

National Compact Stellarator Experiment (NCSX) Dimensional Control Concerns and Issues

NCSX Overview

- NCSX is the centerpiece of the U.S. effort to develop the physics of the compact stellarator.
- Quasi Symmetric
- 18 Modular Coils
 - 6 each of type A, B, and C
 - Modular coils are connected by bolted joints with shims.
- 18 Toroidal Field Coils
- 6 pairs of Poloidal Field Coils
- Trim coils
- Major Radius 1.4m
- Aspect Ratio 4.4
- Magnetic Field 1.2T 1.7T

Current Status

- The 3 vacuum vessel segments are completed.
- All 18 modular coil castings have been completed.
- 14 of the 18 modular coils have been wound.
- Machine assembly operations are just getting started.

What are our metrology issues and concerns?

This is PPPL's first use of Faro/Romer arms, laser trackers, and VeriSurf software.

Issues:

- Steep learning curve.
- Working near the spec limits of the instrumentation.
- Development of efficient metrology procedures capable of meeting Project dimensional requirements AND budget/schedule goals.
- The components being aligned are not rigid bodies.
- The building where final assembly will be performed may have deflections which are significant, considering our dimensional goals.

Concerns:

- Stacking of tolerances during leapfrogging operations.
- Instability of the measurement instrumentation has been an intermittent problem.
- Accuracy, time and schedule. At present, we plan to use laser trackers for assembly operations.
 - Are our proposed techniques sound and the most efficient?
 - Can photogrammetry improve the accuracy of the final assembly?
 - Can photogrammetry reduce time?

There are Three Types of Modular Coil

Coil Tolerance Specifications

NCS National Compact Stellarator Experiment

 These coil tolerances pertain to the location of the current centers of the installed coils relative to the ideal [theoretical] position.

```
    Modular Coils +/- 1.5mm [.060in]
    PF Coils +/- 3.0mm [.120in]
    TF Coils +/- 3.0mm [.120in]
    Trim Coils +/- 3.0mm [.120in]
```

- The modular coils are the most critical.
- An allocation of the modular coil tolerance for each major assembly step has been defined.

Tolerances are Allocated to Each Modular Coil Assembly Step

- Vendor machining and in-house winding +/- 0.5mm [.020in]
 - Manufacturing deviations in the winding forms are compensated for during winding.
 - Realignment offers a chance for improved performance.
- Half Period [3-pack] Assembly [B-A, C-B] +/- 0.25mm [.010in]
 - We expect this to be the most difficult requirement.
 - Flange to flange alignment determines overall alignment.
 - A-A alignment performed prior to half period assembly.
- Full period assembly over vacuum vessel
 - HPA + FPA tolerance = 0.5mm [.020in].
 - A-A alignment will bring us close to this goal.
- 3 period assembly in test cell +/- 0.5mm [.020in]
 - C-C alignment

The Assembly Tolerances are at the Limits of our Measurement Technology

- The position of the coil throughout assembly is defined by a set of fiducial monuments.
 - The winding geometry is measured in a coordinate system referenced to these monuments.
- A mechanical measuring arm is used for the coil winding process.
- A laser tracker is used for subsequent assembly tasks.
- Measurement software works with the measurement arm, laser tracker and CAD models to expedite measurement of each winding form.

Half Period Assembly

- The 0.25mm [.010in] tolerance for half period assembly is possibly the most stringent requirement in the assembly sequence.
 - Modular coils are ~2m [79in] "diameter".
 - Modular coils are not rigid bodies.
- Precise assembly is necessary for proper load sharing between shims, as well as for dimensional control.
- An integrated metrology and assembly sequence has been prepared.
 - Laser metrology will play a key role in assembling the modular coils within the tolerance goal.
 - Fujipaper is used to monitor shim compression.
 - Stiff fixtures are required for assembly.
- Results of initial trials are encouraging.

Assembly Sequence...

National Compact Stellarator Experiment

- The first coil is placed on the assembly fixture, "B" side up.
- The laser tracker is aligned to the monuments on the coil.
- The "B" (upper) flange is scanned.
- Using the "B" flange measurements and the "A" flange from the mating coil, a set of shim thicknesses is calculated

Assembly Sequence...

- Fit up trials were performed which indicated to demonstrate feasibility of the proposed processes.
 - Three of the shims are placed on top of the first coil.
 - The second coil is lowered into position.
 - The monuments on the bottom coil are re-measured, and the coil is jacked where necessary to restore its shape.

Assembly Sequence...

- The steps for mating the first two coils in a half period are repeated, on a different fixture, when the third coil is joined.
- The new fixture is tilted 40deg instead of 20deg, so that the mating surface will be horizontal.
- Because the top flange of the second [middle] coil is measured in its as-assembled condition, the accumulation of errors is minimized.
- A complete field period is assembled by bolting two half periods together at the interface between two "A" coils.
- Pre-fitting two mating type A coils prior to half period assembly will maximize the likelihood of successful full period assembly with a minimum of iterations.
- A trial of the A-A fitup will demonstrate the feasibility of our assembly sequence.

The field period is completed in Station 5

MCHP installed over the VV occurs at Station 3

The design intent for Station 3 is pass two MCHP assemblies over the VV and accurately position mating flange. The tolerance for the assembled period is \pm 0.020".

The NCSX device is completed in Station 6

