Review of Twisted Racetrack Windings / Asm

P. Fogarty, K. Freudenberg, T. Hargrove, G. Lovett, P. Miller, B. Nelson, D. Williamson 16 April 2004 Charge to reviewers:

- Does the twisted racetrack coil represent the desired features of the prototype and production modular coils?
- Does it meet requirements for measurement, diagnostics, testing?
- Are models/drawings of the clamps and chill plates ready for fabrication?
- Is the design consistent with coil winding and VPI plans?

Outline of presentation:

- Requirements and test objectives
- Overview of design
- Performance evaluation
- Work to be done

- Twisted racetrack coil is one of four test articles (incl UT coil)
- First to demonstrate prototypical winding assembly and clamp design

		Flat	Twisted	Prototype	Production	Production	Production
Calculated quantity		Racetrack	Racetrack	(Coil type C)	Coil type A	Coil type B	Coil type C
Number of elec turns per winding pack		14	9	9	10	10	9
Number of electrical turns per coil		28	18	18	20	20	18
Number of physical turns per electrical							
turn		1	4	4	4	4	4
Conductor width, with serve	in	0.625	0.350	0.350	0.350	0.350	0.350
Conductor height, with serve	in	0.500	0.391	0.391	0.391	0.391	0.391
packing fraction		0.78	0.78	0.78	0.78	0.78	0.78
Winding resistance at RT	ohms	1.366E-02	7.201E-02	1.506E-02	1.848E-02	1.802E-02	1.506E-02
Winding resistance at 120K	ohms	1.772E-03	2.111E-02	5.136E-02	6.304E-02	6.146E-02	5.136E-02
Winding resistance at 80K	ohms	7.835E-04	1.081E-02	6.662E-03	8.177E-03	7.972E-03	6.662E-03
Inductance - windings only	Henries	6.63E-04	7.91E-03	7.90E-03	1.240E-02	9.230E-03	7.900E-03
Time constant - windings only, RT	seconds	4.85E-02	1.10E-01	5.25E-01	6.71E-01	5.12E-01	5.25E-01
Time constant - windings only, 120K	seconds	3.74E-01	3.75E-01	1.54E-01	1.97E-01	1.50E-01	1.54E-01
Time constant - windings only, 80K	seconds	8.46E-01	7.32E-01	1.19E+00	1.52E+00	1.16E+00	1.19E+00
Max operating current per elec turn	Amps	N/A	N/A	N/A	40908	41561	40598
Maximum test current	Amps						

Coil Electrical Parameters

Goals for winding form fabrication

Objective	Metric
11 Obtain first sample casting from EIO team	
111 Pattern from Lawton	accurate translation of CAD data to pattern
112 pouring	riser design correctly predicted by flow solidification model?
113 distortion due to heat treat	part stays within machining allowance
115 radiography	buried defects within expected range
114 weld repairs	hours spent performing weld repairs
116 permeability of casting	permeability within 1.02 limit
12 Obtain first sample machining of semi-prototypical casting	
121 machining simulation and NC tape	Part can be machined
122 Fixturing	Part can be held and manipulated on machine
123 machining winding contour	winding contour within tolerance
124 Clamp features - pockets, tapped holes	clamp features within tolerance
125 potting groove	functional groove is provided
126 metrology datum targets	targets are useable and durable
127 permeability change due to surface work hardening	permeability within 1.02 limit
13 Measurement of winding form at PPPL	
131 Use of datum targets	targets are visible, useable and repeatable
132 Measurement of winding contour	contour measurements match 123 above
133 Measurement of clamp features	clamp features match 124 above
134 Best fit of as measured part to data	datum target locations can be redefined to optimize fit of selected features to theoretical part
14 Preparation of first prototypical winding form for winding	
141 mold release	Mold release prevents copper chill plate from sticking to winding form
142 kapton insulation	Maintains electrical isolation of chill plate
143 forming and attachment of internal copper chill plates	winding-side surface is accurate enough to place windings
144 weld studs	all studs welded to full structural integrity and geometric accuracy
145 winding start blocks at leads	start blocks attached with geometric accuracy of +/- 0.02 in.

21 Placing and "setting" conductor 211 Clamping conductor

211 Clamping conductor	winding clamps work as designed and are frequent enough to restrain winding within accuracy requirements
212 Measuring for shims	surface of as-wound layers can be measured and shim height calculated
213 Placing layer to layer shims	surface of layer after shimming meets or exceed tolerance requirements
214 Placing lateral shims between B and C rows	total winding width is within tolerance
225 Handling layer to layer joggles	joggles can be clamped and held with sufficient accuracy to keep lead geometry from wandering
22 Leads	

 221 Initial placement and start of winding	placement in start blocks is within accuracy requirements
222 routing of 4 parallel turns at end of winding and interleaving with	Lead arrangement can be clamped and held to required accuracy
 first turns	
223 dip soldering and re-insulating ends of leads	conductor ends can be trimmed to proper length and soldered into end lugs without damaging or
	contaminating rest of winding
224 conductor attachment to lead block	soldered end lugs match lead block properly

23 Finishing winding pack stackup	
231 forming of external chill plates	chill plates can be formed and fitted to winding pack
232 attachment of external chill plates to internal chill plates	thermal connection can be reliably made at both ends
233 forming and brazing of cooling tubes and pads	tube geometry is predictable and layout matches winding pack
234 attachment of cooling tubes to external chill plates	fastening system works without undue thermal isolation
235 attachment of G-11 pads at clamp locations	pads can be accuratel fitted and held in place and extra glass roving used to fill gaps

24 VPI

241 application of self-fusing tape, including juggling of winding clamps	tape forms good seal, removing clamps one by one does not distort winding
and sealing around leads	
242 application of "french toast" pressure shell over bag	shell can be applied between clamps and is contained without wicking into clamps or clamp springs
243 pump down	winding pack pumps down to required pressure
244 heating to reduce viscosity	coil can be heated in autoclave to proper temperature in controlled manner without distorting winding or losing
	vacuum seal
245 epoxy impregnation	epoxy is contained within bag system
246 pressure cycling	vacuum/pressure/"milking" is successful
247 heating for cure	temperature can be raised in the proper time period without causing temperature gradients in winding form
	that result in distortion of winding
248 controlled cooldown	cooldown accomplished in controlled manner without distorting winding
249 cure shrinkage	shrinkage of winding relative to winding form is within predicted limits
25 winding pack completion	

25 Winding pack completion	
251 cleanup of coil	excess epoxy can be removed, as well as self fusing silicone tape under winding clamps
252 attachment of final clamps and "tuning" preload	winding clamps replaced with operational clamps and the clamp preload set successfully

Goals for coil testing

31 Geometric tests	
311 Gross winding pack shape relative to theoretical	as-measured winding pack geometry within acceptable tolerance
312 Winding form shape	as-measured winding winding form shape is the same as pre-potted shape
313 magnetic field measurement	field measurements consistent with geometric measurements
32 electrical tests	
321 resistance	Resistance at room temperature and LN2 temperature matches prediction
322 time constant / inductance	decay time matches prediction
33 hydraulic tests	
331 Flow rate	Required flow rate can be achieved
332 pressure drop of LN2	Pressure drop matches prediction for range of flow rates
34 Thermal tests	
341 cooldown from RT to LN2 temp	winding form and winding pack cool down as expected
342 heating during current pulse	temperature rise during current pulse matches prediction
343 cooldown between pulses	Winding returns to pre-shot temperature within 15 minutes
25. Chrushing Lington	
33 Structural tests	Measured starin in winding form metabox mediation within 200/
251 Strain in winding form from pognatic loads	Measured strain in winding form matches prediction within 20%
252 Strain in winding form from magnetic loads	Distortion of winding pack relative to winding form matches prediction within 20%
magnetic leading	Distortion of winding pack relative to winding form matches prediction within 20%
magnetic loading.	
36 fatique tests	
361 change in resistance vs strain in winding pack, cycles	no detectable (< 5%) change for number of cycles tested
362 changes/increases in deflection vs number of cycles	no detectable (< 5%) change for number of cycles tested
363 degradation in cooling behavior vs cycles	no detectable (< 5%) change for number of cycles tested
364 degradation in clamps (wear in insulation, loss of preload.	no detectable degradation for number of cvcles tested
bending/breaking of studs, thread loosening) vs cycles	
365 degradation in crossover and lead connections vs number of	
cycles	
· ·	
37 Instrumentation	
371 temp instrumentation is reliable and accurate	Temperature signals have consistent response and accuracy
372 strain instrumentation is reliable and accurate	Strain signals do not drift
373 deflection instrumentation is accurate	deflection measurement technique is repeatable
374 voltage taps work	voltage tap system can be used as reliable signal for coil protection system
38 Power feeds (coax leads)	
381 Power feeds can be routed as needed and work at LN2 temp	bend radius consistent with specs
382 Power feeds work at LN2 temp	no degradation, voltage drop matches prediction
383 Power feeds do not introduce heat leak to coils	lead temperature matches coolant temperature during idle
384 Power feeds do not "kick" or put undo strain on coil lead	no appreciable movement when energized
terminations	
385 error fields within limits	error fields from coax power feeds negligible
386 Frost at warm end of power feed can be controlled	low power blower can eliminate frost at warm end

Winding form geometry

- Winding path is composite of production coil "worst" regions
- Machined features identical to prototype modular coil
- Currently being machined, delivery by end of April

APPLIES AT ALL POINTS ALONG WINDING CENTER

Winding form in turning fixture

Features to be added

- 3/8-dia x 1.5-in stud, located within spherical seat
- Alignment by fixture mounted to tee web
- Typical 100 places for winding, perm clamps

0

Stud alignment varies

- Bracket needed to mount prototypical terminal block
- In production coils, part of casting Bracket Weld Leads arrangement

Second layer – copper cladding

- Copper sheet, 0.040-in thick
- Approx dims = 1.4×6.1 -in
- Qty = 200 parts

Drawings based on 3-in segmentation

Developed shapes for 3-in segmentation

Third layer – ground insulation

- (1) Butt lapped layer
 0.007 in. thick S-2 glass [2 inch nom. wide]
- 2

3

1

(1) Half-lapped layer of composite:

- 0.007 in. thick glass [2 inch nom. wide] & 0.0065(HN) Kapton [1.5 nom. wide] with adhesive
- X 2 = 0.027 in. thick

(1) Butt lapped layer of composite:

-0.007 in. thick glass [2 inch nom. wide] and 0.0035 (HN) Kapton [1.5 nom. wide]) with adhesive

Tracking distance = 1.0 inches

March 24, 2004 J.H. Chrzanowski

Outer chill plate and cooling

- Copper sheet, 0.040-in thick
- Approx dims = 3×6 -in
- Qty = 100 parts
- Attached to inner plate at tee base

Cooling tubes

- 3/8-dia copper tube, 4 circuits, ~25-ft ea
- Models / drawings not complete

Outer chill plate (2)

- Copper sheet, 0.040-in thick
- Approx dims = 2 x 3-in
- Qty = 100 parts
- Attached to inner plate at tee web

Insulation layer between chill plates

VPI bag mold

- VPI mold composed of epoxy impregnated felt and silicon rubber tape
- Located between winding pack and clamps, sealed by base groove
- Bleed holes at "top" position

Clamp assemblies

• 25 clamps, ~6-in spacing

1

- Material = 316SS, weight = 4.4-lb
- Hard spacer between chill plate and clamp not shown

Clamp exploded view

• Transient conduction/convection model has been updated for four-in-hand winding

Temperature During Cooldown

3 minutes

7 minutes

15 minutes

Temperature At 15-Min

Same Scale as above cases at 15 mins

Automatic Scale at 15 mins

Temperature After 10 Cycles

Summary of Twisted Racetrack / Clamp Analysis

RX: RX: RZ:-

4-16-04 K. D. Freudenberg

Dx:0 Dy:0 Dz:0 Rx:0 Ry:0 Rz:0

Rx:- Ry:- Rz:-

Dx:0 Dy:0 Dz:0 Rx:0 Ry:0 Rz:0

Twisted Racetrack FEA Mechanica Model

Restraints and loads

- Winding is broken into regions (between blue lines) on which the magnetic pressure loads are applied, pressures correspond to I=42-kA/electrical turn.
- Max EM Running Loads:
 Radial: 1819 lb/in.
 Lateral: 3946 lb/in.
- Pseudo clamps are restrained in their respective normal directions to simulate real clamp behavior.

- Contact surfaces are used between the clamp winding and the tee.
- Thermal growth is imposed on the winding by utilizing the cte property and by applying a known strain over a given temperature change.

Example: strain = -800με , arbitrary temp difference = 72 F. Therefore,

Winging cte = $-800\mu\epsilon/72 F = = 1.11E-5/F$

Tee cte = 0

The latest data indicates essentially no cure shrinkage of the winding. Therefore, the $-800\mu\varepsilon$ used in this analysis should be tailored down to $-400\mu\varepsilon$ to account only for the cooldown shrinkage between the tee and winding (4-10-2004).

Wave spring in clamp pocket

Clamp modeling

Contact Surfaces are used between the clamp and the winding.

-Modulus of washers is tailored to represent the spring constant of the belleville washers. Example: k = 26,000 lb/in, A_{washer} = 0.81in², Depth_{washer} = 0.15 in². Therefore: E= k*depth/A = 4814 psi

- The cte of the washer is used to impose a preload on the clamp and winding. Assume 0.1 in/in strain Therefore: cte = 0.1 / -72 F = -0.00138 /F and preload for "hard" springs is 2600 lbs, and 1000 for "soft" springs

- All washers have the same spring constant but have different modulus values.

-The clamp is fixed to the tee by a stud at the top of the clamp and a representative bolt head on the lower end.

Clamp Design Iterations

	Case 0: No clamps on the coil	Case 00: Faux clamps everywhere	Case 000: No Pressure Ioading aplied	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7
Washer k (Ib/in)	-	10,000	10,000	10,000	5,000	20,000	2,500	10,000	10,000	10,000
Washer Preload (in)	-	0.025	0.025	0.025	0.025	0.025	0.025	0.05	0.01	0
Washer Preload (lb)	-	250	250	250	125	500	62.5	500	100	0
Winding E (psi)	9.50E+06	9.50E+06	9.50E+06	9.50E+06	9.50E+06	9.50E+06	9.50E+06	9.50E+06	9.50E+06	9.50E+06
Approximate Winding Dissplacement off Tee [west] (in)	0.081	0.026	0.025	0.023	0.023	0.022	0.021	0.02	0.025	0.026
Winding Dissplacement [East] (in)	0	0.042	0.016	0.042	0.047	0.032	0.054	0.038	0.045	0.046
Max Von Mises Stress in winding (psi)	22,000	10,700	3,500	11,500	10,200	12,200	9,500	11,500	10,500	10,500
Max Von Mises Stress Clamp (psi)	-	-	63,000 (39,000)	48,000 (28,000)	29,000 (15,000)	78,000 (46,800)	6,600 (4,200)	91,000 (54,000)	31,800 (11,400)	24,000 (3,800)

Multiple case have been run to determine what the correct design parameters should be for the clamps and corresponding Belleville washers. Cases 1–7 have one "real clamp" on board at west location and the rest are pseudo clamps.

Displacement Comparison

How are Displacements from Tee Measured

Clamp Stresses

Winding Modulus Comparison Deformation

Points:

- The modulus of the winding is a big player in determining the deflection of the coil.
- The deformation decreases with the lower modulus coil.

Parameter	CASE A	CASE B
Spring stiffness (lb/in)	10,000	10,000
Winding Modulous (psi)	9.50E+06	1.00E+06
Pre-load deflection (in)	0.1	0.1

Winding Modulus Comparison Stress

Points:

- Stress in tee is higher for the less stiff winding.
- Winding stress decreases as winding modulus is lowered.
- Clamp Stress is relatively the same. Clamp is dominated by preloaded springs

	Parameter	CASE A	CASE B
	Spring stiffness (lb/in)	10,000	10,000
	Winding Modulous (psi)	9.50E+06	1.00E+06
B	Pre-load deflection (in)	0.1	0.1

Case 2 (Revisited 4-10-2004)

- Case 2 produced the best fit in terms of gap deflection, winding stress and clamp stress.
- Rerunning the case with the new cure shrinkage data produces the following results.

	Approximate Dissplacement Off Tee (in)	Faux Clamp Dissplacment (in)	Max Von Mises Stress in Winding (psi)	Max Von Mises Stress Clamp (psi)
0.04 % cure shrinkage (1-10-2004)	0.023	0.047	10,200	29,000 (15,000)
No Cure Shrinkage (4-12-2004)	0.007	0.019	8,400	25,000 (14,000)

Obviously, the new data, if genuine, is encouraging.

Considering the 4 Operating States (Case 2, No Cure Shrinkage)

- 1. Immediately after cool down. -0.04 % relative strain between winding and tee due to thermal expansion.
- 2. Beginning of Pulse. Magnetic loading applied with thermal expansion.
- **3.** End of pulse. Magnetic loading applied without thermal expansion, heating of coil has resulted in a relative +0.04 % strain difference between the winding and tee. (strain value is only coincidentally equal to the cool down strain difference).
- **4. Post Pulse.** No magnetic loading, no thermal expansion (at rest state, coil will then cool back to state 1)

Operating State	Approximate Dissplacement Off Tee (in)	Faux Clamp Dissplacment (in)	Max Von Mises Stress in Winding (psi)	Max Von Mises Stress in Tee (psi)	Max Von Mises Stress Clamp (psi)
1	0.014	0.008	4,000	14,000	23,000 (12,000)
2	0.007	0.019	8,400	22,800	24,000 (14,000)
3	0	0.0002	7,350	35,285	23,000 (11,000)
4	-	-	-	-	24,000 (12,000)

Is Mechanica Accurate, Can It Be Trusted For Non-Linear Contact Analysis ?

Comparison Between Mechanica and Ansys (Von Mises Stress)

Is Mechanica Accurate? Yes, It agrees well with Ansys

The high stress is in the pin connecting the clamp which the Ansys model does not have.

Summary

- Iterations show that Belleville washers should be designed with a stiffness of 5,000 - 10,000 lb/in and a preload of 100 – 125 lbs. This corresponds to case 2 and case 6.
- Clamp Stresses depends mostly on preload.
- Soft windings stick to the tee better, but do raise stress in the tee.
- Using no clamps, results in larger displacements and gaps, but this effect is less for the stiff winding pack.
- Mechanica and Ansys give the same answers for nonlinear contact analysis.

Future Work

- Modify Winding Stiffness based on results of ongoing tension and compression tests at PPPL.
- Provide a table for predicted strain values at experimental strain gage locations for the four loading states.
- Perform a detailed analysis of the actual clamp design (with all features) based on the max deflections measured in this analysis.

Design tasks -

- Complete pattern drawings for inner plate (cladding)
- Issue clamp detail drawings for fabrication
- Finalize patterns for chill plate and cooling tubes, develop drawings

Schedule -

		May			Jun				Jul					Aug				Sep)						
	Week #	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Issue cladding and clamp detail drawings		Х																							
Issue chill plate / cooling detail drawings			Х																						
Fabricate / procure hardware			Х	Х	Х	Х	Х	Х																	
Wind coil									Х	Х	Х	Х	Х												
Mold and VPI														Х	Х	Х									
Setup and test																	Х	Х	Х	Х	+				
																			Begin winding prototype coil						

The twisted racetrack coil is prototypical

- complex winding surface
- actual conductor and insulation
- prototypical clamps and chill plates
- utilizes production winding facility

Test objectives have been defined

All models / drawings are not final, but should be released in stages asap to improve schedule