Modular Coil Assembly Outboard Bolted Joint FDR 6/29/07

Presented by the ORNL/PPPL Design team

- Are the requirements well defined?
- Does the design meet the requirements?
- Is the design adequately underpinned by analysis and testing?
- Is the shim friction testing sufficient to proceed with procurement of coated shims?
- Is the shim coating spec complete?
- Are the drawings complete and ready to be released for fabrication?
- Have all relevant chits from previous MC design reviews been adequately addressed?

Scope

This review covers the outboard shims for all existing bolted joints in the design.

The inboard shims (including the welds and added bolts on C-C joint) will be addressed at a later review.

Requirements

Requirements are derived from the coil assembly specification and the station 2 assembly specification.

Electrical

- Partial Toroidal electrical breaks shall be provided between adjacent modular coils within a field period (AA, AB, BC).
- Electrical breaks are required between adjacent modular coils in adjacent field periods (CC). [Ref. GRD Section 3.2.1.5.2b to be revised]
- Toroidal electrical breaks must be able to withstand an applied voltage of 150 V (ref. GRD Section 3.2.1.5.3.6).

Structural

- Carry compressive loads
- Maintain a "no slip condition" under the bolts (friction joint)

Assembly

- Position the coils accurately
- Minimize gaps

Interface B-C

Туре-В

.06 M A D

 \oplus

Interface C-C

A1 is special

- NOTES: A/A = BASELINE/PROPOSED A = ALIGNMENT FEATURE C = CLEARANCE HOLE, I.885 ±.003 THRU ∟___Ø3.0 X MIN DEPTH BACKSIDE T = THREADED HOLE, I.375-6 UNC-2B THRU
- X = HOLE TO BE ELIMINATED

TYPE-B DATUM-D (WINDING SIDE-A)

A1 Welded Adaptor w/ Tapped Hole NCSX NATIONAL COMPACT STELLARATOR EXPERIMENT

A1 Photograph

Inventory of Tapped/Through Holes NCSX NATIONAL COMPACT STELLARATOR EXPERIMENT

No.	Interface	Тур	No. Tapped	Total	No. Thru	Total	Total
			Holes	Tapped	Holes	Thru	Fasteners
1	A-B	5	25	125	1	5	
2	A1-B	1	7	7	19	19	
3	B-C	6	29	174	0	0	
4	A-A	2	20	40	0	0	
5	A1-A	1	6	6	14	14	
6	c-c	3	8	24	24	72	
	Total	18		376		110	486

Design of Outboard Bolted Joint

Bolt Configuration

14

Bolt Configuration

Insulating Washer

Bushing

Flange Bushing

Function:

- Maintains Relative Position of Coils
- Electrical isolation
- Structural support

Qty Required:

- 110 concentric
- 486 eccentric

Shim Design

Universal Shim (details)

21

Universal Shim (initial qty)

TOTAL 214

		,
		A

	. 540	. 535	. 545	. 520	- 36
1					50
	. 538	. 533	. 543	.518	- 35
I	. 536	. 531	. 541	.516	- 34
Ι	. 534	. 529	. 539	.514	- 33
2	. 532	. 527	. 537	. 512	- 32
2	. 530	. 525	. 535	.510	-31
3	. 528	. 523	. 533	. 508	- 30
4	. 526	. 52 I	. 531	. 506	-29
5	. 524	.519	. 529	. 504	-28
6	. 522	.517	. 527	. 502	- 27
7	. 520	.515	. 525	. 500	-26
8	.518	.513	. 523	. 498	- 25
9	.516	.511	. 521	. 496	-24
10	.514	. 509	. 519	. 494	-23
10	.512	. 507	.517	. 492	- 22
	.510	. 505	.515	. 490	- 2
12	. 508	. 503	. 513	. 488	-20
12	. 506	. 50 I	. 511	. 486	- 9
12	. 504	. 499	. 509	. 484	- 8
12	. 502	. 497	. 507	. 482	-17
	. 500	. 495	. 505	. 480	- 6
11	. 498	. 493	. 503	. 478	- 15
10	. 496	. 491	. 50 I	. 476	- 4
9	. 494	. 489	. 499	. 474	- 3
8	. 492	. 487	. 497	. 472	- 2
7	. 490	. 485	. 495	. 470	-11
6	. 488	. 483	. 493	. 468	- 10
5	. 486	. 48	. 491	. 466	- 9
4	. 484	. 479	. 489	. 464	- 8
4	. 482	. 477	. 487	. 462	- 7
3	. 480	. 475	. 485	. 460	- 6
2	. 478	. 473	. 483	. 458	- 5
2	. 476	. 471	. 481	. 456	- 4
I	. 474	. 469	. 479	. 454	- 3
I	. 472	. 467	. 477	. 452	- 2
Ι	. 470	. 465	. 475	. 450	-
QTY REQ'D	DIM A FINISHED SIZE ALUMINA COATED THICKNESS PER SIDE	MIN FINISH	MAX ED SIZE	THICKNESS OF SS ± .001	PART NO

Shim Configuration

Shim Configuration

Shim Layout AB

AB	Shim Length	No Bolt	
Hole #	Hole to Bottom	Shim	
1	5.00		
2	5.00		
3	3.75		
4	3.75		
5		3.75	
6		2.75	
7	3.75		
8	3.75		
9	3.75		
10	3.75		
11	3.75		
12	5.00		
13		5.00	
14	5.00		
15	5.00		
16	5.00		
17	5.00		
18		5.00	
19	5.00		
20	5.00		
21		5.00	
22	5.00		
23	5.00		
24		5.00	
25	5.00		
26	5.00		
27	5.00		
28	5.00		
29	5.00		
30	5.00		
31		2.75	
32	2.75		
33	2.75		

NATIONAL COMPACT STELLARATOR EXPERIMENT

Shim Layout CC

2.75

50

Shim Table – All Flanges

SHIM LENGTH-HOLE TO BOTTOM	AA FLANGE	AB FLANGE	BC FLANGE	CC FLANGE	TOTAL
2.75	6	4	2	24	36
3.75		8	10	16	34
5.00 (UN-CUT)	22	21	21	10	74
TOTAL PER FLANGE	28	33	33	50	
TOTAL PER FIELD PERIOD	28	66	66		160
TOTAL PER MACHINE	84	198	198	150	630

Assembly Sequence

Proposed modification to Machine Asm Seq Plan R7:

- Place initial set of metal shims on lower coil
- Position upper coil w/o bolting, measure and install bushings
- Install fasteners, torque to 50% preload, measure
- Loosen studs, install final shims, tighten, measure
- Loosen one by one, install bushings
- Tighten to full preload

Finite Element Analysis

- The non-linear (frictional) analysis of this structure is based on the half-field period model with anti-cyclic symmetric conditions on the end CC and AA flanges.
- The intent is to determine if the number of bolts is sufficient to prevent motion on the outboard side of the coils. Using discrete bolts instead of averages from a linear model gives a higher confidence.
- A friction factor of 0.4 used under all bolts and on the entire flange surface. This is derived from the approximate 0.6 average value seen in testing and a 1.5 reduction factor imposed.
- 2T high-β Magnetic loads, TF coil loads also applied.
- Preload compressive force of roughly 75 Kips applied to all bolts.

IATIONAL COMPACT **Bolt Modeling** TELLARATOR EXPERIMEN 12 Spokes Ties End of 'Equivalent-Stiffness" Bolt To Edges of Hole at each end Type B Type

At one particular interface, pipe elements with appropriate section properties are used to represent the characteristics of a bolted interface. Contact elements at this interface are allowed sliding contact (no separation).

The other bolted interfaces are modeled with "Bonded Contact."

**Any deflection of the top flange face (that connects to the bolt) relative to the bottom flange face or distortion of the hole itself could result in some minimal (usually less than 2 kips) shear in the bolt.

AA Bolt loadings (outboard)

This model has inner leg bolts and friction of 0.4 over the entire surface. The inner leg is now welded and thus, the conditions on the outboard can be no worse than the condition presented. This is Conservative.

Bolts 21-26 are no longer in the design and are not presented.

AA Joint

The Joint is stuck (red) under every outboard bolt.

AB joint

This model has inner leg bolts and friction of 0.4 over the entire surface. The inner leg is now welded and thus, the conditions on the outboard can be no worse than the condition presented. This is Conservative.

Bolts 27-29 are no longer in the design and are not presented in the table.
AB Joint

The Joint is stuck (red) under every outboard bolt.

BC Joint

This model has inner leg bolts and friction of 0.4 over the entire surface. The inner leg is now welded and thus, the conditions on the outboard can be no worse than the condition presented. This is Conservative.

Bolts 30-33 are no longer in the design and are not presented in this table.

BC Joint

The Joint is stuck under every outboard bolt.

CC-Joint

- This joint has no weld on the inboard leg or any inboard bolts
- Model assumes 0.4 friction over the entire inboard leg. (non-conservative pending outcome of inner leg fix...next slides.)
- The last bolts (#1 and #32 are just beginning to slip a bit and pick up some shear)

Options to restrain movement of inboard leg.

Options include adding 6 to 12 bolts on the inner leg (model on right has 12 bolts added north and south of the midplane.)

may need to be enlarged to 1.5" for increased preload. <u>These are not considered as "outboard</u> bolts" and are outside the scope.

1

mu = 0.4 everywhere else

Outer Bolts #1 and #32 are now completely stuck. Inner leg slippage has been essentially eliminated.

Innermost inboard bolts (#38 - #39) are stuck.

NearContact Sliding

Sticking

- In either option for restraining the inboard leg, the outboard bolts (#1- #32) of CC do not slip.
- The innermost added inboard bolt and perhaps all of the added inboard bolts should be increased from 1.375" to 1.5" to provide additional preload to the joint on the inner leg.

- The analysis performed shows that the outboard bolts do not slip when 0.4 friction is applied everywhere with the previously added inboard bolts. This is consistent with the linear analysis which tabulated Average COF's (Fan and Brooks appendix slide).
- By welding the inboard region, the conditions studied are conservative as the welds will be stiffer and react more load than the previously added inboard bolts. The end bolts will not see increased load.

Confirmatory Experimental Testing

Measurement of preload

- Fiber optic gages (which can be calibrated before installation!!) can be installed in a number of bolts to monitor preload during life.
- The gages would indicate when to re-torque when and if the preload lessons.
- Largest obstacle (drilling a 0.02" hole through a 9" long stud has been achieved.)
- Gages have been shown to give highly repeatable data.

Shear Testing at ORNL

- Minimum friction condition (mu=0.4) does work for all outboard bolts and both analyses indicate that the friction coefficient seen in testing is more than adequate
- Tests of bolted joint mockups in LN2 (static and cyclic) are planned and will use the strain gage in a bolt concept to monitor preload.
- Status: All Load-train and LN2 tank parts manufactured, awaiting bolts and shims (mid July)

Alumina Friction Testing

- $\mu \approx 0.4$ observed *without binder* in a few cases.
- $\mu > 0.6$ observed with binder (design adaptation)
- Mu is also dependent on surface roughness of the alumina. A minimum surface roughness will be added to the already-signed Rev. 0 spec
- Previous analysis based on shear averages has shown that the outboard shims can live with µ < 0.4 down to 0.2. A µ of .4 was chosen due to the end bolt effects when the inner leg was not welded.

Friction Testing Setup

- A traditional tension/compression testing machine has been configure to pull "double shear" combinations.
- Side rams allow the application of normal (transverse) loads

Typical Test Combination

- A 0.38" thick x 1.00" wide center element receives the application of frictionencouraging medium (alumina, in these cases)
- Wider (1.50") side plates are added to each side of the center element with an axial overlap of 1.0"
- The normal/transverse load (10 kip max) is added at the center of the overlap areas (2 in**2 total area)

2nd Design Test Combination

- The original design called for a maximum loading of 10 kip over the available area
- A choice was made to reduce the test area rather than upgrade the test rig after analysts began predicting 17 ksi loading needs.
- The lessened area results in 10 kip max applied on two series ½ in**2 areas (1 in**2 total)

- Ellis and Gettelfinger procured two families of alumina on side-plates
 - With and without bondcoat
 - The 3 least desirable friction results were in the "no bondcoat" population admidst desirable results
 - Is the "no bondcoat" correlation a red herring?

Alumina, 2 Constant Pressures, Variable SS Finish

Contact Pressure	Finish	Apparent Mu
9.5 ksi	32 microinch	.64B
9.5	60	.41N*
9.5	125	.74B**
9.5	250	.70B
19	32	.59B
19	60	.72N
19	125	.81N
19	250	.82N

*Pre-test cleaning in question

**Machine shutdown on software trip

Alumina, Constant SS Finish, Variable Pressure

Pressure	Finish	Apparent Mu
6.0 ksi (Full Width)	125 microinch	.62B
8.0 (Full Width)	125	.83N
9.5 (Full Width)	125	.73B
10. (Half Width)	125	.45N
12 (Half Width)	125	.59B
14 (Half Width)	125	.45N
16 (Half Width)	125	.82B
19 (Half Width)	125	.65N

Trimmable Shim Feasibility

- Machining checks show that slowly turning carbide tools may be used without chipping the alumina
- The slitting saw (used on lower specimen) may be appropriate for trimmable shims

ATIONAL COMPACT FELLARATOR EXPERIMENT

Shall We Radius?

- The Rev. X shim pictured was provided with a 1/16 radius on all edges to possibly avoid alumina fracture at line contact areas.
- A cost-saving proposal has only hand chamfering to about 0.040".

First Rough Inquiry

- This alumina-with-bondcoat sideplate was supported in a cast iron welder's vee block (45 degree style) and had a 1" dia platen loaded onto its 1" uppermost edge. The sideplate had edges broken to some arbitrary and probably inconsistent value.
- The edge survived a 1 kip load without obvious damage. A 2.3 kip (caught by the "instantaneous peak" meter) load resulted in the fracture pictured.
- Next up Investigation at small angles: ~0.2 degrees rather than 45.

Alumina Spec, Rev.0

- Thickness 0.012" +0.003/-0.002
- Roughness >100 microinch RMS
- Vacuum Bake to 300 C (by PPPL)
- Dunk check in LN2 (by PPPL)
- Initial Test Population required by spec

SPECIFICATION
FOR
Plasma Spray Ceramic Coating NCSX Modular Coil Shims NCSX-CSPEC-142-06-00
Revision 0
Dated 25 May 2007
PREPARED BY: Cognizant Individual: R. Ellis
REVIEWED BY: Malinowski
APPROVED BY: Dudek

Conversation with Incumbent Supplier

- Robert Rigney of A&A asserts that normal alumina coatings have surface shear strength of 2-3 ksi.
- The nickel aluminide bondcoat increases this to 6-7 ksi.
- Roughness is a controllable parameter
 - Rigney suggests that NCSX considers a larger particle size to achieve the desired rougher surface.
 - Also suggests that the larger particle would have better "bite in" capability.

• Decision Point:

- Larger alumina particle size

Or

- Use current size
- Investigate edge loading at flat angles
- Go to cycle testing

Conclusion

- Are the requirements well defined?
 Yes. Mod coil B-spec needs revision, Station 2 spec to be issued
- Does the design meet the requirements? Yes. Outboard shim details unaffected by remaining inb work.
- Is the design adequately underpinned by analysis and testing Yes. Final analysis w/ inb, checking to be done. Tests confirmatory.
- Are the drawings complete and ready to be released for fabrication? Yes. Drawing comments have been incorporated and checked
- Have chits from previous MC design reviews been addressed? Yes. Chits from Feb-07 PDR follow:

#	Chit/Audit Finding [Originator]	Project Disposition	Status
1	Consider a "Plan B" for the possible condition of inadequate fit-up which might require additional machining of the shims. [Reiersen]	 Worst case fitups are being analyzed. May preclude using constant thickness shims everywhere. (Brooks) Production prototype (A1:A2) will determine whether contoured shims are required. If so, use of a high friction foil or a spray application of alumina can be done post-machining. 	Pre-assembly tests show that adequate asm tolerances can be achieved with constant thickness shims.
2	Identify if any of the existing holes need to be worked on. [Cole]	Holes should be examined and cataloged as to whether any re- work is required. Bushing OD could be determined at the same time.	Cataloging complete. Rework in progress. Drawing for A1 mods in progress.
3	What are tolerance requirement for the half-period assembly? Need to consciously define. Needs more attention. [Cole]	Requirements for positioning the coil current centers will be provided in the Station 2 assembly specification. (Cole) Input to be provided by Brooks.	Half-period and asm of two half-periods=.010-in, for total of .020-in per field period. Ref Dimensional Control Plan by Bob Ellis (to be issued)
4	Establish criteria for adequate fit-up of the shims [Cole]	 FEA analysis indicates that maximum deflections will be on the order of 1 mil (Fan) Joint tension tests will measure deflections upon tensioning the bolts (Gettelfinger) Approach to finalize fit-up criteria is TBD 	Ref Dimensional Control Plan by Bob Ellis (to be issued)
5	Do ultrasonic testing during tension test. [Cole]	UT will be performed during tension test	UT will be employed during confirmatory tests to verify joint behavior.

#	Chit/Audit Finding [Originator]	Project Disposition	Status
6	Measure μ at LN temperature with Stellalloy. Since Stellalloy seems stronger at LN temperature than standard stainless and since the failure seems to be destruction of the SS surface the maximum μ may be higher with Stellalloy. [Zarnstorff]	Stellalloy and SS316LN have very comparable strength properties. There are no plans to machine Stellalloy test pieces out of the prototype casting for friction tests.	Shim material selected based on cost/schedule considerations.
7	I recall Gettelfinger getting μ ~ 0.7 in one of his tests at very high clamping shims to increase pressure (~ 7000 PSI?). Consider understanding shims to increase pressure to obtain this high μ.	Friction testing will be performed over a representative range of pressures.	Done.
8	Tabulate deflection and bolt shear loads in case without additional inner leg bolts with ~ no friction on inner leg region. Consider if this is a more attractive solution than added bolt design. [Zarnstorff]	The overloading of the bushings on the A-A flange will be resolved by adding additional bolts.	Analysis complete. End bolt shear loads and motion was high. Welding selected as preferred configuration.
9	Shims must protrude beyond flange or have a handle for insertion and positioning. [Viola]	A handling feature for the shims will be added.	Shims protrude beyond flange edge.
10	Eliminate spherical washers! Unnecessarily costly and potential loss of preload. [Viola]	 Loss of preload will be tested in bolt tension tests with spherical washers and flat washers. Test will also provide cost data. Design solution may be to use only where necessary to save cost. Spherical washers are needed where stud is not normal to spotface. 	Supernuts selected as preferred configuration, do not require spherical washers for asm. Hex nuts w/ spherical washers to be used on one end of through bolts only.
11	The concern is do we have a pre fit-up of the MC before the diamond coated shims are installed? [Brown]	The assembly sequence will be worked out on the production protoype (A1:A2)	Diamond coating rejected.

#	Chit/Audit Finding [Originator]	Project Disposition	Status
12	Make as many similar parts as possible i.e.	Plan is to minimize the number of	Universal shim with cutoff
	all shims have same shape. [Viola]	different parts	lengths will minimize qtys.
13	In place of planned " welded threaded	A1 adapters to replace through	Drawing for A1 in
	hole adapters" use A286 nuts and	holes with tapped holes will be	progress.
	washers. Use box wrench to resist	replaced with standard nuts	
	rotation during tightening operations.		
1.4	[Heitzenroeder]	Deily mantines are baine hold at	Deilu meetinge continue
14	Expedite completion of coll-to-coll	2:45 to review daily progress and	Daily meetings continue.
	that cannot be otherwise addressed	make plans for the following day	
	[Rejersen]	linake plans for the following day.	
15	Need to establish accentable fit un	1. See Chit 4 re fit-un criteria.	Fitun testing w/ Fuji film
	requirements for the shim. Also.	2. Good fit-up around the stud is	performed to determine
	determine where the preferred contact	seen as important to provide a	acceptable fitup.
	area is [Reiersen]	good load path for the bolt	
		preload. The impact of not	
		having good fit-up in the shell	
		region will be investigated.	
16	Need to finalize shim area. Fit up favors	See chits 12 and 15.	Universal shim selected.
	a smaller area. Shear is the glass epoxy		
	favors a larger area. [Reiersen]		
17	Load washer may have to be modified to	Interface with hydraulic	Supernut configuration
	accommodate hydraulic tensioners.	tensioners will be investigated.	adopted
	[[Reiersen]		

#	Chit/Audit Finding [Originator]	Project Disposition	Status
18	Resolve issue of what the stress allowables should be in the G-11 bushing. [Reiersen]	Stress allowaqbles will be reviewed and set per the NCSX Structural and Cryogenic Design Criteria.	Friction joint design developed. Bushings serve as aid to positioning, electrical isolation, secondary structural elements only.
19	Send analysis results to Fan for checking. [Reiersen]	Analyses will be documented and provided for proejct review.	Analysis of various options documented, final analysis pending. Independent checking of design basis analyses is still required.
20	Finalize location of bolts to resolve peak bushing stress concerns especially on A- A [Reiersen]	Adding more bolts on A-A will be investigated for reducing peak bushing stresses.	Welded joint configuration under development
21	Confirm that single shear test setup is OK. If not, consider setting it up a a double shear test. [Reiersen]	Double shear setup is being considered.	Test setup revised, fabrication complete, asm in progress.

Back-up Slides / APPENDIX

Bolted Joint Parameters (1)

STUD / NUT - 1.375-6UNC-2AB		
nominal diameter	in	1.3750
number of threads / inch	-	6
min major diam, ext	in	1.3544
max major diam, ext	in	1.3726
min pitch diam, ext	in	1.2563
max pitch diam, ext	in	1.2643
minor diam, ext	in	1.1681
min minor diam, int	in	1.1950
max minor diam, int	in	1.2250
min pitch diam, int	in	1.2667
max pitch diam, int	in	1.2771
major diam, int	in	1.3750

STUD / FLANGE - 1.375-6UN	C-3AB	
nominal diameter	in	1.3750
number of threads / inch	-	6
min major diam, ext	in	1.3568
max major diam, ext	in	1.3750
min pitch diam, ext	in	1.2607
max pitch diam, ext	in	1.2667
minor diam, ext	in	1.1705
min minor diam, int	in	1.1950
max minor diam, int	in	1.2146
min pitch diam, int	in	1.2667
max pitch diam, int	in	1.2745
major diam, int	in	1.3750

BUSHING SHOWN AT WORST CONDITION-AFTER REAMING TO STUD ECCENTRICITY. MAINTAIN MINIMUM .IO THICKNESS IN ANY POSITION OF BUSHING.

SCALE 1.00

MATERIALS-			STELLALLOY		A286		316SS		INCO 718		TITANIUM		G-11CR	
			77K	293K	77K	293K	77K	293K	77K	293K	77K	293K	77K	293K
modulus of elasticity	Е	ksi	23300	21600	31100	29100	30100	28200	30800	29600	17100	15800	3500	2700
poisson's ratio	v	-	0.283	0.294	0.298	0.31	0.283	0.294	0.307	0.308	0.327	0.333		
shear modulus	G	ksi	18161	16692	23960	22214	23461	21793	23565	22630	12886	11853		
thermal exp coefficient	а	ppm/K	13.0			13.0		16.0		12.5		9.3		6.5
integrated thermal exp	u	ppm	2834		2638		2760		2150		1600		5500	
tensile strength	Su	ksi	159	82	166	130	183	90	238	190	226	145		
yield strength	Sy	ksi	93	35	97	85	94	40	186	157	218	137	115	66

NATIONAL COMPACT STELLARATOR EXPERIMENT Ν

68

Bolted Joint Parameters (2)

	ia (noie) para	meters -	tapped hole
			Assumes thread engagement length is
			determined by the internal thread.
			Assumes ext/int threads have the same class,
Re	ef 6		e.g, 1, 2, or 3.
			Fastener engagement length - set equal to
			nominal flange thickness for tapped hole - may
L	e 1.375	in	be 1.5in with overcast
Le/l	<u>) 1</u>		1-1.5 is normal
Knma	x 1.2146	in	Max minor diameter of internal thread
Enma	x 1.2745	in	Max pitch diameter of internal thread
A	n 4.60140919	in2	Shear area of internal thread (Eq. 4)
Materia	al Stellalloy	,	Flange material
Т	n 82	ksi	Tensile strength of flange material
Sp	n 29.75	ksi	Proof strength of flange material
			Min fastener engagement length - if stud and nut
Lemi	n 0.90844988	in	are the same material (Eq. 5)
			Relative strength of external and internal threads
	J 1.19252555		(Eq. 6)
(<u>ג 1.08334969</u>	in	Required length of engagement (Eq. 7)
			If <1, thread engagement inadequate to develop
Le/0	<u>2 1.2692116</u>		full strength of bolt
tornal threa	d (bolt) naram	otore - /	A286 stud in tanned hole
ternar an ea	a (bold) param		Thread and material properties are entered in
			the tables
			the tables.
			Thread reference must be an ODD number for
			Thread reference must be an ODD number for
Pof	5		Thread reference must be an ODD number for an external thread, even for an internal thread.
Ref	5		Thread reference must be an ODD number for an external thread, even for an internal thread. Reference column in thread properties table
Ref D	5 1.375 i	n	Thread reference must be an ODD number for an external thread, even for an internal thread. Reference column in thread properties table Nominal diameter
Ref D n	5 1.375 i 6 /	n in	Thread reference must be an ODD number for an external thread, even for an internal thread. Reference column in thread properties table Nominal diameter Threads per inch
Ref D n	5 1.375 i 6 / A286	n in	Thread reference must be an ODD number for an external thread, even for an internal thread. Reference column in thread properties table Nominal diameter Threads per inch Bolt/stud material
Ref D n Ts	5 1.375 i 6 / A286 130 i	n in :si	Thread reference must be an ODD number for an external thread, even for an internal thread. Reference column in thread properties table Nominal diameter Threads per inch Bolt/stud material Tensile strength of bolt material @ 293K
Ref D n Ts Esmin	5 1.375 i 6 / A286 130 k 1.2607 i	n in ssi	Thread reference must be an ODD number for an external thread, even for an internal thread. Reference column in thread properties table Nominal diameter Threads per inch Bolt/stud material Tensile strength of bolt material @ 293K Minimum pitch diameter of external thread
Ref D n Ts Esmin Att	5 1.375 i 6 / A286 130 i 1.2607 i 1.15488023 i	n in ssi n n2	Thread reference must be an ODD number for an external thread, even for an internal thread. Reference column in thread properties table Nominal diameter Threads per inch Bolt/stud material Tensile strength of bolt material @ 293K Minimum pitch diameter of external thread For bolt strengths <100ksi (Eq. 1)
Ref D n Ts Esmin At1 At2	5 1.375 i 6 / A286 130 k 1.2607 i 1.15488023 i 1.15488023 i 1.14339773 i	n in xsi n n2 n2	Thread reference must be an ODD number for an external thread, even for an internal thread. Reference column in thread properties table Nominal diameter Threads per inch Bolt/stud material Tensile strength of bolt material @ 293K Minimum pitch diameter of external thread For bolt strengths <100ksi (Eq. 1) For bolt strengths >100ksi (Eq. 2)
Ref D n Ts Esmin At1 At2 At	5 1.375 i 6 / A286 130 l 1.2607 i 1.15488023 i 1.14339773 i 1.14339773 i	n in :si n n2 n2 n2 n2	Thread reference must be an ODD number for an external thread, even for an internal thread. Reference column in thread properties table Nominal diameter Threads per inch Bolt/stud material Tensile strength of bolt material @ 293K Minimum pitch diameter of external thread For bolt strengths <100ksi (Eq. 1) For bolt strengths >100ksi (Eq. 2) Tensile area of bolt thread
Ref D n Ts Esmin At1 At2 At As	5 1.375 i 6 / A286 130 i 1.2607 i 1.15488023 i 1.14339773 i 1.14339773 i 3.46121874 i	n in n n2 n2 n2 n2 n2 n2 n2	Thread reference must be an ODD number for an external thread, even for an internal thread. Reference column in thread properties table Nominal diameter Threads per inch Bolt/stud material Tensile strength of bolt material @ 293K Minimum pitch diameter of external thread For bolt strengths <100ksi (Eq. 1) For bolt strengths >100ksi (Eq. 2) Tensile area of bolt thread Shear area of external thread (Eq. 3)
Ref D n Ts Esmin At1 At2 At As Dsmin	5 1.375 i 6 / A286 130 i 1.2607 i 1.15488023 i 1.14339773 i 1.14339773 i 3.46121874 i 1.3568 i	n in n n2 n2 n2 n2 n2 n2 n2 n2 n	Thread reference must be an ODD number for an external thread, even for an internal thread. Reference column in thread properties table Nominal diameter Threads per inch Bolt/stud material Tensile strength of bolt material @ 293K Minimum pitch diameter of external thread For bolt strengths <100ksi (Eq. 1) For bolt strengths >100ksi (Eq. 2) Tensile area of bolt thread Shear area of external thread (Eq. 3) Min major diameter of external thread
Ref D n Ts Esmin At1 At2 At As Dsmin F	5 1.375 i 6 / A286 130 i 1.2607 i 1.15488023 i 1.14339773 i 1.14339773 i 3.46121874 i 1.3568 i 149 i	n in n n2 n2 n2 n2 n2 n2 n2 n2 n2 n2 n3	Thread reference must be an ODD number for an external thread, even for an internal thread. Reference column in thread properties table Nominal diameter Threads per inch Bolt/stud material Tensile strength of bolt material @ 293K Minimum pitch diameter of external thread For bolt strengths <100ksi (Eq. 1) For bolt strengths >100ksi (Eq. 2) Tensile area of bolt thread Shear area of external thread (Eq. 3) Min major diameter of external thread Force required to fail joint
Ref D n Ts Esmin At1 At2 At As Dsmin F	5 1.375 i 6 / A286 130 l 1.2607 i 1.15488023 i 1.14339773 i 1.14339773 i 3.46121874 i 1.3568 i 149 l	n in n n2 n2 n2 n2 n2 n2 n2 n2 ips ips	Thread reference must be an ODD number for an external thread, even for an internal thread. Reference column in thread properties table Nominal diameter Threads per inch Bolt/stud material Tensile strength of bolt material @ 293K Minimum pitch diameter of external thread For bolt strengths <100ksi (Eq. 1) For bolt strengths >100ksi (Eq. 2) Tensile area of bolt thread Shear area of external thread (Eq. 3) Min major diameter of external thread Force required to fail joint Force to break bolt
Ref D n Ts Esmin At1 At2 At At2 At Smin F	5 1.375 i 6 / A286 130 k 1.2607 i 1.15488023 i 1.14339773 i 3.46121874 i 1.3568 i 149 k 149 k 225 /	n in n n2 n2 n2 n2 n2 in sips iips iips	Thread reference must be an ODD number for an external thread, even for an internal thread. Reference column in thread properties table Nominal diameter Threads per inch Bolt/stud material Tensile strength of bolt material @ 293K Minimum pitch diameter of external thread For bolt strengths <100ksi (Eq. 1) For bolt strengths <100ksi (Eq. 2) Tensile area of bolt thread Shear area of external thread (Eq. 3) Min major diameter of external thread Force required to fail joint Force to break bolt Force to strip bolt threads

Bolt Preload

- Nominal preload of 75-kips based on 85% of A286 yield strength
- Cool-down relaxation is -4% with Inconel load washer, +2% with Titanium
- Preload uncertainty for hydraulically tensioned studs w/ ultrasonic inspection

For Su < 180-ksi (Bio	ckford),				load washer mat'l Inconel			onel	l Titanium		
tensile stress area		As	in2	1.1543	joint type		thru	tapped	thru	tapped	
proof strength		Sp	lb	72250	grip length	in	5.0900	2.7950	5.0900	2.7950	
nominal preload		Po	lb	75058	dL bolt	in	0.0134	0.0074	0.0134	0.0074	
initial bolt stress			ksi	65	dL sph washer	in	0.0014	0.0014	0.0014	0.0014	
					dL flat washer	in	0.0011	0.0011	0.0008	0.0008	
preload uncertainty (nasa tm-1	106943)		10%	dL ins washer	in	0.0002	0.0002	0.0002	0.0002	
joint type		thru		tapped	dL flange	in	0.0035	0.0035	0.0035	0.0035	
max preload	lb	84256		79523	subtotal	in	0.0061	0.0061	0.0059	0.0059	
min preload	lb	68937		65064	subtotal x2	in	0.0123	0.0061	0.0117	0.0059	
applied torque	ft-lb	1755		1732	dL shim	in	0.0015	0.0015	0.0015	0.0015	
					dL total	in	0.0137	0.0076	0.0132	0.0073	
					change in strain	in/in	-6E-05	-8E-05	4.6E-05	1.6E-05	
					change in stress	ksi	-1.8	-2.4	1.3	0.5	
					final preload	lb	72967	72293	76596	75598	

TAPPED

TAPPED

TAPPED

Ē

в

В

SUPER-NUT

SUPER-NUT

LP-TORQUE

NONE

Individual Joint Analysis – If friction fails.

Type 1 Bolted Connection

Type 2 Bolted Connection

Type 2a Bolted Connection, Extended Metallic Bushing

Individual Joint analysis (Type 1)

- Load Step 1 (time=1.0): Bolt Preload ~72 kip, 0.0 kip Shear Load
- Load Step 2 (time=2.0): Bolt Preload plus 20 kip Shear Load

1st Principal Stress Range in Type 1 Bolt from 20 kip Shear Load

Stress Intensity of bushing

- Max bushing stress is 50-ksi
- Compare to bushing material:
 - Compressive strength = 60-ksi
 - Min bearing strength = 30-ksi
- Max shear load = ~12-kip Static

Individual Joint analysis (Type 2 and 2a)

NCSX NATIONAL COMPACT STELLARATOR EXPERIMENT

• Load Step 2 (time=2.0): Bolt Preload plus 20 kip Shear Load

1st Principal Stress Range in Type 2 Bolt from 20 kip Shear Load

Tabular Results from Individual bolt Study

Joint Type	Type 1		Type 2		Type 2a
Bushing Material	G-11CR	SS	G-11CR	SS	SS
Un-Intensified Stress Range per 20 kip Shear Load (ΔS1), ksi	30.4	17.9	50.4	42.9	35.4
Thread Stress Intensification Factor	4	4	4	4	4
Peak Stress Range per 20 kip Shear Load, ksi	0.3	0.0	47.4	41.5	26.3
Fotal Intensified Stress Range per 20 kip Shear Load, ksi	122	72	249	213	168
Keep in mind that these values are based on a 20 kip unit shear load.					

- The stress profile indicates a predominantly Bending component (no surprise)
- The MEM+BEND stress and TOTAL stress are essentially the same for the Type-1 joint
- There is a significant PEAK stress component {TOTAL-(MEM+BEND)} in the Type-2 & 2a joints based on the bolt-hole geometric discontinuity.

77

Fatigue

 We need to amplify a particular stress component by the thread SIF.
Amplifying SY is a logical choice since the thread concentration is normal to this stress component.
However, amplifying S1 (max tensile stress) is also appropriate and conservative, if not essentially the same as SY. In addition, it would be difficult to ignore the Peak stress component that the model is able to capture, which also contributes to the total stress at this max stress location. Therefore, the total stress range which is used to evaluate the fatigue life of the bolts is defined as follows:

 $\Delta S_{tot} = (kthread)(\Delta S1) + PEAK$

• Design basis fatigue Curve for A286 at 77K (Reference: N. Suzuki, "Low-Cycle Fatigue Characteristics of Precipitation-Hardened Superalloys at Cryogenic Temperatures," Journal of Testing and Evaluation, JTEVA, Vol. 28, No. 4, July 2000. pp. 257-266.).

NB-3230

NB-3230 STRESS LIMITS FOR BOLTS

NB-3231 Design Conditions

(c) When gaskets are used for preservice testing only, the design is satisfactory if the above requirements are satisfied for m=y=0, and the requirements of NB-323 are satisfied when the appropriate m and y factors are used for the test gasket.

NB-3232 Normal Conditions

Actual service stresses in bolts, such as those produced by the combination of preload, pressure and differential thermal expansion may be higher than the values given in Table I-1.3.

NB-3232.1 Average Stress. The maximum value of service stress, averaged across the bolt cross-section and neglecting stress concentrations, shall not exceed two times the stress values of Table 1-1.3.

NB-3232.2 Maximum Stress (Except As Restricted by NB-3232.3). The maximum value of service stress at the periphery of the bolt cross-section (resulting from direct tension plus bending) and neglecting stress concentrations shall not exceed three times the stress values of Table 1-1.3. Stress intensity, rather than maximum stress, shall be limited to this value when the bolts are tightened by methods other than heaters, stretchers or other means which minimize residual torsion.

NB-3232.3 Fatigue Analysis of Bolts. Unless the components on which they are installed meet all the conditions of NB-3222.4(d) and thus require no fatigue analysis, the suitability of bolts for cyclic operation shall be determined in accordance with the procedures of the following subsubpararphs.

(a) Bolting Having Less Than 100,000 psi Tensile Strength. Bolts made of materials which have specified minimum tensile strengths of less than 100-000 psi shall be evaluated for cyclic operation by the methods of NB-3222.4(e), using the applicable design fatigue curve of Fig. 1-9.4 and an appropriate fatigue strength reduction factor (see NB-3232.3(c)). (b) High-Strength Alloy-Steel Bolting. Highstrength alloy-steel bolts and studs may be evaluated for cyclic operation by the methods of NB-3222.4(c) using the design fatigue curve of Fig. 1-9.4 provided:

NB-3000-DESIGN

NB-3235

(1) The maximum value of the service stress (see NB-3232.2) at the periphery of the bolt crosssection (resulting from direct tension plus bending) and neglecting stress concentration shall not exceed 2.7 S_w, if the higher of the two fatigue design curves given in Fig. 1-9.4 is used. (The 2 S_w limit for direct tension is unchanged.)

(2) Threads shall be of a V-type having a minimum thread root radius no smaller than 0.003 in.

(3) Fillet radii at the end of the shank shall be such that the ratio of fillet radius to shank diameter is not less than 0.060.

(c) Fatigue-Strength-Reduction Factor (see NB-3213.17). Unless it can be shown by analysis or tests that a lower value is appropriate, the fatigue-strength-reduction factor used in the fatigue evaluation of threaded members shall not be less than 4.0. However, when applying the rules of NB-3232.3(b) for high-strength alloy-steel bolts, the value used shall not be less than 4.0.

(d) Effect of Elastic Modulus. Multiply $S_{\rm sh}$ (as determined in NB-3216.1 or NB-3216.2) by the ratio of the modulus of elasticity given on the design fatigue curve to the value of the modulus of elasticity used in the analysis. Enter the applicable design fatigue curve at this value on the ordinate axis and find the corresponding number of cycles on the axis of abscissas. If the operational cycle being considered is the only one which produces significant fluctuating stresses, this is the allowable number of cycles.

(e) Cumulative Damage. The bolts shall be acceptable for the specified cyclic application of loads and thermal stresses provided the cumulative usage factor. U. as determined in NB-3222.4(e)(5) does not exceed 1.0.

NB-3233 Upset Conditions

The stress limits for Normal Conditions (see NB- 3232) apply.

NB-3234 Emergency Conditions

The stress limits of NB-3232.1 and NB-3232.2 apply.

NB-3235 Faulted Conditions The limits of NB-3225 apply.

ASME Code Base Thread Stress Intensification Factor (NB-3232.3 (c))

NCSX NATIONAL COMPACT STELLARATOR EXPERIMENT

Fatigue Curves for outboard bolts: should slippage occur

Maximum fatigue loading of type 2 with G11 = 5 kips Maximum fatigue loading of type 1 with G11 = 10 kips ATIONAL COMPACT

Linear Analysis for Friction coef. - AVERAGES

From MCWF Toridal Joint Shear forces2

Inner Legs for AA, AB and BC not shown.

NATIONAL COMPACT

Imperfect Fit-Up Run (CC)

0.005" gap on inboard leg Friction = 0.04 on Inner-leg region, mu = 0.4 everywhere else

No Added Inboard Bolts

Inner most bolts see 3.3 Kips Sliding is more than 19 mils

NATIONAL COMPACT STELLARATOR EXPERIMENT

Slides from Imperfect Fit-Up Run

Slides from Imperfect Fit-Up Run

Stress intensity Plot (Pa)

Gap Plot (Pa)