NCSX Scope Reductions from CD-1 to CD-2

PDR Panel Report Comment: The Project should document the items removed from the scope baseline between the CDR and the PDR. The rationale for these changes should be included in this documentation. This will provide a documented history for removal of these components and justification for their consideration as upgrades during operations.

		Cost	
WBS	Item	(\$k)	Rationale
11	Day-1 Poloidal	280	Temporary "Day-1" limiters proposed at CD-1 were deleted
	Limiters		due to the elimination of the OH phase in research plan.
22	Torus Vacuum	160	Day-1 pumping speed reduced to 1,300 l/s, 50% of CD-1
1	Pumping		performance. This is adequate to begin research program.
			Design can accommodate future upgrade to 150% of CD-1
			performance if necessary.
23	Glow Discharge	170	Glow discharge cleaning (GDC) not needed to begin the
	Cleaning		research program since vacuum vessel bakeout to 150!C is
			available and provides adequate conditioning. Design can
			accommodate GDC as a future upgrade if necessary.
25	Neutral beam	740	In-scope NBI equipment preparation reduced to 1.5!MW, 50%
	injection		of CD-1 performance. This is adequate for the first NBI
			heating experiments, which begin a few months after First
			Plasma. The design can accommodate 6!MW of NBI via
			future upgrades if necessary.
31	In-vessel	620	Not needed to begin the research program because ex-vessel
	magnetic		sensors will provide adequate functionality. The design can
	sensors		accommodate future installation of system of in-vessel
			magnetic sensors when the research program requires it.
35	Interferometer	300	Not needed to begin the research program, which starts with
			magnetic configuration mapping following First Plasma. The
			design can accommodate installation of an interferometer
			when the research program requires it.
43	Magnet Power	330	Number of circuits reduced from 9 to 6. This is adequate to
	System		begin research program. Design can accommodate future
			upgrade to 10 circuits if necessary.
4, 5,	Power, I&C,	750	Reductions in support systems associated with the above
6	and Utilities		primary scope reductions.
5	Central I&C	1,500	NCSX facility layout allows greater use of local as opposed to
	System		remote controls. This is a value improvement that provides
			CD-1 functionality at reduced cost.
	Total	4,850	