplies

- Coils tested to specified currents at cryogenic temperature.
- e-beam mapping at room temp. to confirm vacuum magnetic surfaces.

Vacuum, Pumping, and Bakeout

• Base pressure $\leq 4 \times 10^{-7}$ torr achieved.

Controls

Interlocks, timing, power supply control, data acq. tested.

Neutral Beams

Base vacuum achieved, cryopanels & source leak-checked.

Project Estimates Have a Sound Basis

Modular Coils, Vacuum Vessel, Stellarator Assembly

- Design and work breakdown developed to a detailed level.
- Analysis and R&D results underpin design and fabrication processes.
- Firm proposals from industry, based on detailed manufacturing plans and prototyping, now define the costs for major procurements.

Power Systems, Vacuum Pumping, Neutral Beams, Fueling

- Modifications of well-maintained legacy equipment.
- Condition known based on testing or being in active service.
- Estimates based on well defined scope, experience from past projects.

Conventional Coils, Cryostat, Diagnostics, I&C, Facility Systems.

- Conventional, low-risk designs proven on past projects.
- Estimates based on well defined scope, experience, catalog prices, vendor quotes.

We Are Ready To Proceed to CD-3

Project needs are well understood.

- Design and R&D have improved understanding of cost of meeting NCSX requirements. (Drivers are complex geometry, field errors.)
- NCSX's and other stellarator projects' experiences have improved understanding of risks and mitigation costs.
- Fixed-price agreements with excellent suppliers reduces uncertainties in the two major procurements.

The suppliers' strong technical and management capabilities are important assets for the project going forward.

- Qualified through NCSX R&D and prototype fabrication activity.
- Selected through a competitive, best-value procurement process.
- Demonstrated commitment to the success of the NCSX program.

WBS managers are responsible for cost and contingency estimates.

- Are responsible for executing work scope within cost and schedule.
- Have good understanding of the technologies, work scope, and risks.
- Manufacturers fixed price proposals provide additional confidence.

Major Tool Will Provide NCSX Vacuum Vessel

Excellent performance on NCSX prototype.

 Product met all requirements: tight tolerance, vacuum, surface finish.

Excellent performance on other SC projects.

- SNS target vessel, HFIR monochrometer.
- UT-Battelle small business contractor of the year, 2003.

Ample heavy fabrication capabilities: meets NCSX needs with margin and flexibility to manage risks.

- Multiple centers for forming, welding, 5axis machining.
- All major operations are under one senior manager at Indianapolis facility.
- Price: \$4.5M. Delivery: 14 mos.
- Original baseline: \$3.0M, 14 mos.

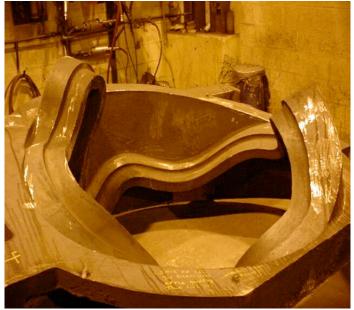
Energy Industries of Ohio Will Provide Winding Forms

•EIO provides the management capabilities this contract requires.

•Assembled a professional team with relevant experience in gov't. contracting (DOE, NASA), industry teams, technical management, QA.

•Produced winding form for NCSX "twisted racetrack" subscale demo coil.

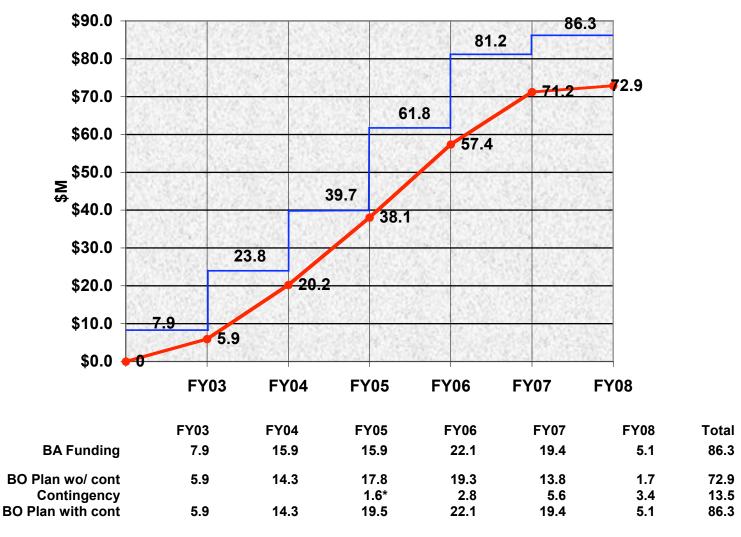
•EIO re-structured its team to correct weaknesses they recognized during the prototype program.

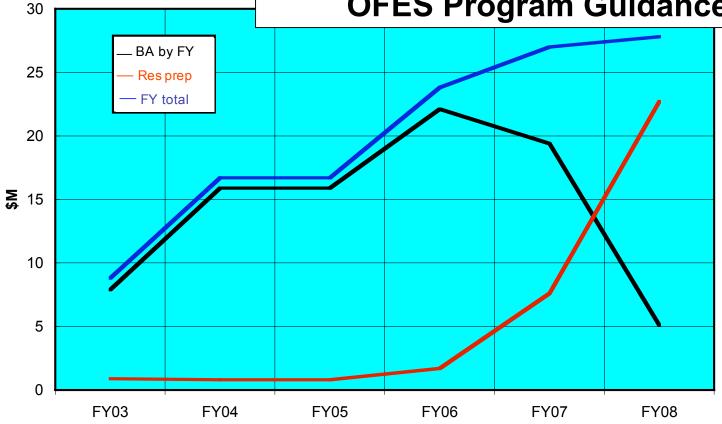

- •Major Tool and Machine was brought in to capitalize on their capabilities and depth in machining, excellent reputation, familiarity with NCSX.
- •EIO moved to a more centralized management model to improve lines of authority and communication.

Price: \$8.0M. MCWF Delivery– First: May,

2005. Last: Sept. 2006.

Original baseline: \$5.1M, First: Jan., 2005. Last:


Apr., 2006.


BA/BO Profile Supports Project Plan

BA/BO Profile

Program Funding Profiles Match OFES Program Guidance

Fiscal Year

NCSX Program Funding (\$M)	2003	2004	2005	2006	2007	2008	Total
MIE Fabrication Project (BA)	7.9	15.9	15.9	22.1	19.4	5.1	86.3
Research Preparation (+Ops in 08)	0.9	0.8	0.8	1.7	7.6	22.7	
NCSX Program Total	8.8	16.7	16.7	23.8	27.0	27.8	

All CD-3 Pre-requisites Have Been Addressed

- ✓ Integrated Project Team.
- ✓ Project Execution Plan.
- ✓ Work Breakdown Structure.
- ✓ Resource Loaded Schedule.
- ✓ Total Estimated Cost and Project Schedule.
- ✓ Acquisition Strategy.
- ✓ Risk Management Plan.
- ✓ Critical Subsystems Final Design and Final Design Review.
- ✓ External Independent Review and Performance Baseline Review.
- System Functions and Requirements.
- **✓** NEPA Documentation and Hazards Analysis.
- **√** Integrated Safety Management.
- ✓ Integrated Safeguards & Security Management
- ✓ Value Management / Engineering.
- ✓ Project Controls, Earned Value Management System, PARS reporting.
- ✓ Start-up Test Plan.

Documentation for all items is posted on project web site. http://ncsx.pppl.gov//Meetings/CD_3/CD_3_Docs.html

NCSX Is Ready to Begin Fabrication

Project has a solid foundation based on a robust machine concept.

Stable requirements, scope, organization, acquisition and mgt. plans.

Firm pricing for critical components.

- Mature designs, manufacturer input, R&D, legacy equipment tests.
- Identified risks, documented mitigation plans, adequate contingencies.
- Rigorous change management will be employed throughout the project.

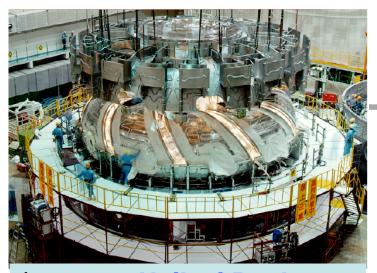
Resource loaded schedule provides a reliable roadmap.

- Estimates have been carefully developed and reviewed.
- Updated to accommodate review recommendations, current funding guidance, and recent fixed pricing.

All CD-3 scope items have been addressed.

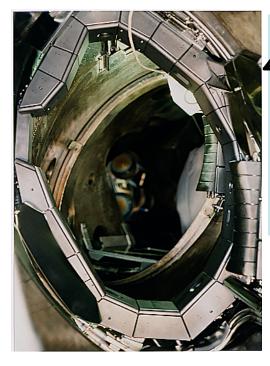
Project documentation is complete. Systems are in place.

The NCSX Team requests your endorsement and approval of CD-3!



Extra Slides

Project Level I & Level II Milestones


		CD-2	CD-3		
		Baseline	<u>Baseline</u>	<u>Forecast</u>	<u>Actual</u>
Level I	CD-1	May-2003	May-2003		May-2003
	CD-2	Feb-2004	Feb-2004		Feb-2004
	CD-3	Sep-2004	Sep-2004	Sep-2004	
	CD-4	May-2008	May-2008	Jan-2008	
Level II	Vacuum Vessel & Modular Coil Prel Dsn Rvw	Oct-2003	Oct-2003		Oct-2003
	Performance Baseline Review	Nov-2003	Nov-2003		Nov-2003
	Conduct VVSA FDR	Jul-2004	Jul-2004		May-2004
	Mod Coil Winding Form Final Design Review	Jul-2004	Jul-2004		May-2004
	Award VV Production Vendor	Dec-2004	Oct-2004	Sep-2004	
	Award MCWF Mfg Contract	Nov-2004	Oct-2004	Sep-2004	
	First MCWF Delivered	Mar-2005	Jul-2005	May-2005	
	TF Coils Awarded	Apr-2005	Jul-2005	May-2005	
	Complete First Mod Coil Fabrication	Aug-2005	Feb-2006	Nov-2005	
	Vacuum Vessel Delivered	Feb-2006	Feb-2006	Nov-2005	
	PF Coils Awarded	Jun-2006	Jan-2007	Sep-2006	
	Last MCWF Delivered	Aug-2006	Dec-2006	Sep-2006	
	Begin Assembly of First Field Period	Sep-2006	Mar-2007	Nov-2006	
	All TF Coils Delivered	Jan-2007	May-2007	Jan-2007	
	Last Field Period Assembled	Jun-2007	Sep-2007	May-2007	
	Begin Vac Vsl Pumpdown	Sep-2007	Nov-2007	Jul-2007	
	Begin Cryostat Installation	Nov-2007	Jan-2008	Sep-2007	
	Operational Readiness	Nov-2007	Mar-2008	Oct-2007	
	Begin Start-up Testing	Mar-2008	Mar-2008	Nov-2007	

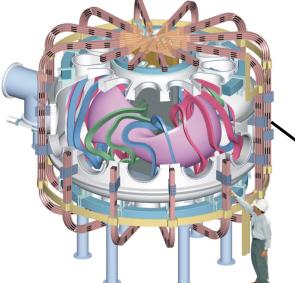
Large Helical Device (S/C magnets - Japan)

- high beta
- high plasma temperatures
- enhanced confinement
- long pulses

Wendelstein 7-AS

(Germany)

- high beta
- enhanced confinement
- divertors

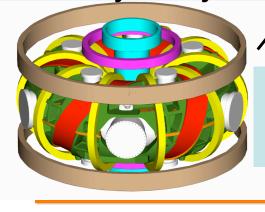

Helically Symmetric Experiment (U. Wisc.)

Successful test of quasi-symmetry

Wendelstein 7-X (Germany)

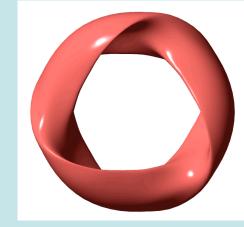
Optimized Design - S/C magnets Under construction - Ops. In 2010

for Assessing CS Attractiveness



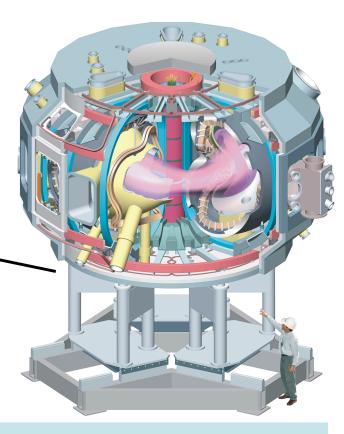
QPS (ORNL) - CDR 2003

QP symmetry, $R/\langle a \rangle < 3$.


HSX (operating @U. Wisconsin)

QH Symmetry

Theory & Computation


Computational Tools Predictive Capability

ARIES System Study

Update CS Power Plant Designs

CTH (Auburn U.)
Stability Physics
Ops. in 2004

NCSX (PPPL-ORNL)

Integrated PoP test of CS physics w/ β ≥ 4%, QA symmetry.

First Plasma - 2008