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1. Introduction 
1.1 About this manual 

This manual provides a descriptive explanation of a number of critical 
mathematical concepts and methods used by Axyz. 
 
It does not provide a detailed specification of internal algorithms but the 
explanations should enable readers to understand how the functions work. 
 
It is assumed that readers have a level of mathematical knowledge 
appropriate for a university-educated engineer. It is further assumed that 
they are familiar with the general techniques of optical triangulation and 
polar location. 
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2. Simple statistical ideas 
2.1 Errors 

2.1.1 Errors In brief 
An error is the difference between the true value of the measurement and 
what you actually measure. Errors have 3 basic sources: 
• Small random variations (a fact of life beyond the user's control) 
• Systematic effects (can be compensated by suitable modelling methods) 
• Mistakes (can often be detected by check procedures) 
 

2.1.2 Introduction to errors 
Measurements can never be exactly correct, which is an unavoidable fact 
of life. If the same angle or distance is measured many times, there will 
always be a variation in results.  Additionally, no instrument can be 
perfectly manufactured, and some residual imperfections must remain, 
even if small. Both these effects introduce measurement errors. The term 
error is used in statistics to refer to the small deviations of measurements 
from their true value although error in the normal English sense means 
mistake. This term is reserved for more serious errors. 
 
We try to keep errors a small as possible or adopt measuring strategies 
which reduce their effects and enable us to get good estimates of the true 
values. It is useful to identify different types of error. 
 
Systematic errors arise, for example, when a theodolite's line of sight is not 
exactly perpendicular to its transit (trunnion) axis. These can be identified 
and largely eliminated by mathematical modelling and software 
compensation. 
Outright mistakes might be caused by the operator pointing at the wrong 
target because it looks the same as the correct one. Even automated 
systems can make mistakes, for example when an image processing 
module locates a bright light source in the background instead of the 
correct target which happens to be dimmer. Additional measurements and 
diverse data filtering methods often detect mistakes which usually have 
large and isolated effects. To properly identify a true mistake it may also 
be called a gross error or blunder. 
 
Quality issues are mainly concerned with random errors, such as a short-
term temperature change which causes a small refraction error in a 
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pointing. These are beyond the control of the user. Fortunately we can 
reduce the effects of random errors by averaging repeated measurements or 
using more information than is strictly needed 
 

2.1.3 Random errors 
Random errors are small positive and negative variations in the value of a 
measurement which is repeated many times. This is a natural physical 
effect which cannot be completely eliminated by changing the design of 
the measuring system. Random measurement errors follow the Normal or 
Gaussian error distribution. 
 

2.1.4 Systematic errors 
Systematic errors follow a definite pattern caused by some particular 
physical effect. For example an electronic distance meter may give 
readings which are consistently too low or too high if the incorrect carrier 
frequency has been applied. 
 

2.1.5 Mistakes (gross errors, blunders) 
Mistakes are caused by some failure in the measuring procedure. For 
example an operator may accidentally sight the wrong target or an 
electrical spike may corrupt the reading from an instrument. In a properly 
designed measuring procedure mistakes rarely occur and are usually large 
compared to other errors. This makes it relatively easy to find them. 
 

2.2 The normal distribution of random errors 
Although individual random errors, as the name implies, do not seem to 
follow a pattern, in large numbers they do behave in a predictable way. 
Most people are aware of the simple concept that you repeat a 
measurement many times if you want to "average out" the variations in 
each one. This implies, correctly, that you can in the end get the true value 
of a quantity even if each separate attempt is close but not exact. 
 
The whole science of statistics is built on this idea that there is indeed 
some predictable behaviour in random physical changes. However the 
rules strictly only apply when large numbers of measurements are 
involved. Naturally we try to get away with quite small numbers of 
measurements and in practice this works well. However it is also possible 
to make too few measurements, in which case any estimates of quality are 
based on insufficient information and produce bad results. 
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Imagine measuring a distance between the same two points many times. 
You might get the following random spread of distance measurements: 
 
Value mm Number of 

measurements
Relative 

frequency 
Deviation from 
average value 

810.11  1 0.005 -0.059 
810.12  3 0.015 -0.049 
810.13  7 0.035 -0.039 
810.14 19 0.095 -0.029 
810.15 20 0.100 -0.019 
810.16 36 0.180 -0.009 
810.17 38 0.190 0.001 
810.18 29 0.145 0.011 
810.19 24 0.120 0.021 
810.20 10 0.050 0.031 
810.21 11 0.055 0.041 
810.22  0 0.000  
810.23  2 0.010 0.061 

    
Average Total   

810.17 200   
 
The table shows how many times a particular value came up. The values 
did not, of course, turn up in the order shown in the table, which involved 
some re-packaging for the presentation. The relative frequency is simply 
each measurement number divided by the total number of measurements 
and it offers a convenient way to compare tests with different measurement 
numbers. 
 

810.1 810.12 810.14 810.16 810.18 810.2 810.22 810.24
0

0.05

0.1

0.15

0.2
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The diagram shows the same information as in the table, with the height of 
the red blocks indicating the relative frequency of each of the 
measurements. The blue, bell-shaped curved shows the pattern that the 
blocks fall into if you take very many measurements, although the red 
blocks already fit the curve quite well. 
 
The curve indicates the probability of any particular measurement value 
occurring. In particular it shows that somewhere around the middle, where 
the average value lies, is the most probable region for obtaining 
measurements. 
 
This curve is so common that it is called the normal distribution (error 
curve) where normal has its conventional meaning in English. It may also 
be called the Gaussian distribution after the German mathematician Karl 
Friedrich Gauss who made detailed investigations of the effects and 
properties of errors. 
 

2.2.1 Probability density 

-3σ -2σ -1σ ba0 σ 2σ 3σ  
 
The curve describing the normal error distribution actually represents 
probability density, i.e. a probability per unit. It can really only be used by 
asking: "What is the probability that a measurement lies between value a 
and value b?"  The shaded area under the curve then indicates the 
probability. You do not use the curve to ask: "What is the probability that a 
measurement has value c". 
 
Imagine you have a bar made of some composite material whose density 
varies in the same bell-shaped way. In casual conversation you can say: 
"The bar is heavier in the middle than at the ends" and the fact that the 
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density of the material is highest in the middle clearly indicates this. 
However to be quite specific you would have to say that the weight of a 
section cut from the middle is heavier than the weight of a similar length 
section cut from the end. To obtain a section you must cut it out between 
positions a and b but it is meaningless to refer to the weight of a cross 
section at position c. 
 

2.3 How good is the measurement? 
In conversation we use several qualitative terms to explain how well we 
can measure: 
• Accuracy 
• Precision 
• Repeatability 
• Resolution 
 
Without proper definition the conversation can lead to confusion For 
example: 
"The robot can position its end effector with an accuracy of 0.1mm". 
Will it always return to the same position within 0.1mm, or is the 
separation of any 2 points within its entire workspace never in error by 
more than that amount? 
 
"This measurement system has a resolution of 10 microns". Is that the 
smallest increment on the linear encoders, or the smallest increment at the 
object which can be reliably determined? Either way, how good is it? 
 

2.3.1 Accuracy 
Accuracy is a global effect, extending throughout the measurement field. It 
indicates how close measurements and derived quantities are to their true 
values. Although true values can never be found in practice, calibration 
and performance tests provide accuracy checks. 
 

2.3.2 Precision 
Precision is a local effect. It indicates how well measurements of a 
particular quantity agree with one another. 
• If precision is high the spread of values is small. 
• If precision is low the spread of values is large. 
Repeatability tests can show the precision of individual instruments and 
complete systems. 
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2.3.3 Repeatability 
Repeatability is effectively another term for precision. Precision tends to 
be used in connection with measuring instruments and repeatability with a 
complete measuring procedure or particular objects. 
• A well maintained laser tracker is a precise instrument.  
• An well maintained industrial theodolite has high angular precision. 
• A dual theodolite triangulation system should give good repeatability 

when a set of test targets is measured on several occasions. 
• A robot ideally shows good repeatability when returning to the same 

programmed pose. 
 

2.3.4 Calibration 
 

 
 
Consider the results of the shooting practice session above. The precision 
of a process indicates the potential accuracy which it can achieve but only 
by making a suitable compensation or calibration can this accuracy be 
realized. In sessions (3) and (4) the errors in (1) and (2) respectively have 
been corrected. 
 
Lack of accuracy is a good indicator that some systematic error is still 
present but once removed by calibration the random effects which cause 
the spread seen in the precision (repeatability) will still be present. 
Calibration cannot remove these as well. 
 

2.3.5 Resolution 

Resolution In brief 
The resolution of a measuring component such as an angle encoder is the 
smallest incremental change which it can deliver. Resolution should be 
higher than the expected measurement accuracy so that the measurement is 
not degraded by an inefficient encoder. 
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The resolution of an optical system such as a telescope is a measure of its 
ability to reproduce fine detail in the image. Fine detail implies a sharp 
image and this contributes to a high quality pointing for both manual 
observation and electronic imaging. 
 
Introduction to resolution 
Optical resolution and instrument readings obviously influence precision 
and accuracy, but it should not be assumed that they indicate the limits. An 
angle read to 0.1" will not necessarily have a precision or accuracy of that 
order. These depend more on the ability of the observer or electronic 
sensor to centre on the target and on the quality and definition of the target 
itself. 
 
Equally well, if a telescope can be reliably pointed to within ± 2 arc secs., 
then a system which only reads to 10 arc secs will not reflect the potential 
accuracy. Furthermore, repeated pointings to improve the result will not, in 
this case, be successful, since the small spread cannot be detected by the 
coarse reading. Generally, the minimum increment given by an instrument 
should be somewhat smaller than the expected precision of the quantity 
measured. 
 

2.3.6 Significant figures 
The number of significant figures indicates how many digits in a numerical 
value have any importance. 
 
9.0075 m is a value with 5 significant figures. If this is a reading from an 
electronic distance meter it suggests the distance is accurate to about ½ 
mm but the instrument might display a reading to another place of 
decimals, e.g. 9.00753. 
 
If the ½ mm is already in doubt, the final digit (9.00753) contributes no 
information to the measurement. 
 
However when making further computations with this value, small errors 
can arise which are purely due to mathematical manipulation and have 
nothing to do with the actual measurements. Rounding errors are an 
example of this effect. 
 
To reduce errors caused by this source, the extra digit is often carried 
through the processing. 
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2.4 How are uncertainties quantified? 
Now that general terms for discussing quality have been specified, 
concrete numbers need to be generated. 
 

2.4.1 Average value 
One of the most common ways of improving results is to take several 
measurements of the same quantity and use the average value, also called 
the mean value. 
 
Average value In brief 
For a set of N measurements of a quantity X: 
 

X X
Nav

i

i

N

=
=
∑

1

      or   X
X X X

Nav
N=

+ + +1 2 ..
 

 
More on average value 
If the error quantities xi are the deviations from the average value such that 
Xi = Xav + xi, then 
 

( ) ( ) ( )
X

X x X x X x
Nav

av av av N=
+ + + + + +1 2 ..

 

 
which leads to 
 
( ) ( ) ( )x x x

N
N1 2 0

+ + + +
=

..
 

 
i.e. the average value of the error quantities is zero. 
These error quantities xi are not the true errors ei since the average value is 
not the true value, although the more measurements you make the more 
likely the average is to be close to the true value. However the true errors 
will also have an average value of zero. 
 

2.4.2 Variance and standard deviation 
The spread of random variations is obviously an indicator of measurement 
quality. The quality of measurement is low if the spread is large and high if 
the spread is small. 
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Considering the error values themselves, they are sometimes positive and 
sometimes negative, with an average value of zero. The average error 
provides no information about the spread, also called dispersion. If instead 
the error terms are first squared and then averaged a positive number is 
always obtained. The average of the squared terms does indicate the 
spread, since it increases as the spread increases. This parameter is called 
the variance. (In normal English the term relates to some difference or lack 
of agreement as in the phrase: "Statement A is at variance with statement 
B".) 
 
Variance is defined by the true errors ei as: 
 

( )
var =

=
∑ e

N
i

i

N 2

1

        or             ( ) ( ) ( )var
..

=
+ + +e e e

N
N1

2
2

2 2

 

 
Since the variance involves squared error terms it is not an easily 
recognized number. A more useful figure is the square root of the variance, 
called the standard deviation. It is commonly identified by the Greek 
symbol σ (sigma): 

σ = var                 or              ( ) ( ) ( )σ =
+ + +e e e

N
N1

2
2

2 2..
 

 
(The variance itself is then usually identified by the squared term, σ2.) 

3σ 2σ σ 0 σ 2σ
0

0.1

0.2

0.3

 
 
It can be shown that a measurement has a 68% chance of lying within ±σ 
of the true value, if the measurements follow the normal distribution. 
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Strictly speaking, these definitions only apply to an infinitely large set of 
measurements. Since most users have better things to do than take repeat 
measurements all day we must make do with a lot less. If instead the 
deviations xi from the average value of a small number of measurements 
are used, then statisticians can prove that a good, unbiased approximation 
to the standard deviation is given by: 
 

( ) ( ) ( )sd
x x x

N
N=

+ + +
−

1
2

2
2 2

1
..

 

 
The only practical difference is the use of (N-1) instead of N and the 
difference is small once you have, say, 10 or more measurements. In fact, 
if you take a less rigorous view of things and say: 
 

( ) ( ) ( )σ = =
+ + +

sd
x x x

N
N1

2
2

2 2..
 

 
then this becomes a definition of the root mean square (RMS) value. (See 
"Root Mean Square (RMS) error" on page 31.) 
 
Very often we do not make a number of repeat measurements of the same 
quantity but do measure similar quantities many times. For example, in an 
orientation procedure involving a bundle adjustment many angular 
readings are taken but to a number of different points. The bundle 
adjustment can then produce quality figures such as the RMS value for 
angle measurements in general. 
 

2.4.3 Correlation and covariance 
Random errors in measurements are usually independent of each other. 
The random error in pointing at target A is not affected by the random 
error in pointing at target B. 
 
Some measurements are not made directly but are derived entirely from 
others. In Axyz, angle measurements are used to derive coordinates. For 
example, pointings to a specific target from two theodolites can be 
intersected to compute the target's X,Y and Z coordinates. Errors in each 
coordinate value, dX, dY and dZ, are based on the angular errors of the 
two pointings. Although the individual coordinate errors are different 
because a different function is used to compute each one, they will still be 
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related since they all use the same starting information, i.e. the same errors 
in the same two angular pointings. 
 
If errors are not independent but related in some way they are known as 
correlated errors. Just as a variance can be defined for any set of errors as 
a measure of their spread, so a covariance can be defined for any two sets 
of correlated errors and used as a measure of their correlation. 
 
Correlations must always be taken into account when computing errors in 
one set of variables which are derived from another. In the example given, 
correlations appear in target coordinates even though the basic pointing 
information is uncorrelated. Any further processing of the coordinates 
must take the corresponding covariances into account, for example, when 
transforming the coordinates into another coordinate system. If this is not 
done the new variance values, which are usually the ones of interest, will 
not be correctly calculated. 
 
Covariance is calculated for any two measurements in a similar way to 
variance. Suppose the two measurements A and B are repeated N times, 
generating two sets of deviations from mean values, ai and bi. Using the 
standard symbol σab for the covariance between A and B: 
 

σab
i i

i

N
a b

N
= ⋅

=
∑

1

               or          σab
N Na b a b a b

N
= ⋅ + ⋅ + + ⋅1 1 2 2 ..  

 
Note that σba will clearly be the same as σab. 
 
If the measurements are uncorrelated they will randomly have positive and 
negative values. The individual product terms will therefore also be 
sometimes positive and negative and the covariance will tend to average 
out to zero. However if a positive error in A tends to be associated with a 
positive error in B, then the covariance will tend to be positive. The same 
applies if a negative error in A correlates with a negative error in B. The 
signs can also go in opposite directions, which would result in a negative 
covariance. 
 

2.4.4 The variance/covariance matrix 
This is often called simply the covariance matrix. It is required in many of 
the procedures which make use of matrix analysis and is often one of the 
by-products. It provides a concise summary of the variances and 
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covariances between different measurements which need not be of the 
same type. A typical mixture would involve angle measurements of 
varying quality and distance measurements of varying quality. 
 
Covariance matrix: 

( )
( )

( )

σ σ
σ σ

σ

1
2

12

21 2
2

2

.. ..

.. ..
.. .. .. ..
.. .. .. N


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













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For measurements 1,2 .. N the variances appear on the corresponding 
diagonal positions. The covariances between pairs of elements appear in 
the corresponding off-diagonal elements. Since the covariance between 
measurements j and k is the same as between k and j, this matrix is 
symmetrical. 
 
In the simple case of uncorrelated measurements this matrix becomes a 
diagonal matrix of variance values. 
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


 

 
2.4.5 Tolerance 

In manufacturing it is convenient to deal in numbers which cover all 
possible deviations from design values. Although this is literally 
impossible, a good practical approach is to quote error boundaries on 
measurements such that, say, more than 99% of all cases are covered. This 
range is known as the tolerance. 
 
If a good estimate of the standard deviation of a particular measurement is 
known, a typical tolerance quote would be ±3 σ. There is then a 99.7% 
chance that a measurement will fall between these limits. 
 
The 3-sigma value is not a standard and other values are used. For 
example, ±2.5 σ is common and it still covers almost 99% of all the 
relevant measurements. 
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3. Least squares and modelling 
3.1 Introduction to least squares 

Using Axyz we make angle and distance measurements in order to 
calculate coordinates which describe the shapes of objects. The 
coordinates themselves can be further processed to find out more shape 
information. We therefore need a wide range of processing routines which 
convert measurements to coordinates and coordinates into shape 
information. If the original data source, the measurements, were free of 
error all the routines would look mathematically very different. Since they 
and therefore the coordinates are not perfect, all the routines at some point 
use a general mathematical technique called least squares. Once the 
particular set of equations have been constructed which describe the actual 
task, such as an orientation or shape fit, the least squares method solves for 
the values we want in an optimal way which resolves the conflicts caused 
by incompatible data. 
 
Since measurements are subject to error, methods which process them must 
give us the best estimate of their true, error-free values. A crude method 
would be to make every measurement many times and take the average, but 
least squares offers a better solution. 
 
The method of least squares is a very common technique for processing 
measurements which have small random variations and are therefore not 
consistent. A simple example is the measurement of all three angles of a 
triangle. They should add up to 180° but because of the random error in 
each this is very unlikely to happen. The 3 measured angles are therefore 
not consistent with the laws of geometry. Any two of the angles could be 
used to describe the shape of a plane triangle, and 3 slightly different 
triangles would be obtained in this way. Which one is the "true" triangle? 
 
Using least squares the problem is resolved by creating a single 
mathematical model of a situation and deriving equivalent and exact 
mathematical measurements from it. These modelled values are compared 
with the actual measurements and the model altered step by step until a 
best fit between modelled measurements and actual measurements is 
obtained. The decision on the best fit is reached by examining the sum of 
the squares of the differences and altering the model until this sum is a 
minimum. The model is then assumed to be the best description of the 
actual measurement situation.  
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Amongst the many methods which could be used to find the parameters of 
a model (instrument locations, circle radius, etc.), it can be shown that the 
least squares technique gives the best unbiased estimates of these 
parameters. 
 
In Axyz the principle of least squares is at the core of all the optimized 
methods of transformation, shape fitting, orientation, target location and 
calibration. In addition to providing an optimal answer such as the radius 
of a best fitting circle, the methods can also supply quality estimates for 
both measurements and modelled parameters. 

 
Note 
The procedure involving stepwise changes is the most common one 
although there are special cases where the model can be created in a 
single step. 

 
3.1.1 Mathematical components 

In mathematical terms, a least squares analysis has the following 
components: 
 
1. The initial parameters of the model, e.g. 

Positions of instruments and targets in an orientation procedure 
The values which define a circle in a shape fitting procedure 
 

2. Values derived from the model which can be compared with 
corresponding measurements, e.g. 
Horizontal and zenith angles (h,zn) from a modelled instrument to a 
modelled target position 
The modelled radius of the circle (r) 
 

3. Corresponding values involving the known measurement quantities, e.g. 
Measured horizontal and zenith angles (H,ZN) 
The distances from measured points to the modelled circle centre (R) 
 

4. Differences, known as residuals, between theoretical values from (2) 
and measured values from (3) i.e. 
vh = h - H, vzn = zn - ZN 
vr = r - R 
 

5. Equations which make the comparison between (2) and (3) in terms of 
the parameters in (1) and which also involve the residuals in (4). 
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In a simple least squares procedure, the quantity Φ is then minimized 
where 
 

Φ = (vh
2 + vzn

2 + vr
2 + ....) 

 
The minimization is done by altering the parameters in (1) which changes 
the values in (2) and possibly also in (3) until the residuals in (4) make Φ a 
minimum. The alteration of parameters is done in controlled steps using 
the equations in (5) to solve for improvements. 
 

3.2 Iteration and non-linear solutions 
In mathematics, repeating a process of comparison and modification until 
some value has been optimized is called iterating towards a solution and 
each of the steps is a single iteration. (In normal English we use the word 
reiterate meaning to repeat again, as in the sentence "Let me reiterate what 
I said before ..") 
 
Iteration is needed when it is not possible to compute an optimized answer 
in a single step. This is because many mathematical formulations are non-
linear, i.e. the modelled measurements and parameters appear in squared, 
cubic and higher powers or are multiplied together. With a few exceptions 
a one-step solution does not then exist. 
 
A one-step solution mostly only exists when the formulation contains no 
product terms of parameters, i.e. parameters are only multiplied by 
constant and known values and not by themselves or by other parameters. 
 
Suppose a calibration method uses least squares to find the axis tilt, A, and 
beam tilt, B, of an instrument, and that different models are possible to do 
this. 
 
Typical equations which define the model 
 

Type of model 

5 * A + 29.8 * B = 0.00032  linear 
0.5 * A2 + 7.66 * B = 0.0000097  non-linear 

(note the squared term A2) 
8.4 * A + 0.35 * A * B = 4.2 non-linear  

(note the product term AB)
 
These are not real equations but simply illustrate the difference between 
linear and non-linear formulations. 
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When a model is non-linear a technique of linearization is possible. This 
assumes you already have starting values of the model parameters which 
are reasonably close to the values required for a best fit. Linearization then 
allows you to convert the exact non-linear formulation into an approximate 
linear formulation which is valid for small changes in the starting values. 
This approximate linear version of the model is then used for a single 
iteration which computes a small correction to the starting values. The 
original starting values are then updated by the corrections to give new 
starting values and the whole process is repeated (iterated). In the new 
iteration the linear approximation is slightly different because the starting 
values have changed by small amounts. When the corrections are so small 
that starting values are not significantly changed then you stop. 
 
This is the mechanism of the stepwise sequence of changes which 
gradually improves the parameter values until you obtain your optimized 
answer. 
 
Obviously with this method you need to get the ball rolling so somehow 
you need to know the answer approximately before you compute it! These 
approximate answers have various names such as starting values, initial 
values, approximate values, trial values. 
 
Finding trial values can sometimes be very easy. In the case of instrument 
calibration the optimized parameter is often a deviation from a nominal 
design value and this deviation should be zero. For example in the laser 
tracker the laser beam should be parallel to the primary rotation axis 
(approximately vertical). Any residual beam tilt is deliberately 
manufactured to be very small, so the least squares calibration uses an 
initial value of zero for beam tilt. 
 
Other situations are more complicated, as when trial instrument positions 
are needed before computing a bundle adjustment. However in all cases 
where Axyz uses least squares there are simple methods for finding initial 
values. 
 

3.3 Redundancy 
Least squares methods benefit from excess information, just as an average 
value will get closer to the true value the more times a measurement is 
repeated. The number of measurements above and beyond the absolute 
minimum necessary to compute some set of parameters is called the 
redundancy of the measurements. For example, if you need to calibrate a 
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scale bar, one measurement is the absolute minimum you must make. If 
you make 10 measurements the redundancy is 9. 
 
To fully determine the shape and size of a triangle you need 1 side 
measurement for scale and 2 angles for shape, a total of 3 measured 
elements. If you measure 2 sides and all 3 angles you have 5 measurements 
which gives a redundancy of 2. Note that the type of measurement is 
critical since 3 angles alone appear to be sufficient but in fact they would 
not give a solution since they contain no scale information. The minimum 
information must contain both angle and distance data in this case. 
 
It is also good practice to measure as many different elements as possible. 
In the triangle, if you measure 2 angles once each and then one side is 
measured 3 times, there are 5 measurements in total. The redundancy is 
then 2. However it would be more efficient, if possible, to measure each of 
the 3 sides once rather than the one side 3 times. 
 
Redundancy can also be viewed as an excess of equations over unknowns. 
A least squares solution is often constructed so that each measurement 
provides one equation involving some or all of the parameters of a 
particular model. The parameters are the unknowns which must be 
determined and mathematical solutions demand that there be at least as 
many equations as unknowns. 
 
With this approach the number of parameters or unknowns in the model is 
the minimum necessary to describe the situation. For example, when 
computing a best fitting sphere to a number of measured targets the sphere 
would be defined in terms of its centre (3 coordinates) and radius. The 
mathematical model therefore must therefore determine 4 parameters. To 
do this it must have a minimum of 4 equations. Each set of target 
coordinates generates one equation, so a minimum of 4 targets must be 
measured. If you measure, say, 10 targets, the redundancy is 6, i.e. 
 

 redundancy = (number of equations) - (number of unknowns) 
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3.4 Residuals and modelled observations 

3.4.1 Residuals in brief 
Residuals are the difference between a modelled value of a measurement 
and what you actually measure. 
 
The least squares method finds a model which minimizes the sum of the 
squares of the residuals. The residuals therefore indicate how well a model 
of a situation fits the measurements. 
 
A large residual may indicate a bad measurement or defective reference 
data, such as an incorrectly entered scale length or incorrect coordinates of 
a control point. 
 
However, the least squares method does not guarantee to indicate bad 
measurements with large residuals. It sometimes happens that bad 
measurements have small residuals and good measurements are then 
assigned large residuals to compensate for the distortions introduced. 
 

3.4.2 Residuals in detail 
Residuals and modelled measurements, also called observations, are 
effectively correlated because they are based on a mathematical model. If 
one element of the model changes there must be changes in the other 
elements. This is a property of the modelling process. 

 
Example of a triangle: 
The 3 modelled angles must add up to 180 degs. If one angle is changed 
the others must change to preserve a consistent geometry. 
 
Note that the 3 measured angles do not necessarily add up to 180 degs. 
This discrepancy is the reason for attempting to find a best fitting model 
which is internally consistent and can therefore be used to provide 
results. The errors in the measured angles (not the angles themselves) 
are assumed to be independent of one another. Only a good reason, such 
as systematic error in a theodolite, would invalidate this assumption. 

 
The least squares solution can provide error estimates for the modelled 
observations. Since modelled observations are the best estimates of the 
true observations, their computed errors (in a covariance matrix) would be 
accepted as the best estimate of measurement quality. 
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If the modelling process is accurate and no errors are left unaccounted, 
then residuals are a good indicator of typical measurement errors. If the 
least squares procedure involves a reasonable number of measurements 
(good redundancy), the RMS residual value is a good indicator of 
measurement standard error. However, it tends to provide a smaller 
estimate of error than a rigorous analysis, i.e. it implies the measurements 
are better than they are. 
 

3.5 Weights and weighted least squares solutions 

3.5.1 Weights in brief 
When calculating a least squares solution to a measurement problem, a 
measurement residual is assigned a value called a weight and the higher the 
weight the more influence the corresponding measurement will have on the 
final model of a situation. This means that the modelled and measured 
values will be much closer and the corresponding residual will therefore be 
small. 
 
Weights provide two advantages: 
• They can account for different measurement qualities 
• They allow for processing mixed types of measurements such as 

distances and angles 
 
The value of a weight is often related to a measurement's calculated or 
estimated quality, as defined by its standard error. If the standard error is 
small the weight value is high and vice versa. Calculating weights in this 
way is known as weighting by standard error (or weighting by variance). 
 
Sometimes it is convenient to ignore differences between measurements 
and treat them all equally. In this case every measurement receives a value 
for weight = 1. This weighting scheme is known as unit weighting. You 
might choose unit weights in several situations: 
• Relative measurement qualities are not very well known 
• Measurement quality varies but only by small amounts 
• For comparison with results from 3rd party software packages 
 
Unit weighting represents the simplest form of least squares analysis and is 
very commonly used.  
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Weights in practice 
Consider for example control points, which have known coordinates. They 
force an orientation into the coordinate system where the control points are 
located. During the analysis the control point reference coordinates are 
treated as measurements with very high weights so that they develop only 
very small residuals. If the weights are high enough the residuals are 
almost zero and the modelled control points are effectively fixed at the 
reference values. Since the modelled control points end up identical to the 
reference values, the rest of the model, including the instrument locations 
and tilts, must adjust to conform to this, i.e. they end up in the same 
coordinate system. 
 
Weights provide a very flexible way to balance the influence of diverse 
types of measurement but this very flexibility can provide problems for 
unskilled users. Just as weights can be set sufficiently high to make some 
values effectively fixed, they can also be set so low that some 
measurements are effectively deleted from the solution. In this way a user 
might unintentionally remove a critical measurement and cause the 
solution to fail. 
 
Axyz routines often provide simpler weighting schemes in which the user 
can treat values as fixed or unknown. Within the corresponding processing 
routine these assignments are actually treated as either very high or very 
low weights. 
 

3.5.2 Introduction to weights 
A simple least squares procedure minimizes a sum of squared residuals, i.e. 
an expression of the form 
 

(v1
2 + v2

2 + v3
2 + .. vn

2) 
 
where the procedure makes a total of n comparisons between model and 
measurement. 
 
This implies that the measurements are equally good. Consider the task of 
calculating orientations in a measurement network. What happens if some 
pointings are made by instruments of lower precision than others or 
individual targets are poorly defined? Surely these pointings should not 
have as much influence on the final result as the higher quality pointings?  
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Another difficulty occurs with mixed types of measurement, for example 
with polar techniques or even basic triangulation. Suppose the user has 
created a very accurate 3m scaling length using an interferometer and 
wants to ensure that the analysis holds this length to within 3 microns of its 
interferometric value. This is a relative error of 1 micron per metre. 
Suppose also that the theodolite pointings are assumed good to 1 arc 
second. Since 1 arc second is approx. 5 microns per metre the scaling 
length should be given more influence in the analysis than the angular 
pointings. 
 
Weights provide a way of taking into account different measurement 
qualities and allow for processing mixed types of measurements. A 
measurement residual is assigned a value called a weight. A high weight 
tends to make modelled and measured values closer and produces smaller 
residuals.  
 
Weights are based on the fact that measurements which are known to have 
a high precision have a distribution with a small standard error, and 
measurements with a low precision have a distribution with a large 
standard error. Obviously high precision measurements should have a high 
weight and low precision measurements should have a low weight. It is 
mathematically more convenient to work with a variance rather than a 
standard deviation and so for a measurement with variance σ2 the weight is 
defined as: 
 

weight const=
σ2  

 
When the variance is small the weight is high and vice versa. This is the 
required mechanism. 
 
The constant term has no natural value. It is simply a scaling factor which 
can be assigned any value to make the weights convenient to handle 
mathematically. Remember that the purpose of weights is to distinguish 
relative effects, for example to say: 
 

measurements of type A are twice as good as measurements of type B 
 
If type A has an assigned weightA = 100, then type B must have weightB = 
50. The weighting could equally well be weightA = 0.01, weightB = 0.005 
or any other 2:1 combination. 
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In a weighted least squares analysis, the quantity to be minimized then 
becomes: 
 

(w1 v1
2 + w2 v2

2 + w3 v3
2 + .. wn vn

2) 
 
where w1 etc. are the weights corresponding to the residuals. 
 
If the measurements are all equally good and should logically have the 
same weight w, this then reduces to: 
 

 w (v1
2 + v2

2 + v3
2 + .. vn

2) 
It is quite natural to assign the value 1 to w in this case and the result is 
then clearly identical to the original simple least squares concept. However 
if w had some other value, e.g. 100 or 0.000396, it would make no 
difference to the final result. The model which produces the minimum 
value would still be the same model. The actual value of the minimum 
might be bigger or smaller but it is still the smallest value which can be 
achieved with the chosen weight assignment. 
 

3.5.3 The weight matrix 
Every least squares analysis in Axyz uses matrix algebra and it is 
convenient to process the weights in a single weight matrix. In the simplest 
case where measurements are uncorrelated, this has the form: 
 

( )

( )

( )

w k

N

= ⋅



























1 0

0 1

1

1
2

2
2

2

σ

σ

σ

.. ..

.. ..

.. .. .. ..

.. .. ..

 

 
where k is the constant scaling factor. 
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The matrix on the right-hand side is the inverse of the variance matrix of 
the measurements, and so the weight matrix can be written: 
 

( )
( )

( )

w k

N

= ⋅





















−
σ

σ

σ

1
2

2
2

2

1
0

0
.. ..
.. ..

.. .. .. ..

.. .. ..

 

 
When a full mathematical analysis is done it can be shown that the weight 
matrix is best defined as the inverse of the full covariance matrix when the 
measurements are correlated, so that the most general weight matrix is 
defined as: 
 

( )
( )

( )

w k

N

= ⋅





















−
σ σ
σ σ

σ

1
2

12

21 2
2

2

1
.. ..
.. ..

.. .. .. ..

.. .. ..

 

 
This form of weight matrix occurs often, for example when fitting shapes 
to measured points which normally have correlated coordinates. However 
users have some flexibility to choose a weighting scheme in these cases. 
 

3.5.4 Selecting a weighting scheme 
The actual value of the weights used in any Axyz procedure depends on 
the choice of scaling factor which is arbitrary. There are different ways to 
choose the scaling factor. 
 
Unit scaling factor: Weight = inverse of variance. 
In this case the scaling factor k = 1 and it has no dimensions. 
 
For simple, uncorrelated measurements 
 

weight = 1
2σ
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This creates large numbers for weights. For example, if the weight is 
applied to angles which are assumed to have a standard error of 1 arc 
second and all calculations are done in radians, then: 
 
σ = 1" = 0.000004848 rad   weight = 42550 x 1000 000 rad-2 
In practice this approach would define weights using the inverse of the full 
covariance matrix to generate a corresponding weight matrix, i.e. 
 

( )
( )

( )

w

N

=





















−
σ σ
σ σ

σ

1
2

12

21 2
2

2

1
.. ..
.. ..

.. .. .. ..

.. .. ..

 

 
Here the scaling factor is still dimensionless with a value 1, even if mixed 
types of measurements are involved. 
 
Simple unit weighting 
In the very simplest case, all measurements are uncorrelated, of the same 
type and equally good. The user need not even consider scaling factors and 
variances but simply makes the statement: 
 
weight = 1 
 
Here the weight is a dimensionless number of value 1, in contrast to the 
previous method where the scale factor was a dimensionless number of 
value 1. With unit weighting the scale factor has units of variance. 
Suppose the measurements in this case all have a standard error of σ0 then: 
 

( )
( )

weight = =1 0
2

0
2

σ

σ
 

 
i.e. the scale factor has effectively been assigned the value σ0

2 even though 
this may not have been a conscious choice by the user. 
 
This scheme generates a diagonal unit weight matrix. 
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Approximate unit weighting 
If there is some variation in measurement quality, a unit weighting scheme 
must be slightly modified to become: 
 

( )weight =
σ
σ

0
2

2  

Now the user will have to consider some actual value for the scale factor 
σ0

2 which will generate weights of around 1 when combined with the 
standard errors of the measurements. 
 
For measurements of the same type the scale factor therefore has the same 
variance units as the measurements themselves, e.g. mm2, rad2. Its actual 
value is similar to a typical variance value within the measurements. 
(Mikhail1 p77 has a good example of this.) 
 
This method remains valid, but loses its simple concept, when 
measurements of mixed types are involved. The weight cannot then be a 
dimensionless number for every type of measurement. (Mikhail1 
demonstrates this with correlated measurements in his example 5-12.) 
 
Weighting scheme used in Axyz 
Axyz orientation methods use the inverse of the covariance matrix for 
weighting purposes. This is known as weighting by variance but within 
Axyz it is more loosely called weighting by standard deviation. 
 
Axyz shape fitting routines permit the user to choose between this method 
and simple unit weighting. Shape fitting packages used by other 
measurement systems often employ unit weighting because these systems 
generate a fairly uniform error quality. Axyz users therefore have the 
option to use the same weighting method in order to get similar results for 
purposes of comparison. 
 

3.5.5 Testing the weighting scheme after processing 
When processing is complete the residuals can be examined to see if they 
correspond to the assumed quality of measurement. The scale factor used 
for weighting is also a test statistic known amongst other names as the 
variance factor. Using the residuals, it can be estimated purely analytically 
and if it does not agree with the original value assumed for weighting 
purposes then one of several problems is indicated. For example, there may 
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be one or two bad measurements, which should therefore have a low 
weighting, or a whole group of measurements has been weighted 
incorrectly relative to the others. 
 
This is discussed in more detail later, see "Variance factor" on page 38. 
 

3.5.6 Further use of the weighting factor 
The weighting factor is generally known as the variance factor and is a 
component in error propagation. This technique computes errors in 
parameters due to errors in the measurements from which they were 
derived. For example the tolerance in the radius of a circle can be 
computed when the errors in the target points lying on the circle are 
known. Error propagation is a by-product of the least squares solution and 
since this involves weights based on the variance factor, the variance 
factor must be known in order to correctly scale the error estimates. See 
"Error propagation and the variance factor" on page 47. 
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4. Quality figures 
4.1 Introduction 

The section on simple statistical ideas outlines the sources of measurement 
errors and tolerances and introduces some commonly used statistical 
parameters such as mean values, standard errors and variances. 
 
Once a measurement has been made, users will want to know how good it 
is, since quality is a major consideration in any manufacturing or analysis 
task. There is usually a requirement that the measurements meet or 
improve upon some quality goals. 
 
Depending on the task, the processing routines in Axyz generate different 
types of statistics or quality figures. These provide information about the 
measurements which have been processed and the parameters such as 
target locations and dimensions of shapes which are the objective of the 
processing. 
 
The routines are more complex than required for, say, the simple repeated 
measurement of the distance between two points. Some of the figures 
discussed in this section are also a little more complex than the simple 
figures already mentioned, but they are developed on the same statistical 
basis. 

 
Note 
The optimized processing routines in Axyz all use the method of least 
squares which mathematically generates the best estimates of the 
parameters they are designed to calculate. 

 

4.2 Preliminary and calculated quality estimates 
Least squares procedures often require estimates of measurement quality 
before data is processed. These are called a priori estimates which is a 
Latin term used to imply "before processing". These estimates are therefore 
preliminary values made manually by the user but are likely to be based on 
previous experience and should represent reliable values. 
 
After processing is complete it may be possible to supply good a posteriori 
quality estimates. This is another Latin term used to imply "after 
processing". These estimates will be calculated by the processing program 
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and depend on the quality of the actual data supplied. Actual quality may 
be different from the user's a priori assumption! 
 
For convenience, any further discussion will refer to preliminary and 
calculated estimates rather than a priori and a posteriori estimates. 
However the Latin terms are used in text books and reference sources. 
 
It is important to realize that good statistical estimates can only be 
computed if a sensible number of measurements are made, i.e. if there are 
more measurements than strictly needed to compute a result. This is known 
as redundancy. 
 
Example: 
1. Toss a coin 10 times and you get maybe 8 heads. 
2. Toss a coin 100 times and you get maybe 55 heads.  
3. Toss a coin 1000 times and you get approximately 50% heads. 
 
From the first test you might assume heads are much more likely than tails, 
but this would be wrong, as the improved tests show. It may not always be 
possible in a particular measurement situation to get a good estimate of 
measurement accuracy from the measurements themselves. For example, 
only very limited statistical information about a target's position and 
associated pointings is available from a dual theodolite intersection. In 
such cases it is better to use quality estimates based on experience and 
which are ultimately derived from other more valid sets of measurements. 
 
The quality figures which are of primary interest are error estimates for 
computed target coordinates and elements derived from them. However, 
since the original source of coordinates are the measured angles and 
distances, quality estimates are also required for these. 
 
To obtain preliminary error estimates for angular pointings and distance 
measurements users have the option of: 
• Evaluating an earlier least squares analysis such as the results from a 

bundle adjustment 
• Making multiple independent test measurements such as repeated 

pointings from a stable instrument position to a well defined fixed target 
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4.3 Summary of quality statistics provided by Axyz 

4.3.1 RMS error 
The RMS error has the following features: 
• It applies to residuals of a selected type and not necessarily all the 

residuals in a particular least squares procedure 
• It has the same units as the quantity evaluated, e.g. arc secs, mm 
• It can act as an estimate of quality of the selected measurement type and 

is roughly equivalent to a standard error 
• If larger than expected it may indicate the presence of bad measurements 
• It requires redundant measurements (more than theoretically necessary) 

in order to be meaningful. 
 
In Axyz shape fitting routines the RMS error is associated with unit 
weighting of the measurements. It is not a mathematical requirement to 
link RMS and unit weights but it is a convenient approach in the design of 
the routines. See "Quality results from unit weighting" on page 45. 
 

4.3.2 Calculated variance factor (ManCAT "mean error") 
The variance factor calculated after processing has the following features: 
• It is statistic which involves all the residuals, possibly of different types, 

in a least squares analysis. 
• In Axyz routines the factor is a dimensionless number which should be 

close to 1. 
• If the factor is large this can indicate problems in the relative weighting 

of measurements. Amongst other possibilities, incorrect weighting may 
imply a bad measurement, . 

• It requires redundant measurements (more than theoretically necessary) 
or the factor cannot be computed. 

 
The variance factor is mainly useful for indicating weighting problems. 
Weights are assigned before processing with an preliminary variance factor 
of 1. Problems are detected after processing when the variance factor can 
be estimated again, using the actual results. This statistic always has an 
element of "before and after" comparison. 
 
In Axyz shape fitting routines the variance factor is associated with 
weighting of the measurements according to their covariance matrices.  
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It is not a mathematical requirement to make this link and the factor can 
also be computed for measurements of unit weight. The link is made for 
convenience in program design. In fact, the variance factor is indeed 
computed for shape fits using unit weighting since it is required for error 
propagation but it is only used internally in this case. See "Error 
propagation with unit weighting" on page 52. 
 

4.3.3 Variance/covariance estimates from error propagation 
Variance/covariance estimates have the following features: 
• Based on quality figures for the measurements, they provide estimates 

for standard errors and variances of specific calculated parameters, e.g. 
coordinates of a theodolite's position in a measurement network. 

• In Axyz routines the calculated error estimates are ultimately derived 
from the user's preliminary estimates of measurement quality. It is up to 
the user to decide if estimates are consistent with the results returned. 

 

4.4 Root Mean Square (RMS) error 

4.4.1 RMS in brief 
The Root Mean Square (RMS) error is derived from a set of measurement 
residuals produced by a least squares analysis such as a bundle adjustment 
or shape fit. It relates to a particular type of measurement quantity such as 
angles, distance measurements or coordinate offsets. 
 
The RMS value provides a single quality figure in the units of the 
measurement concerned. It is an estimate of the spread of the 
measurements and/or an estimate of the closeness of a fit. 
 
An RMS value larger than expected may indicate the presence of a small 
number of bad measurements. In this case the residuals may have to be 
examined, and other tests made, in order to track down the problem. 
 

4.4.2 Simple definition of RMS 
For a set of N residuals vi the RMS value is defined as:  
 

( )
RMS

v

Nresid

i
i

N

= =
∑ 2

1  
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4.4.3 Full definition of RMS 
The RMS value can be applied to any set of N related measurements to 
generate a single value which is representative of the full set of 
measurements. It is defined as: 
 

( )
RMS

X

Nresid

i
i

N

= =
∑ 2

1        or      ( ) ( ) ( )RMS
X X X

Nresid
N=

+ + +1
2

2
2 2..

 

 
When estimating measurement quality the RMS is often applied to the 
deviations of measurements from their mean value, rather than to the 
measurements themselves. Since deviations are sometimes positive and 
sometimes negative, the squared terms enable a single quality figure to be 
calculated which represents the spread of the measurements, i.e. 
 

( )
RMS

X X

Ndev

i mean
i

N

=

−
=
∑ 2

1  

 
This is fine for evaluating the same physical quantity which has been 
measured a number of times, such as a distance between two particular 
targets but the statistic is most useful when applied to measurement 
residuals resulting from some least squares processing method. The 
definition is then: 
 

v X Xei i i= −       

( )
RMS

v

Nresid

i
i

N

= =
∑ 2

1  

 
Here Xe is the least squares estimate of the corresponding measured value 
X, and v is the residual. 
 
To be meaningful the residuals must all be of the same type. However they 
relate to different physical elements such as the various offsets of a set of 
targets from a fitted surface, rather than repeat measurements of the same 
quantity. The following two examples of a circle fit and target intersection 
demonstrate this. 
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In these examples, the minimized least squares sum is the same one used to 
create the RMS value, i.e. the RMS is minimized. In more complex least 
squares solutions, such as a bundle adjustment involving angle, distance 
and control point measurements, the minimized least squares parameter 
involves mixed types of residuals and weighting factors. 
 
Example: RMS residual for circle fit 
A circle is fitted to a set of measured points on a plane. The analysis finds 
the RMS of the perpendicular offsets (d1 .. d5) from the circle. 
 

  
 
Example: RMS residual for target intersection 
A target is intersected from three theodolite positions. The method of 
analysis finds the RMS of the 3 perpendicular offsets (d1 .. d3 )from the 
target position to each line of sight 
 

.  
4.4.4 RMS for zero redundancy 

When there is no redundancy, residual values are zero and the RMS value 
is also zero. 
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4.4.5 Practical use of RMS 
If the RMS is derived from a reasonably large number of residuals (e.g. 
>10) it is a reasonable estimate of the standard deviation (σ) which in turn 
indicates a typical measurement error.  
 
An RMS which is larger than expected may indicate one or more bad 
measurements and the individual residuals should be reviewed. 
Measurements with large residuals are often in error. They can be removed 
from the least squares procedure provided there are still sufficient 
measurements left to generate a sensible result!  
 
Alternatively if the large RMS results from a fit to design coordinates or a 
shape fit, the design data or assumption may be in error. For example, one 
of the design coordinates might be faulty or the points might not lie on a 
well defined shape. 
 
If the RMS value is derived from a small number of residuals it is best 
regarded as indicating the closeness of fit rather than an estimate of 
measurement quality. 
 
Example RMS: Bundle adjustment 
Bundle adjustment with 50 targets and 2 theodolites (resolution of 1 arc 
second or better).  
 
RMS angle residual = 1.2 arc secs 
Good result. This figure should be a reasonable estimate of the standard 
deviation of a pointing. 
 
RMS angle residual = 4 arc secs 
Worse than expected. Check the individual residuals to see if there are 
some obviously bad results. 
 
Example RMS: Intersection (single point solution) 
3-ray intersection from a baseline of 2m to a target 5m away using high 
resolution theodolites. 
 
RMS intersection error = 50µµµµ. 
This is the RMS value of the offsets of the target from the pointings.  
Good result. 
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RMS intersection error = 250µµµµ 
Bad result.  
Check the pointings to see if one is in error. 
 
Best-fit coordinates 
Fit of a set of measured target coordinates to a design set. 
 
RMS coordinate offset =65µµµµ 
This is the RMS value of the lengths of the small space vectors between 
the design coordinates and the transformed target coordinates.  
Good result. 
 
RMS coordinate offset =315µµµµ 
Bad result. 
Check if there are a small number of bad individual residuals. Either the 
measurements are bad or the design data is faulty at those points. If all 
residuals are bad, check if the correct set of design coordinates has been 
used. 
 

Note 
Residuals which are generally poor may indicate that the reference 
information is of lower quality than the measurements, rather than the 
other way around. A similar case can occur with shape fits. If points 
give generally poor results when fitted, say, to a cylinder, then perhaps 
the object does not define a very good cylinder. In this case the 
measurements could be used to map the deviation of the object from its 
nominal design shape. 

 
4.4.6 RMS error (ECDS) 

Intersection 
The ECDS intersection method uses theodolite parameters derived from 
the ECDS bundle adjustment and finds the target position which minimizes 
the sum of the perpendicular offsets from the line of sight. The theodolite 
parameters are effectively regarded as fixed. 
 
The RMS value of these offsets is provided. 
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Bundle adjustment 
The ECDS bundle adjustment does not directly use theodolite pointings 
but converts them into "pseudo-photographs" with a nominal principal 
distance of 100mm. The least squares solution therefore processes photo 
observations in mm rather than angles. 
 
The adjustment computes an RMS value for the photo residuals in mm. An 
RMS value for scale bar distances is not quoted. 
 

4.4.7 RMS error (ManCAT) 
The RMS error is not provided but the "mean error" displayed instead. 
 

4.5 Mean error (ManCAT system) 

4.5.1 Background to Mean error 
The mean error is a name employed by the ManCAT system as an 
alternative to variance factor. For a full discussion see "Variance factor" 
on page 38. 
 
Use of the term "mean error" gives rise to terminology problems which 
will be avoided in the Axyz system. The mean error is generally known in 
English textbooks under one of several other names: 
• reference variance 
• variance of a measurement of unit weight 
• unit variance 
• variance factor 
 
The statistic can be defined in slightly different ways, so there is some 
justification for more than one name. However Axyz has chosen to adopt 
the term "variance factor" as being most appropriate to the type of 
definition in use. This avoids adding yet another name to the list and 
avoids other potential sources of confusion. 
 
The term "mean error" was originally selected as more user-friendly than 
"reference variance", since many ManCAT users are not familiar with this 
specialist mathematical term. 
 
However, German textbooks use a statistical figure called the "mittlerer 
Fehler". This translates as "mean error" and is the square root of the "mean 
error" defined in ManCAT, i.e. it is the square root of the variance factor. 
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Also the terms "mean" and "average" are interchangeable in English and a 
definition of "average error" exists in English literature. The "average 
error" is a quantity typical of the physical error values which can occur and 
in a triangulation system would have dimensions of angle or distance 
depending on the type of measurement. 
 
In agreement with the definition of variance factor in Axyz, ManCAT's 
"mean error" is a dimensionless quality figure which should have the value 
1 if preliminary estimates of measurement quality are close to their true 
values. It is not an error in the sense of having units such as mm, arc secs, 
etc. 
 

4.5.2 Mean error in brief 
The mean error is a dimensionless quality figure derived from all the 
measurement residuals produced by a weighted least squares analysis such 
as a bundle adjustment. It does not have units of measurement such as mm 
or arc secs.  
 
The mean error is useful as an indicator of a weighting problem such as the 
presence of a bad measurement which should be given a low weight or 
eliminated from the processing. 
 
In a well structured solution with good data of known quality the mean 
error should have the value 1. If this is not the case, the data may be 
affected by one of the following problems: 
 
• One or two bad measurements with large residuals which should have a 

lower weight 
• Unbalanced weights, for example control points which are given too 

much weight relative to theodolite pointings 
• An error in a true element shape, for example measured points lie on an 

ellipse but you try to fit them to a circle 
• A simple internal scaling error which does not affect the values of 

calculated parameters but which may cause incorrect error estimation of 
those parameters 

 
Other quality figures may have to be investigated in order to identify the 
specific problem 
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4.6 Variance factor (calculated) 

4.6.1 Variance factor in brief 
In Axyz the calculated variance factor is a dimensionless scaling factor for 
weights in a least squares calculation. It involves all the measurement 
residuals in a particular analysis. If the weighting scheme is correct and 
there is good redundancy, it should theoretically have the value 1. If not, it 
may indicate an error in the weighting scheme due to one of several 
sources: 
 
• One or two bad measurements with large residuals which should have a 

lower weight 
• Unbalanced weights, for example control points which are given too 

much weight relative to theodolite pointings 
• An error in a true element shape, for example measured points lie on an 

ellipse but you try to fit them to a circle 
• A simple internal scaling error which does not affect the values of 

calculated parameters but which may cause incorrect error estimation of 
those parameters 

 
The variance factor can only warn of a problem in a least squares solution 
but may not uniquely identify it. Other quality figures may have to be 
investigated, or individual residuals examined, in order to track down a 
problem. 
 
The variance factor will only provide significant information if the 
measurement set has high redundancy. If the redundancy is low, a value 
different from 1 may not mean very much. Values between 0.3 and 1.8 
would normally be considered acceptable. 
 

4.6.2 Introduction to variance factor 
The discussion on weights showed that a scale factor is required in order to 
generate suitable values for the weights of measurements used in a least 
squares analysis. (See "Weights and weighted least squares solutions" on 
page 20.) This scale factor is an arbitrary number defined before the least 
squares calculation is made. The scale factor is generally known as the 
variance factor and this is its preliminary value. 
 
It can also be shown that the variance factor can be estimated in a different 
way after processing is complete. This value depends on both the chosen 



Axyz ver. 1.4 Mathematics for Users 

 

MATHU.DOC 31/1/00  
 

39 

weights and the actual residuals which result from the least squares 
analysis. The value is defined as 
 

var_ factor
r

= ⋅ ⋅v w vT
 

(correlated measurements) 
 
This is the calculated value of the variance factor and is the one reported 
by Axyz routines. 
 
The weights involve an assumption about the quality of the measurements, 
based on an assumed variance. If this is correct the residuals should be 
consistent with the assumption, i.e. for measurements of a particular 
quality the spread of their residuals should roughly correspond to the 
assumed variance. 
 
The calculated variance factor has two main uses. It checks the consistency 
of the weighting scheme and, because it involves the residuals, reflects the 
presence of any bad measurements. Bad measurements point to another 
weighting problem since they are effectively low quality measurements 
which have been initially assigned a weight which is too high. 
 
Since an arbitrary (preliminary) variance factor is set before processing, 
problems are detected by comparing this with its value after processing 
(calculated). They should be roughly the same, i.e. their ratio should be 
approximately 1. When reporting this statistic, Axyz routines set the 
preliminary value to a dimensionless value of 1 so that the calculated value 
should also be 1. 
 
Alternative ways to define the variance factor 
It is a convenience to have the calculated value of the variance factor = 1, 
but there are other ways of handling the numbers depending on the values 
created for weights. This also gives rise to alternative names for the 
variance factor. 
 
In the discussion on weights, a measurement of assumed variance σ2 is 
given a weight defined as: 
 
weight = k / σ2  where k is a constant scale factor 
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This gives a high weight to measurements with a low spread and vice 
versa. The terms high and low are purely relative and have no real meaning 
if all measurements in a particular job are equally good or equally bad. In 
either of these cases it would be valid to assign the same weight to all the 
measurements. Purely for convenience, weights could all be assigned the 
dimensionless value 1 for each job. 
 
Job A Job B 
weight = 1 = k / σa

2  weight = 1 = k / σb
2  

k = σa
2  k = σb

2  
 
The value of the constant then depends on the measurements used in the 
job. In this case the constant term is itself a variance with units of variance 
such as mm2 or rad2. In this weighting scheme, where the weight has the 
dimensionless value of 1, it is not surprising that the constant term is often 
called the reference variance or the variance of a measurement of unit 
weight. 
 
Most cases are more complex than this and there is a need to use different 
weights, for example when mixed measurements are employed. A polar 
measuring system uses both angular and distance measurements. These 
have different units as well as different standard errors. Even if all the 
angles are equally good and all the distances equally good, angles and 
distances need to be weighted differently. When different measuring units 
are processed the reference variance can itself only be expressed in terms 
of one of these and the weights will end up having mixed dimensions 
(some of which may be dimensionless).  
 
Since weighting simply ensures that the relative influence of different 
measurements is appropriate to their respective quality, the numbers can be 
set in an alternative way. Given that 
 
weight = k / σ2 
 
the value 1 can be assigned to the scale factor k rather than the weight, i.e. 
 
set k = 1  therefore  weight = 1 / σ2 
 
Now the weight of a measurement is directly related to the dimensions of 
the measurement itself and is different for every measurement type. Its 
dimensions are inverse variance, such as mm-2, rad-2. With this approach 
the term variance factor is more appropriate. This is the approach used in 
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Axyz when reporting variance factors, but see also the comments in 
"Quality results from unit weighting" on page 45. 
 
Finally, here are the different names for variance factor which may be used 
in other literature: 
• "reference variance" also called "variance of a measurement of unit 

weight" 
• "variance factor" also called "unit variance" 
 
"reference variance" is a particularly common term. 
 

4.6.3 Simple definition of variance factor (calculated) 
The variance factor for uncorrelated measurements of the same quality, and 
which are weighted by variance, is defined as: 
 

( )

var_ factor

v

r

i

i

N

= =
∑

2

2
1

σ
                       r N u= −  

 
N the total number of measurements made 
vi indicates the residual of measurement number i 
σ is the preliminary estimation of the standard error of the measurements 
r is the redundancy in the measurements 
u is the minimum number of measurements to enable a solution. 
 
If the residuals are typically of the same magnitude as the preliminary 
estimate of standard error, then this value tends to average to 1 for a large 
number of measurements. 
 
To allow for the general case of correlated measurements of different 
quality, the following definition is made. 
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4.6.4 Full definition of variance factor 

var_ factor
r

= ⋅ ⋅v w vT
 

where 
( )vT = v v vN1 2 ..  

 

( )
( )

( )

w =
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1
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(Weighting by variance.) 
 
If there are no correlations then the covariances are zero and the weight 
matrix, w, simplifies to: 
 

( )

( )

( )

w =
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1 0
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2

2

σ

σ

σ

.. ..

.. ..
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.. .. ..
N

 

 
If the individual standard errors are the same value σ, the variance factor 
then reduces to the same form as given in the simple definition. 
 

4.6.5 Definition of variance factor in Axyz bundle adjustment 

var_ ' ' ' ' ' ' ' ' 'factor
r

= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅v w v v w v v w vT T T
 

 
This definition is necessary because the bundle adjustment splits up 
matrices in order to permit a more efficient solution, but it is effectively 
the same definition as the full definition.  
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4.6.6 Variance factor for zero redundancy 
When there is no redundancy all residuals are zero and r = 0. In this case 
the variance factor would be an indeterminate value 0/0. In practice Axyz 
routines forces the redundancy to have its actual value or 1, whichever is 
greater. As a consequence the variance factor would be given the value 
zero when redundancy is zero. 
 

4.6.7 Practical use of variance factor 
The variance factor is a convenient single parameter for expressing the 
quality of a least squares result. Many ManCAT users have standard 
measurement procedures where, after some initial experience, they 
routinely generate relatively small values for the factor but do not make 
special efforts to force it to the value 1. However when something goes 
wrong the value will usually become very large and this is used as a 
warning signal to check for errors. 
 
There are many reasons why the variance factor has some value 
significantly different from 1. For example this may indicate that the 
preliminary estimates of measurement quality need some fine tuning, either 
because of some general imbalances in the weighting or because there are 
a few bad measurements. 
 
In the comments which follow it may help to have a simplified and 
expanded definition of the calculated variance factor to see the reasons for 
a value different from 1. For uncorrelated measurements of different 
measurement quality: 
 

var_ ..factor
r

v v vN

N
= ⋅







 +






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 + +













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


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1 1

1

2
2

2

2 2

σ σ σ
 

 
where r is the redundancy in the measurements. 
 
Low redundancy 
The redundancy itself is important. If it is not a reasonably large value, 
which means the number of measurements N must be reasonably large, 
then the value of the variance factor will not be reliable.  
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For example, if there are not many terms within the brackets (N is low) the 
following situations can occur: 
• A few residuals just happen to be at the tolerance limits (3σ). This 

makes the factor greater than 1.  
• The few measurements happen to be consistent and therefore generate 

small residuals. This makes the factor less than 1. 
In both cases there would be nothing actually wrong with the result. The 
further comments assume that there is reasonable redundancy. 
 
Bad measurements 
A small number of bad measurements in the set are likely to produce some 
large residuals, well outside the tolerance limit. This will increase the 
factor. Individual residuals need to be checked in this case. 
 
Bad design data or assumption 
Large residuals and a large variance factor are also generated when the 
measurements are perfectly good but some reference information is at 
fault. This occurs when you transform points onto design values but one of 
the reference coordinates is in error, or you try to fit points to a circle when 
they actually lie on an ellipse. Here the design data should be checked. 
 
Unbalanced weights 
Alternatively, if a sub-group of measurements have assumed standard 
errors which are either too low or too high, this will also affect the factor. 
Suppose the standard error is too low, i.e. these measurements are 
generally not as good as expected. Then typical residuals will generally be 
higher so that the terms v/σ will tend to be greater than 1 and will cause 
the factor to rise. Equally well, if the actual measurement quality is better 
than expected, this would tend to make the factor less than 1.  
 
This can happen when mixing control coordinates with instrument 
measurements in a bundle adjustment. It may be difficult to estimate 
different variances for very different types of data and an imbalance results 
in favour of the control. Before making any changes to the assumed 
standard errors of the control it may be sensible to repeat the adjustment 
treating the control points as unknown. In a second step the calculated 
coordinates for the control points can be transformed onto their design 
values to see if there are one or two badly fitting points. 
 



Axyz ver. 1.4 Mathematics for Users 

 

MATHU.DOC 31/1/00  
 

45 

Generally high or low estimated errors 
If measurements are all of the same type and their estimated standard error 
is too low or high, then the variance factor will correspondingly be greater 
or less than one. Re-scaling their standard errors to bring the calculated 
reference variance close to unity will not actually alter the results very 
much. This is because the relative weights stay the same and it is only 
relative weights which affect the calculation of the target coordinates or 
the circle radius or whatever the objective of the analysis is.  
 
However the solution has told the user that the measurement quality, on the 
basis of the statistics present in the actual processed measurements, is 
different than the user originally thought. Unless changed, error estimates 
of the calculated parameters by error propagation will not be reliable. See 
"Linking the error type and weighting type" on page 47. 
 

4.7 Quality results from unit weighting 
When measurements are of the same quality and not correlated it is 
convenient to assign them weight values of 1. In a simple least squares 
analysis this is very common. In fact, the issue of a weight never explicitly 
appears in this case. The method simply minimizes: 
 
(v1

2 + v2
2 + .. + vn

2) 
 
It is then quite likely that the RMS of the residuals would be produced as 
an approximation to the standard error of the measurements, i.e. 
 

( ) ( ) ( )RMS
v v v

Nresid m
N= =

+ + +
σ 1

2
2

2 2..
 

 
Viewed in terms of weights, measurements of standard error σm are here 
assigned weights according to the definition: 
 
weight = k / σm

2 
 
Since the weight is 1, k must be given the value σm

2, i.e. 
 
weight = 1 = σm

2 / σm
2 
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k is the variance factor, although as explained earlier it would be better to 
call it the reference variance in this case since it is equivalent to the 
variance of the measurements. 
 
It is not necessary to know the estimated measurement variance and 
variance factor before calculation, since the weight has been directly 
assigned. That is all that is needed to get the least squares answer. 
However, a subsequent calculation of the variance factor could obviously 
be used to provide the estimate of measurement variance and hence an 
estimated standard error. 
 
By definition: 

var_ factor
r

= ⋅ ⋅v w vT
 

For uncorrelated measurements of unit weight this reduces in the current 
example to: 

( ) ( ) ( ) ( )
var_

..
factor

v v v
rm

N= =
+ + +

σ 2 1
2

2
2 2

 

The estimate of the standard error of the measurement is then: 
 

( ) ( ) ( )σm
Nv v v

r
=

+ + +1
2

2
2 2..

 

 
This is very nearly the RMSresid value, but using the redundancy r instead 
of the number of observations N. Note that r < N and the RMSresid would 
be smaller, i.e. imply that the measurements were slightly better. However 
once the number of measurements becomes reasonably large this 
difference is not so important. 
 
The method of unit weighting is offered in Axyz shape fitting routines. 
This is useful for comparison with the results from similar routines in other 
software packages which often use unit weights. 
 
See also "Error propagation with unit weighting" on page 52. 
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4.8 Linking the error type and weighting type 
When unit weighting is employed in shape fitting routines and 
transformations, only the RMS error is produced. The calculated variance 
factor could be offered but its value in this case would be a variance. In 
other cases using the alternative weighting scheme its theoretical value is 
1, and it is better to present results in a consistent way. 
 
In contrast, if standard errors are used for weighting purposes in shape 
fitting and transformation routines, then only the variance factor is offered 
as a statistic. In this case its value should be one. 
 
See also "Error propagation with unit weighting" on page 52. 
 

4.9 Error propagation and the variance factor 

4.9.1 Error propagation in brief 
Error propagation provides variance and covariance values for quantities 
which are derived from some set of measurements. It does this by 
evaluating the errors in these quantities due to the errors in the 
measurements. 
 
Error propagation answers questions such as: 
 

"If my angles are good to 0.7" and distances good to 2 microns, how 
good are the measured point coordinates?" 
 
"If my point coordinates have standard errors of 50 microns, how good 
is the radius of the fitted circle?" 

 
Propagation here means to carry through the error effects from start to 
finish. In Axyz elements build on other elements, and most originate at the 
instruments, i.e. angles and distances produce points which can create 
shapes which in turn can create further shapes and points. If you start off 
with an accurate knowledge of measurement quality for angles and 
distances it should be possible to generate good error estimates for point 
coordinates and shape parameters. 
 
Very conveniently, error propagation is a by-product of least squares 
solutions. Since these involve weights based on the variance factor, the 
variance factor must be known in order to correctly scale the error 
estimates 
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For error propagation, Axyz always uses the preliminary variance factor = 
1, except for shape fits where an RMS statistic has been requested. In these 
cases the calculated variance factor is used. This will only give meaningful 
values for the error estimates of shape parameters if reasonable redundancy 
is provided. You will not get a good value of the error in a fitted circle's 
radius if you only use 4 points to create the circle. 
 
The Axyz routines therefore effectively rely on the user to provide good 
quality error estimates. 
 

4.9.2 The scaling mechanism at work 
In a simple least squares analysis, the following matrix equation is 
developed: 
 
A x = l + v 
 
where 
• The vector x represents the unknown parameters  
• The coefficient matrix A depends on the actual equations describing the 

model 
• l is a known vector derived from the known measurements  
• v is the vector of measurement residuals 
 
A weight matrix W is associated with the residuals and the solution is 
given by: 
 
[AT W A] x =  [AT W] l 
 
which can be written as: 
N x = t   where N = [AT W A] and t = [AT W] l (i)
 
The solution is: 
x = N-1 t  (ii)
 
To obtain statistical information about the unknowns, x, two matrices are 
involved. ΣΣΣΣxx is the required covariance matrix and Qxx, a scaled version of 
this, is the co-factor matrix (notation used by Mikhail). It is also necessary 
to make use of either the preliminary variance factor σ0

2 or the calculated 
variance factor ( $σ0 )2 of the residuals. 
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Mikhail1 proves  
Qxx = N-1 
 
By definition Qxx is simply a version of ΣΣΣΣxx scaled by the variance factor, 
i.e. 
ΣΣΣΣxx = σ0

2 Qxx   or  ΣΣΣΣxx = ( $σ0 )2 Qxx 
 
therefore 
ΣΣΣΣxx = σ0

2 N-1  or  ΣΣΣΣxx = $σ0
2 N-1  (iii)

 
This indicates how the least squares solution for the parameters also 
automatically provides the statistical information about the parameters via 
the matrix N-1. 
 
Either expression should give the same result, since both versions of the 
variance factor should be the same.  
Re-scale the variance factor with fixed measurement errors 
The actual value of the variance factor is decided by the user's choice for 
σ0

2 but this does not really affect results and in particular does not affect 
the values of the parameters in (ii) or the values in the covariance matrix in 
(iii). This is because a change in the value of σ0

2 affects the weight matrix 
W and hence both N and t as follows. 
 
Suppose σ0

2 is doubled without changing estimated measurement errors, 
because the user thinks that makes better numbers for the weights. The 
following effects are then automatic: 
• All the elements of W are doubled  
• N and t are doubled, as indicated by (i). 
• The inverse of N, i.e. N-1, is halved (matrices often work just like 

ordinary numbers) 
It is then obvious from (ii) that x remains unchanged and from (iii) that ΣΣΣΣxx 
remains unchanged. 
 
Re-scale the measurement errors with fixed variance factor 
In contrast to re-scaling the variance factor, re-scaling the standard error 
estimates of the measurement residuals with a fixed variance factor has a 
slightly different effect. 
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Suppose the measurement residuals are uncorrelated and their estimated 
standard errors are reduced by a factor of 2.  
• Each element of W then increases by a factor of 4 since the weight is the 

inverse of the square of the standard error. 
• N and t increase by a factor of 4 
• The inverse of N reduces by a factor of 4 
 
Again it is obvious from (ii) that x remains unchanged. However equation 
(iii) shows that, using the preliminary variance factor, ΣΣΣΣxx is now reduced 
by a factor of 4 since the inverse of N reduces by this factor but the 
variance factor stays the same. 
 
Re-scale the variance factor but keep unit weighting 
If the variance factor is re-scaled but a unit weight matrix is still used then, 
in effect, the estimated measurement errors are re-scaled by the same 
amount as the variance factor in order to keep the weights = 1. 
 
A change of variance factor has no effect on the parameter values or their 
error estimates. 
 
A change of estimated measurement error has no effect on parameter 
values but affects their error estimates. This is the net result. 
 

4.9.3 Error propagation with preliminary or calculated variance factor? 
Is there then any reason to choose either σ0

2 or $σ0
2 when calculating the 

variances and covariances of the computed parameters? With the exception 
of unit weighting for shape fits, Axyz always uses σ0

2 = 1 in all cases of 
error propagation. This  effectively means that the user's initial estimates of 
measurement quality are always carried through the analysis. 
 
Several cases can be considered. Remember that $σ0

2 is calculated as $σ0
2 = 

(vT W v) / r, where r is the redundancy.  
 
No redundancy 
If there is no redundancy $σ0

2 simply cannot be calculated. The least 
squares analysis will still give a perfectly correct solution for the 
parameters but residuals are zero, redundancy is zero and $σ0

2 = 0/0 which 
is an undefined mathematical quantity. In this case the user's preliminary 
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estimation of measurement quality and relative weights is the best 
information available and so the only choice is to use (σ0)2. 
 
Simulations 
Something similar happens in a simulation if you feed the solution with an 
excess number of perfect measurements. Because everything fits exactly, 
all the residuals are zero although there are redundant measurements. The 
calculation of $σ0

2 is then $σ0
2 = 0/r = 0. If this value is used in (iii) then the 

parameters are also estimated to have zero variances and covariances, i.e. 
they are also perfect. This is mathematically logical and consistent but not 
of much practical use. Instead the user would arbitrarily set a value for σ0

2, 
e.g. σ0

2 = 1, and use this in combination with simulated variances for the 
measurements. 
 
This would create a specific weight matrix and hence a specific estimate 
for the errors in parameters corresponding to this particular simulated 
measurement quality. If the simulated variances of measurements are then 
scaled up to some other value, the weight matrix is similarly re-scaled. 
This will not change the values of the simulated parameters since N-1 
scales down by the same amount as t scales up (equation (ii)). However the 
simulated error estimates for the parameters will scale up, as they should 
do when you simulate the use of lower quality measurements. Note that re-
scaling the measurement quality is not quite the same as re-scaling the 
variance factor σ0

2, discussed earlier. 
 

σσσσ0
2 and $σ0

2 are not very similar in value 

This implies one of the problems discussed in "Practical use of variance 
factor" on page 43. 
 
If there is reasonable redundancy the lack of agreement indicates that the 
weights are not correctly balanced, either because of the presence of some 
bad measurements which should have a lower weight or because some 
group of measurements is assumed to be better or worse that it really is. 
Ideally the bad measurements should be found and removed or the weights 
re-assigned more appropriately and the solution run again. 
 
If redundancy is low and there is no good reason to eliminate 
measurements or re-assign weights, then the best procedure is to use σ0

2. 
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σσσσ0
2 and $σ0

2 are consistent 

When σ0
2 and $σ0

2 are consistent, Mikhail recommends always using σ0
2 

(see Mikhail1 p250). 
 
Directly assigned weights, e.g. unit weighting. 
When weights are directly assigned, the user has not consciously chosen a 
value for σ0

2 but $σ0
2 can be calculated and used for error propagation. 

From the above discussion it can be seen that the best approach in error 
propagation is to obtain a good feel for the errors in the original data 
source and propagate this information by using σ0

2 , rather than using $σ0
2 . 

4.9.4 Error propagation with unit weighting 
In shape fitting routines Axyz permits the user to calculate shapes using 
unit weighting for the fitted points. As a result all coordinates are treated 
equally and no information about the actual measurement quality is used. 
 
As explained in "The scaling mechanism at work" on page 48, the 
preliminary or calculated variance factors are required in order to obtain 
quality estimates of the computed parameters. When shape fitting uses 
existing variances to create weights then the preliminary variance factor 
(value = 1) is used.  
 
In the case of unit weighting the calculated variance factor is used. In this 
case it has units of variance and its size should be typical of the residuals 
produced. Unfortunately, if there is very little redundancy the residuals 
will not be very meaningful in statistical terms and if there is zero 
redundancy there is no information at all from the results of processing.  
 
If the redundancy is zero the variance factor cannot be calculated. In this 
case errors are propagated using a preliminary variance factor of 1, which 
is what is done for error propagation when weighting by variance. This is 
done simply in order to generate values for the data base. However since 
the weights are dimensionless in this case, the variance factor is not 
dimensionless. In fact, it is equivalent to a variance of 1 m2. In effect you 
are estimating errors in shape parameters assuming that the fitted points 
have standard deviations of 1m. 
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4.10 Quality of angle and distance measurements 
The quality of measured angles and distances determine the quality 
estimates for all measured coordinates and any further 3D or shape data 
derived from those coordinates. 
 
Within Axyz, angles and distances are assumed to be uncorrelated. Their 
quality is defined by standard deviations estimated by the user from 
experience or analysis of previous work. These estimates are assumed to 
depend on a particular instrument.  
 
Default values of standard deviation are therefore separately defined for 
horizontal angles, vertical angles and distances at each station during the 
station setup procedure. These values can be changed at any time. The 
default value cannot, however, be individually set for a specific 
measurement. 
 

Note 
If these estimates are incorrect then the calculated quality estimates of 
derived elements, particularly point coordinates, will also be incorrect. If 
you assume measurements are better than they actually are, then point 
coordinate quality will be estimated better than it actually is and vice 
versa. It is therefore worthwhile ensuring that these estimates are good. 

 
4.10.1 Multiple and 2-face measurements 

Within Axyz it is possible to make multiple, repeated measurements to the 
same target.  
 
If a repeated single face pointing is made, an average value is calculated 
and this is then stored as the representative pointing. 
 
Single pointings in both faces are separately stored, but combined into a 
single representative pointing when used in the Orientation Module and 
Single Point Solution. 
 
Multiple pointings in both faces will generate an averaged value for each 
face which are then used in the same way as single face pointings. 
 
Multiple pointings can also be made in the form of bolt hole 
measurements, which require evenly spaced pointings around the edge of a 
bolt hole. In this case the average horizontal and vertical angle is 
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calculated as the single representative pointing to the hole centre and 
stored in the job file.  
 
In all cases of multiple measurements the same default standard deviation 
is used for the final single representative value, as defined in the station 
setup. An improved quality figure is not generated. 



Axyz ver. 1.4 Mathematics for Users 

 

MATHU.DOC 31/1/00  
 

55 

5. Coordinates and coordinate systems 
5.1 Introduction 

A 3D object is defined by points located in a particular coordinate system. 
A coordinate system is a set of 3 mutually perpendicular, intersecting axes 
and the coordinates of a point are defined with respect to these axes. 
 
The axes intersect at the origin and a point is usually located by measuring 
its distance from the origin along each axis. This is not the only type of 
coordinate which is possible and the various types in use are described in 
this section. 
 
The coordinate values will also depend on the location of the origin and 
the directions in which the axes point. Although the location and direction 
of a coordinate system's axes does not affect the object's shape, it is often 
convenient to work with coordinate values which have some direct 
meaning, for example where the origin is the centre of a drill hole. 
 
Axyz permits users to define any number of coordinate systems and offers 
several methods to do this. Once defined, users can easily switch between 
coordinate systems and coordinate types. 
 

5.2 Base coordinates and other coordinate systems 
All 3D points on an object are derived from angle and distance 
measurements made by the network of instruments which surround it. The 
locations of the instruments are defined in a single common coordinate 
system calculated by the Orientation Module. By using a single system, 
any one point can be related to any other and this coordinate system 
represents the source of all measured 3D data. Until the system exists 
common coordinate data cannot be generated and further coordinate 
systems and shapes cannot be defined. 
 
This fundamental system is known as the base coordinate system. Its 
parameters are stored in the "default" workpiece and given the name 
"BASE", which is also used as the type name. Axyz stores all 3D object 
coordinates here. 
 
The base system has the following general properties 
• Right-handed Cartesian coordinates 
• Units of dimension in metres 
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However, the user frequently wants to view the data in a different way and 
can make the following alterations: 
• Transform coordinates to a different origin and orientation, for example 

to force a particular point to represent the origin (0,0,0) 
• Choose a different type of coordinates, such as cylindrical (r,α,h) rather 

than Cartesian (x,y,z) 
• Select different dimensional units such as millimetres or inches 
 
Any of these changes do not affect internal coordinate values and 
coordinate data remains stored in its standard base format. Instead such 
changes requested by the user are stored, together with any computed 
parameters necessary to implement them. Whenever coordinate data is 
displayed on screen, printed out or transferred to an external file it is 
temporarily modified according to the defined coordinate type, 
measurement units and parameters of the chosen output coordinate system. 
In effect the internal data is passed through a mathematical filter every 
time the user views it. 
 

5.2.1 Where is the base coordinate system? 
The base coordinate system is defined by the Orientation Module, which 
calculates the station locations and any orientation points in a common 
network. 
 
Briefly, in the final optimization of the network, the base coordinate 
system ends up in one of two places. 
 
1. On the object 
This is a feature of a controlled (object) orientation. Reference coordinates 
on the object, defined by control points, are included in the orientation 
procedure. The origin and axes which define the control coordinates are 
used as the origin and axes of the base system. 
 
2. At, or close to, one of the stations 
This is a feature of a relative (local) orientation. In this case control points 
are not included in the orientation procedures. Since a meaningful origin 
and axes are not provided, the origin and axes of the base system are 
arbitrarily located at one of the stations. Depending on a further optimizing 
option the base axes may drift slightly away from this initial position. 
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5.2.2 Can existing base coordinates change? 
Base coordinates of existing points can change when the number of 
measurements to a point change and/or the number of stations in the 
network changes. In both cases there is different information available 
which would normally result in a change of optimized coordinate values. 
Typically this occurs when additional measurements are made to a point or 
a new station is added to the network, but deletion of measurements or 
stations has the same effect. 
 
If a new measurement is made to a point from an existing station,  the 
point's coordinates are automatically re-calculated. These optimized point 
coordinates must take account of this new measurement and will change 
slightly from the old values. 
 
If a new station, with its new measurements, is brought into a network by 
re-calculating the orientation, the optimal shape of the entire network will 
change slightly to accommodate the new data. Users have the option to fix 
existing stations in their current locations but this is not an optimized 
result. If an optimized result is chosen all existing points will be re-
calculated to reflect the changes in station locations and angular 
orientations. 
 
If the re-calculation of orientation uses the same optimizing procedure, 
then changes in coordinate values are expected to be small. However a 
change in optimizing procedure can have much larger effects on existing 
base coordinate values. For example, switching from a relative orientation 
to a controlled orientation will move the base system origin to a 
completely different place and cause base coordinate values to change 
significantly. 
 

5.2.3 Definition of other coordinate systems 
All other coordinate systems created by the user are defined with respect to 
the base origin and axes by a shift, rotation and optional scale change. 
 
For a definition of the parameters, see "Transformation parameters" on 
page 88. 
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5.3 Classification of coordinate systems 

5.3.1 Classification in the database (job file) 
In the database, coordinate systems are identified in two ways: 
 
Coordinate system name 
In Axyz each coordinate system is given a name to uniquely identify it.  
 
Coordinate system type 
Coordinate systems are assigned a type which indicates the method used to 
create them. 
 
Example 1 
A system of type "base" is created by the Orientation Module. This is the 
coordinate system used for storing all measured data and derived elements 
and only one of these exists. 
 
Example 2 
A system of type "best-fit" is created when a best fitting 3D transformation 
is calculated in order to display coordinates in a coordinate system used to 
design the object.  
 
Example 3 
If the axes defining a shape are used as a coordinate system the shape's 
type will be given as the coordinate system type, e.g. "circle" if a circle has 
been used. 
 

5.3.2 Descriptive classification 
Three additional terms are often used in discussions and explanatory text 
and which indicate what coordinates and axes relate to. 
 
Object coordinate system 
The most meaningful coordinates which describe an object are generally 
defined by selected features on the object itself. By suitably locating the 
origin and axes of the coordinate system, measured coordinate values can 
correspond very closely to the design coordinates used to manufacture the 
object. This is very convenient for building and inspecting features. 
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Object coordinate systems can be created in two ways: 
• By orienting the measurement network to control points 
• By transforming an existing system onto design values, see 5.7 

Transformation of coordinates. 
 
Local coordinates and axes 
The term local is often used to indicate that a coordinate system is most 
relevant to the feature which defines its origin, i.e. the coordinates and 
axes are primarily of local interest rather than relevant to all measured 
features. 
 
Example 1: Local shape coordinate system 
A circle, for example, is created with its centre defining the origin of a 
local coordinate system. The xy axes of this system are in the plane of the 
circle and the z axis is perpendicular to the plane. 
 
Example 2: Local station coordinates 
If a theodolite, for example, occupies a station in the measurement 
network, its local axes, with origin at the centre of rotation, sometimes 
define the base coordinate system within which 3D data are recorded [xref 
to base system]. 

 
Note 
Although every oriented station in a network can, in principle, display 
local station coordinates, Axyz does not have a function which permits 
every station to be used in this way. 

 
Instrument coordinates 
Individual polar measuring instruments such as Total Stations and laser 
trackers directly provide enough information to locate points in 3D space. 
It is sometimes convenient to see these coordinates before the station 
occupied by the instrument has been oriented into a network of two or 
more stations. 
 
Like local station coordinates, instrument coordinates are referred to the 
internal axes of an instrument. However, unlike local station coordinates, 
only points measured from the relevant instrument are displayed in its own 
instrument coordinates. Other points in the network, measured from 
instruments located at other stations, cannot be displayed in a different 
instrument's coordinate system. Instrument coordinates are intended for 
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use at stations not yet oriented and, by definition, the necessary link does 
not then exist between different instruments. 

 
Note 
There is a special case where a single Total Station or laser tracker is 
used to measure an object and the base system is defined by the 
measuring station. In this case base system coordinates are equivalent to 
local station coordinates which are identical to instrument coordinates 

 
ECDS local and object systems 
ECDS users are familiar with the terms "local" and "object" coordinates 
and coordinate systems. These are closely related to the ECDS terms 
"local" (relative) and "object" (controlled) orientation, as well as the ECDS 
"local to object" transformation. 
 
ECDS allowed only two systems to exist, one located in a station which 
was called "local" and generated by a "local" (relative) orientation. The 
other was located in the object. This was named "object" and generated 
directly by an "object" (controlled) orientation or by a 3D transformation 
from a "local" system onto the object. 
 
Axyz has adopted the more flexible approach introduced in ManCAT in 
which there can be many coordinate systems. Since more than two are 
possible, the terms "local" and "object" cannot easily indicate a specific 
coordinate system but the use of unique names makes clear which system 
is being identified. 
 
In Axyz the terms "local" and "object" are therefore used in a descriptive 
way as outlined earlier. 
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5.4 Examples of multiple coordinate systems 

5.4.1 Example 1: Single instrument, relative orientation 

 
 
The diagram shows a section of pipework measured by a single Total 
Station with several defined coordinate systems. (The axes look parallel 
but this is simply a convenience in drawing the diagram. In practice they 
may point in any direction.) 
 
Original coordinates were computed in a relative coordinate system called 
"BASE", located by default at the centre of the Total Station and labelled 
xyz. 
 
The coordinate system used to design the pipework has main axes along 
the cylinder axes and origin at their intersection. These are labelled XYZ. 
This is the main object coordinate system. By measuring points on the 
cylinders from the instrument and fitting cylindrical surfaces to these data, 
a coordinate system called "PIPE-REF" has been created which is 
equivalent to this original object coordinate system. 
 
An circular section has also been measured as "CIRCLE-1". It has its own 
local reference axes labelled uvw  which can also be used for viewing 
other data. 
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Finally the user has established an array of fixed targets with accurately 
known coordinates in a coordinate system labelled "TARGET-REF". In 
effect, these define a second object in the measurement field. The user 
could measure the targets and calculate a best-fit 3D transformation which 
would locate the coordinate system "TARGET-REF" with respect to the 
base system. This is not particularly useful. It is more likely that this 
configuration would be used to control the orientation of a triangulation 
network, as the next example shows. 
 

5.4.2 Example 2: Multiple instruments, controlled orientation 

 
In this configuration the fixed reference targets are used as control points 
in a second measurement of the pipework, for example using a 
triangulation technique. As a result of the controlled orientation, the 
coordinate system defining the reference targets becomes the base system. 
This is labelled "BASE" but is equivalent to the system labelled 
"TARGET-REF" in the earlier example. 
 
Once again shape fitting methods can establish the coordinate systems 
"PIPE-REF" and "CIRCLE-1" which are now defined relative to the new 
base coordinate system. 



Axyz ver. 1.4 Mathematics for Users 

 

MATHU.DOC 31/1/00  
 

63 

5.5 In brief: changing coordinate types and systems 
 

 
 
For a 2D situation the diagram summarizes two ways of  presenting 
coordinates. The situation in 3D is essentially the same. 
 
 (A) Changing the type of coordinate 
Coordinate systems are normally based on orthogonal (rectangular) axes 
and this is the case in Axyz. To specify the position of a point with respect 
to the axes it is most common to record its distance from the origin along 
each axis. Coordinates of point P are then (x,y). 
However this is not the only way of defining the position of P with respect 
to the axes. It could also be located by defining its distance from the origin 
along a specified direction. In the example the two elements defining the 
location of P are called polar coordinates and expressed as (r,θ). 
 
Note that there is no change of origin or reference axes. A different 
coordinate type is simply an alternative way to locate a point with respect 
to the same coordinate system. In fact, it is necessary to keep the axes in 
order to define uniquely any rotational values, for example θ. 
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Converting between coordinate types is a simple mathematical procedure. 
In the 2D case above: 
 
From (x,y) to (r,θ): 
 

r  = x2 + y2 
θ = arctan (y/x) 
(must use a function which finds the correct quadrant where P is 
located) 

 
From (r,θ) to (x,y): 
 

 x = r cos(θ) 
 y = r sin(θ) 

 
(B) Transforming coordinates to a different coordinate system. 
Sometimes the position of the coordinate system is not convenient and you 
want to transform coordinates into another coordinate system. 
 
The diagram shows how the coordinates of P would be defined in a new 
coordinate system X',Y'. If you know the transformation parameters 
x0,y0,α0 you can easily convert (x',y') to (x,y) or (x,y) to (x',y'). The user 
has several options for defining the transformation parameters: 
• Manually specify the shift (x0,y0) and rotation (α0) 
• Select a point to be the new origin and another point to define the 

direction of x' or y'. Transformation parameters can then be 
automatically computed from the existing coordinates of these two 
points. 

• Supply coordinates in the new system for at least two points measured in 
the old system. Transformation parameters can again be automatically 
computed. 

 
Transforming between coordinate systems is again a simple mathematical 
procedure. In the 2D case above: 
 
From (x,y) to (x',y'): 
 

 x' = (x - x0) cos(α0) - (y - y0) sin(α0)  
 y' = (x - x0) sin(α0) + (y - y0) cos(α0) 
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From (x',y') to (x,y) 
 

 x = x0 + x' cos(α0) + y' sin(α0) 
 y = y0 - x' sin(α0) + y' cos(α0) 

 
(C) Transforming coordinates and changing type 
Both techniques can be combined. Once the transformation has been 
specified the transformed data can then be displayed in any of the optional 
coordinate types. 
 

5.6 Mathematical rules 
It is difficult to discuss coordinate systems and transformations without 
establishing some conventions, two of which are briefly reviewed here. 
 

5.6.1 Right and left handed axes 
The order in which axes are defined is important. A simple 2D case 
illustrates the point. 
 

 
 
If axes are defined in an order say X then Y, the set of coordinates defining 
a point are assumed to correspond to this order. For example, a point with 
coordinates (3.8,4.5) has X value = 3.8 and Y value = 4.5. However, the 
axes can be physically drawn in two different ways and the shapes form a 
different pattern in each. One pattern is a mirror image of the other. 
 
Your hands provide a simple way to remember the arrangement. With 
palms up and thumb and forefinger of the left and right hands extended as 
shown, they point in the positive directions of the first and second axes 
respectively (here called X and Y). If the third finger is extended upwards, 
it will point in the positive direction of the third axis of a 3D system 
(typically called Z). 
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5.6.2 Direction of rotation 
Transformations usually involve either rotating objects or their reference 
axes into new positions. Directions for positive rotations follow a right 
handed rule. 
 

Right hand rule for determining the positive direction of rotation about an axis

 

Positive rotation of axes about X Positive rotation of axes about Y Positive rotation of axes about Z

Right handed systems

 
Left handed systems

Positive rotation of axes about X Positive rotation of axes about Y Positive rotation of axes about Z

 
 
The upper diagram shows the right hand rule for positive rotations. 
Imagine you grip the axis in your right hand with the thumb pointing 
towards the positive direction of the axis. The curl of your fingers towards 
the tips then shows the positive direction of rotation. Note that this 
definition is not linked to right and left handed axes and is simply a way of 
defining a positive angular direction about a single axis. 
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The lower two diagrams show the creation of new axes by applying 
positive rotations about each of the existing axes, for both right and left 
handed systems. A positive rotation about X moves Y and Z to Y' and Z' 
respectively. The X axis itself does not change in this case. Similar effects 
are seen for positive rotations about Y and Z.  
 
In summary, right handed axes: 

+ x rotation moves +y axis towards +z axis 
+y rotation moves +z axis towards +x axis  
+z rotation moves +x axis towards +y axis 

 
In summary, left handed axes 

+ x rotation moves +z axis towards +y axis 
+y rotation moves +x axis towards +z axis  
+z rotation moves +y axis towards +x axis 

 
Note 
Rotations about the X, Y and Z axes are often labelled with the Greek 
letters ω/Ω (omega), ϕ/Φ (phi) and κ/Κ (kappa) respectively. 
 

5.7 Transformation of coordinates 

5.7.1 Overview 
The purpose of a transformation is to view coordinates in a different 
coordinate system from the one they are stored in. If the origin and 
direction of axes of the new system is known with respect to the old 
system, it is a simple mathematical procedure to convert coordinates from 
one to the other (see "In brief: changing coordinate types and " on page 
63). 
 
Transformation of the coordinate system is often used if measurements 
have initially been made in a relative system defined by an instrument but 
it is more convenient to view data in an object system which relates to 
design or blueprint coordinates. 
 
A new coordinate system can be defined by 4 different transformation 
methods. 
 
In brief: Manual transformation 
At the simplest level coordinate transformation involves re-scaling, 
shifting and rotating the existing reference axes. If you manually specify 
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the scale factor, shift or rotation it is then a simple matter to define 
coordinates with respect to the new reference axes rather than the old ones. 
 
Axyz provides functions to separately: 
• Re-scale current coordinates 
• Translate (shift along each axis) the current origin 
• Rotate current axes 
 
In brief: Alignment of axes 
The new reference axes can be aligned to a particular set of points. For 
example: 
Point A should be the origin (0,0,0), the X axis should pass through point 
B and the XY plane should pass through point C (which must form a 
triangle with A and B) 
 
In brief: Transformation onto reference coordinates 
The new coordinate system can be defined by the design values of selected 
measured points. 
This method requires at least 3 measured points which form a triangle to 
have nominal design values in the object's own coordinate system. Since 
the measured points will not conform exactly to the design shape due to 
manufacturing tolerances and measurement uncertainties a best fit using 
least squares is used for the transformation. 
 
In brief: Transformation onto computed shapes 
The new coordinate system can be the local coordinate system of any 
computed shape 
 

5.7.2 Manual transformation 
Manual transformations require the definition of an initial coordinate 
system since scale factors, shifts or rotations are relative values which will 
have different effects depending on the starting point. In Axyz therefore 
the functions below need to know the starting system.  
 
Manual transformations can be applied successively, with each new 
definition based on the previous one. However the complete 
transformation sequence is referenced directly back to the base system, in 
which coordinates are actually stored, by combining the individual 
transformations into a single transformation. 
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Starting 
system 

Transformation New 
system 

Action 
 
 

BASE t1! SYST1 Create a new coordinate system 
SYST1 by some method. 
 

SYST1 t2! SYST2 Apply scaling, shifting or rotation to 
SYST1 to create SYST2 
 
Axyz computes: t1 x t2 = tA 
 
Stored information:  
BASE tA! SYST2 
 

SYST2 t3! SYST3 Apply scaling, shifting or rotation to 
SYST2 to create SYST3 
 
Axyz computes tA x t3 = tB 
 
Stored information: 
BASE tB! SYST3 

 
etc. 
 
Re-scale 
 

 
 



Mathematics for Users Axyz ver. 1.4 

 

  MATHU.DOC 31/1/00 
 
70 

A coordinate system can be re-scaled by either defining the scale factor 
directly or by re-defining the separation between any two points to have a 
certain value. 
 
The 2D example shows: 
a) Re-scaling by a factor of 3, i.e. all coordinates are multiplied by the 
scale factor. 
b) Re-scaling by defining the distance between the hole centres to be 10 
units. The current separation is 3.14 units and the program derives a scale 
factor of 10/3.14 = 3.1847. All coordinates are then multiplied by this 
factor. 
 
The 3D procedure functions in exactly the same way. 

 
Note 
Defining a new coordinate system by re-scaling an existing system can 
be useful if you want to work in model coordinates. Suppose you are 
constructing a 1/5 scale model of a component and you directly created 
a BASE system using control points with design values of the actual 
component. BASE values are therefore in an object system. You would 
also like to see the coordinates at the model scale. Define a new 
coordinate system, e.g. MODEL, with a scale factor of 0.2 applied to 
BASE and switch between them as required. 

 
Rotate 

 
 
New coordinates can be defined by rotating the axes of the current system. 
Axyz permits a single rotation about any one of the 3 existing coordinate 
axes using a right-handed system. This causes only the other two axes to 
move. Additionally the fixed point of rotation can be either the existing 
origin or any other named point. 
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Rotation about origin 
A positive rotation β about the Z direction which is not indicated but is 
positive out of the page and towards the reader. The rotation is applied 
through the existing origin. The bottom left corner of the object is located 
at this origin and it remains at the origin in the new system. 
 
Rotation about specific point, e.g. hole centre 
A positive rotation α about the Z direction, applied through the hole 
centre. This time the origin changes. The hole centre will have the same 
coordinate values in the new system but the bottom left corner will have 
new coordinate values because it is no longer located at the origin in the 
new system. 
 
Note that the axes are rotated, not the object. 
 
Shift 

 
Shifts can be applied in 3 different ways. The 2D example is shown for 
convenience but the operation in 3D is identical. Shifts are applied using a 
right handed system. 
 
Shift axes by defined amount 
The axes can be directly shifted in any axial direction. All X coordinates 
are reduced by the value sx and all Y coordinates are reduced by the value 
sy. 
 
Shift axes to defined point 
The shift is calculated by placing the new origin of coordinates at a defined 
point. In the example the hole centre becomes the origin. If the old point 
coordinates are (px,py) then these effectively become the axial shifts, i.e. 
all X coordinates are reduced by the value px and all Y coordinates are 
reduced by the value py. 
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Assign coordinates to named point 
This is easier to visualize as a shift of the object. The example shows the 
hole centre coordinates increased by an amount in X to 20 and reduced by 
an amount in Y to 10. All X coordinates are increased by the same amount 
and all Y coordinates reduced by the same amount. 
 

5.7.3 Axis alignment 
This technique creates a new object coordinate system by aligning new 
axes to directions and planes defined by the object points. The new axes 
may be freely oriented to object points or they may be placed in the object 
but additionally oriented to gravity. The technique defines a new right-
handed system of axes. 

 
Axis alignment does not require a starting system since the new system 
axes are not defined relative to an existing system but defined directly on 
the object. However for gravity oriented systems it is assumed that the Z 
axis of the base system represents the direction of gravity. 

 
Note 
It is not possible to tell from coordinate values if a Z axis represents the 
direction of gravity and the Axyz database does not explicitly record if 
the base system has been levelled. For this reason the algorithms can 
only assume that this is the case if the user requests an alignment to 
gravity. No errors are introduced if a new system is "aligned to gravity" 
when the base system is not levelled. In reality, the new system is then 
only aligned to the Z axis of the base system . 
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Axis alignment by free orientation: Summary 

Axis alignment: free orientation  
The example shows a base coordinate system xyz established at station 1 
and which is not levelled. A second station 2 is shown which is levelled, 
i.e. its primary axis of rotation is parallel to the direction of gravity with 
the upwards direction shown by the double headed arrow. This merely 
illustrates a mixture of possibilities. It is irrelevant to the free orientation 
technique if there are one or more stations and if any, all or none are 
levelled. 
 
New axes are defined in the object by first selecting a controlling point c. 
This point acts like an origin but it does not need to have coordinates 
(0,0,0) in the new system and can take any value such as (100, 100, 50). 
 
A second axis point a is selected so that the line c-a indicates the direction 
of the first new axis. In the example this is labelled u and shown positive 
from c to a in the example. 
 
Finally a third offset point o is selected which creates a plane c-a-o, shown 
shaded in the example. The purpose of the plane is to define the second 
axis labelled v in the diagram. This lies in the plane and is perpendicular to 
the first axis. In the example it is shown positive towards point o. 
 
The third axis labelled w in the example can then be automatically 
calculated. It is made perpendicular to the plane and creates a right-handed 
system with the other two. The diagram assumes that the right-handed 
order of axes is (u,v,w). 
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Axis alignment by free orientation: Steps in procedure 

Free Axis alignment:
Definition of axes 1 and 2

Offset point o must not lie on the line 
joining the controlling and axial points

 
 
In the following discussion the labels "axis 1", "axis 2" and "axis 3" only 
indicate the sequence in which axes are defined and do not define the order 
of coordinates. 
 
The line between controlling point c and axis point a defines axis 1, which 
can be made positive in either direction. 
 
The offset point o must form a triangle with c and a to ensure that only one 
plane and a unique second axis can be defined. If the offset point is on the 
same line as c and a, an infinite number of planes can be generated through 
the line, three of which are shown in the example. 
 
Axis 2 lies in the plane and is perpendicular to axis 1. The direction from 
axis 1 towards the offset point o can be chosen as either the positive or 
negative direction of axis 2. 
 

Free axis alignment:
Definition of axis 3 (example).  
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Axis 3 is automatically created to make a right-handed rectangular set of 
axes with axes 1 and 2. In the example, right-handed coordinates are 
assumed to be labelled X, Y and Z. The Y coordinates have been assigned 
to axis 1 and made positive from c to a. X coordinates were assigned to 
axis 2 and made positive towards the offset point. Z coordinates were then 
automatically assigned to axis 3 such that their positive direction makes a 
right-handed rectangular system with the other two axes. 
 
Axis alignment by free orientation: Offsets 

 
 
It may not be convenient in practice to measure points which lie exactly on 
the new axes or planes. Instead, nearby points with known offsets in the 
new coordinate system can be used. 
 
The example shows how the controlling point c may be substituted by 
point c', with 3 axial offsets along u, v and w. 
Point a may be substituted by point a' with two offsets (along v and w in 
the example). 
Point o may be substituted by point o' with a single offset (along w in the 
example). 
 
Axis alignment by orientation to gravity: Summary 
Partial alignment to gravity ensures that the new first and second axes lie 
in a vertical plane. 
 
Full alignment to gravity ensures that: 
• The new first and third axes define a horizontal plane 
• The new second axis is parallel to the direction of gravity (positive UP 

or DOWN). 
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b) Axis alignment: Fully oriented to gravitya) Axis alignment: Partially oriented to gravity
 

In example (a) a base coordinate system xyz has been established using 
levelled instruments. The base z axis is therefore parallel to the direction of 
gravity and positive up. 
 
A controlling point c is selected as an origin for the new axes in the object. 
 
The axis point a defines the direction of the first axis labelled v along the 
line c-a. 
A vertical plane is then set through c and a. This plane defines the second 
axis labelled u which lies in the vertical plane and is perpendicular to the 
first axis. In the example it is positive in an upwards direction. 
 
The third axis labelled w in the example can then be automatically 
calculated. It is made perpendicular to the vertical plane and creates a 
right-handed system with the other two axes. (The example assumes the 
right-handed order of axes is u,v,w.) 
 
In example (b) the above procedure is taken one stage further. When 
aligning axes to gravity, it is very likely that the existing coordinates are 
very nearly levelled and the new axes should show this. When axes are 
fully aligned to gravity it is therefore assumed that the line c-a is 
approximately horizontal and the new second axis u is intended to be 
vertical. This also means that the plane defined by the first and third axes 
(v and w) is also approximately horizontal. 
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However since the line c-a may not be exactly horizontal a correction must 
be made to the directions of the new axes in order to level the new system 
exactly. By rotating the system about the third axis w, the plane containing 
the v and w axes can be set exactly horizontal. 

 
Note 
When axes are fully aligned to gravity, the first axis v no longer passes 
through the axis point a. 

 
Axis alignment by orientation to gravity: Steps in procedure 

Axis alignment to gravity:
Definition of axes 1 and 2

Controlling and axial points 
must not form a vertical line

 
 
In the following discussion the labels "axis 1", "axis 2" and "axis 3" only 
indicate the sequence in which axes are defined and do not define the order 
of coordinates. 
The line between controlling point c and axis point a defines axis 1, which 
can be made positive in either direction. 
 
A vertical plane is then placed through c and a which will define axis 2. 
Axis 2 lies in the vertical plane and is perpendicular to axis 1. Its positive 
direction may point either up or down. 
 
The axis point a must have some horizontal separation from controlling 
point c. If it lies vertically above or below c then an infinite number of 
vertical planes can be placed through c and a. Three of these are shown in 
the diagram. If the line c-a is reasonably close to the horizontal it is also 
easy to recognize the up and down directions for specifying the positive 
direction of axis 2. 
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Axis alignment to gravity:
Definition of axis 3 (example).  
 
Axis 3 is automatically created to make a right-handed rectangular set of 
axes with axes 1 and 2. In the example, right-handed coordinates are 
assumed to be labelled X, Y and Z. The Y coordinates have been assigned 
to axis 1 and made positive in the direction from a to c. X coordinates were 
assigned to axis 2 and made positive upwards. Z coordinates were then 
automatically assigned to axis 3 such that their positive direction makes a 
right-handed rectangular system with the other two axes. 
 

Axis alignment to gravity (X up):
Set YZ plane horizontal

Axis alignment to gravity (X down):
Set YZ plane horizontal

 
Full orientation to gravity is possible with a final rotation about the axis 
which is exactly horizontal, i.e. the axis labelled Z in the example. This 
rotation makes the plane of the defined first and third axes exactly 
horizontal and the defined second axis exactly vertical. In the example the 
first axis was defined as Y, the second as X and the third as Z. The 
example also defined X as pointing up. The diagram shows what happens 
if X is either positive up or down. In both cases the YZ plane is made 
exactly horizontal. 
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Axis alignment by orientation to gravity: offsets 

 
 
As in alignment by free orientation, it may not be convenient in practice to 
measure points which lie exactly on the new axes or planes. Instead, 
nearby points with known offsets in the new coordinate system can be 
used. 
 
The example for partial alignment shows how the controlling point c may 
be substituted by point c', with 3 axial offsets along u, v and w. 
Point a may be substituted by point a' with two offsets (along v and w in 
the example). 
 
If the system if fully aligned to gravity, then point a' can only have one 
offset (along w in the example). 
 

5.7.4 Transformation onto reference coordinates 
The final way of defining a new coordinate system is to do the 
mathematical equivalent of picking up an object and moving it into its 
correct position by attaching it to fixed locating points. This is known as a 
transformation onto reference coordinates and in some textbooks is called 
a similarity transform. 
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The components of this action are a shift, coupled with angular tilts and 
twists which match up object points P1, P2, P3 with their design 
counterparts R1, R2, R3. If the object points are not quite at the same scale 
as the design data then a scale factor may also be required to make the fit 
as exact as possible. 
 
Axyz uses design values located in a reference file. The set of measured 
points selected for calculating the transformation must contain at least 3 
points which form a triangle. It is not necessary to have full coordinate 
information at the reference points. The transformation calculates 3 shifts, 
3 rotational values and an optional scale factor, making 6 or 7 elements in 
all. Corresponding to this there must be at least 6 or 7 pieces of reference 
coordinate information. This could, for example, be 
 
• Full XYZ information at R1 
• YZ information at R2 (or full XYZ information if a scale factor is 

calculated) 
• Z information at R3 
 
If minimum reference data is used, see the additional comments in "3-2-1 
Transformation" on page 83. Normally more than the minimum 7 reference 
elements will be specified by using full coordinate information at more 
than 3 points. Since the measured points will not conform exactly to the 
design shape, due to manufacturing tolerances and measurement 
uncertainties, the transformation is calculated by a best fit using least 
squares. 
 



Axyz ver. 1.4 Mathematics for Users 

 

MATHU.DOC 31/1/00  
 

81 

The algorithm provides options to hold the transformation parameters 
fixed at values defined by the user. A typical option, for example, is to 
request no change of scale by fixing the scale factor = 1. 
 
Use of FIXED, NOT FIXED, WEIGHTED 
The Axyz transformation program allows a degree of uncertainty in both 
the transformed points and the reference points. This permits a high degree 
of flexibility in tailoring the solution to operate in different ways and to 
accommodate different measurement configurations. 
 
Transformed points are typically measured points which are recorded with 
a covariance matrix. This matrix defines the measurement quality of the 
point. The square root of the diagonal elements (variances) are the standard 
deviations of the point with respect to the coordinate system axes. 
Reference data can also be defined with a measurement quality and each 
individual coordinate can be assigned a standard deviation. (This can be 
used to create a covariance matrix although there is no provision for 
defining correlations between coordinate values and hence covariances are 
automatically zero.) 
 
This facility enables transformed and reference points to be assigned a 
weighting and in the solution each will develop small residuals. However 
it would be common to ensure that the reference points have very small 
standard deviations and hence very high weights so that in practice their 
calculated values are almost identical to their nominal values. 
 
It has also been explained how reference points may sometimes only be 
partially known. For example, a reference point may only define a Z 
coordinate and be equivalent to stating that a particular point lies on a 
specific XY plane. In this case there is no need for X and Y values. 
However, a partially known coordinate can be regarded as a known 
coordinate of very low quality.  
 
Finally it is sometimes convenient to treat all transformed points equally, 
by assigning them unit weights and ignoring any covariance values or 
standard deviations associated with them. 
 
In order to accommodate the different features described above, weight 
flags are defined for reference points. 
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FIXED 
If a reference coordinate is defined as fixed, the user is stating that the 
value is either very accurately known or is a nominal (design) value. 
Internally a very small standard deviation is assigned to the value which 
will ensure that it has a very high weight when a transformation is 
calculated. This will ensure that the values do not change significantly 
during the solution. In effect they are treated as known values. 
 
NOT FIXED 
If a reference coordinate is defined as not fixed, the user is stating that the 
coordinate value is unknown. Internally a very large standard deviation is 
assigned to the coordinate which gives it a very low weight when a 
transformation is calculated. This will permit the values to change 
significantly. In effect they are treated as unknowns. 

 
Note 
If points are used as setup points in the transformation and their 
reference coordinates are only partially known, then the unknown 
elements must be given reasonable estimates or the algorithm may fail. 

 
WEIGHTED 
If a reference coordinate is defined as weighted, the user is stating that the 
coordinate is accurately known but there is some degree of uncertainty 
which is significant compared to the uncertainty in the points to be 
transformed. For example, the reference values might not be defined by a 
CAD system or blueprint but may have been measured by some other 
system. In this case the user will also define a standard error to express this 
degree of uncertainty. 

 
Note 
If the reference standard errors are much smaller than the standard errors 
of the transformed values, it may make more sense to define them as 
FIXED. 
If the reference standard errors are much larger than the standard errors 
of the transformed values then you should carefully consider if it makes 
sense to use these values as reference values. 
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Flags for unit weighting 
If unit weighting has been selected then all points to be transformed onto 
reference will be treated equally and given a weight value of 1. Their 
covariance matrices will be ignored in this case. 
 
If the corresponding reference values are defined when unit weighting is 
active, only the flags FIXED and NOT FIXED are available. This allows 
for the possibility that a reference value may not exist (NOT FIXED) but if 
it does exist (FIXED) then the reference value is given a very high weight 
(much larger than 1) which ensures that it does not change in the solution. 
 
Suppose however that you have switched between unit weighting and 
weighting by standard deviation, and some reference values already have 
the WEIGHTED flag . In this case the reference value will be treated as 
FIXED and given a very high weight. This may not produce the effect you 
want so it is always advisable to check the flags before computing the 
transformation. 
 

5.7.5 3-2-1 Transformation 
A 3:2:1 transformation is a normal 3D coordinate transformation which 
uses minimum reference elements, i.e. reference points whose coordinates 
are only partially known. 
 
Although full reference coordinate information is not required for 
calculating the transformation parameters, good approximate values are 
needed for any unknown elements at 3 points defining less than 9 reference 
values. There are two reasons for this: 
 
1. The algorithm requires 3 setup points with full coordinate information in 

order to calculate approximate transformation parameters. In such cases 
the Axyz software will assume that any unknown coordinates in the 
setup points have been provided with values which are good enough to 
make the approximate calculation. If this is not the case the 
approximation may be bad and the transformation may not work. 
 

2. If the algorithm worked directly with the minimum information, more 
than one solution would be possible. See "Ambiguities in 
transformation" on page 84. However if reasonable approximations are 
available for the missing elements this effectively forces the choice of 
only one solution. 
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The use of minimum reference information (6 or 7 coordinate values) is 
very similar to axis alignment and produces an exact fit at the reference 
values. 
 
Assisting the solution 
You may have difficulties in getting a 3-2-1 transformation to work. If the 
solution does not actually fail, it may appear to be slow or it may appear to 
converge to an inaccurate solution. The following techniques may help: 
• Improve the estimates of the unknown coordinate values 
• Add more points in case the minimum data contains an error 
• Use an axis alignment to generate initial transformation parameters 
• Increase the number of iterations in the solution to between 5 and 10. 

(Although more iterations takes time, only the minimum amount of data 
is processed.) 

• Set the percentage convergence change to a smaller value. A slowly 
converging solution may stop too early otherwise. 

 
Ambiguities in transformation 
When minimum data is used to calculate the transformation, more than one 
solution is theoretically possible. This could, for example, cause an object 
to be transformed into the upside down position. As a result, the unknown 
reference values must be approximately known in order to force the 
solution to find the correct position. 
 
The first example shows a reference Z plane. Measured points Pa, Pb, Pc 
are transformed onto reference points Ra, Rb, Rc. The reference data is 
defined as follows: 
 
• Only Ra is fully known in X,Y,Z.  
• Rb has only a reference Z value which is the same as Ra, i.e it lies in the 

same Z plane as Ra but its XY values are unknown.  
• Rc has only a reference XY position in the plane, i.e. its height above or 

below the Z plane is unknown. 
 
Clearly point Pc could also transform to Rc' which is as far below the plane 
as Rc is above it. See example 1. 
 
Yet another alternative is shown in example 2. Here the transformed 
triangle can be rotated about line Ra/Rc to move point Pb from reference 
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position Rb to Rb'. Both Rb and Rb' have the same Z value so that the 
conditions of transformation are still met. 
 
If the approximate XY position of Rb and the approximate height of Rc 
were known, this would make it easy to choose which of the possible 
positions is the correct one. 
 
These examples are special cases, chosen because they are easy to 
visualize. In general, however, several solutions are always possible. In 
order to resolve the ambiguities, unknown coordinate elements must be 
approximately known. 
 
Example 1: Two possible positions 

Pa

Rb

Rc

Ra

Pb
Pc

Rc'

 
Example 2: Another possible position 

Ra

Rb

Rc

Rb'
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5.7.6 Coordinate systems defined by shape fits 
Every standard shape in the Axyz shape fitting routines has a coordinate 
system associated with it. It is therefore also possible to view coordinates 
in the coordinate system of any shape calculated by Axyz. 
 
Note. 
Since the definition of a coordinate system is effectively a sub-set of the 
definition required for a shape, Axyz stores coordinate systems under 
shapes although the Internal Data Manager displays them separately. 

5.7.7 ECDS "local to object" transformation 
Axyz classifies object reference information according to its purpose and 
handles it slightly differently. Control points are used specifically to 
control orientations Reference files are used to calculate 3D 
transformations and provide the reference data for building and inspecting 
points. 
 
In contrast, ECDS has a single type of object reference information known 
as "control points" These are used for: 
• Control of orientation 
• 3D transformation 
 
In ECDS only two coordinate systems can exist. The "local" system is 
created by relative orientation and is defined by the local axes of one of the 
theodolites. The "object" system is defined by  "control" coordinates on the 
measured object. The object system can be created directly in the 
orientation process by inclusion of the control coordinates. Alternatively a 
local system can first be created. Then a least-squares, best-fit 3D 
transformation can be used to transform coordinates from the local to the 
object coordinate system. 
 
To generate trial transformation values, all 3 coordinates of at least 3 
points must be approximately known in both systems, even if the minimum 
7 fixed elements are to be used. 
 
The following flags can be assigned to the individual control coordinates: 
• FIX (fixed) 
• UNK (unknown) 
• APX (approximate) 
 



Axyz ver. 1.4 Mathematics for Users 

 

MATHU.DOC 31/1/00  
 

87 

FIX flag - fixed control coordinate 
The value of this coordinate is known and should not change. This is 
achieved internally by treating it as a variable quantity with a very high 
weight. 
 
This corresponds to Axyz flag FIXED. 
 
UNK flag - unknown control coordinate 
Used for partial "control" points in which not all coordinates are known. 
For example a certain control point may only define a Z coordinate. In this 
case, X and Y are defined as UNKNOWN. 
 
This corresponds to Axyz flag NOT FIXED. 
APX flag - approximate control coordinate 
This may be required to ensure a there is a minimum of 9 coordinate values 
(full information at 3 points) which the program requires in order to 
estimate the transformation parameters. From the users point of view the 
coordinate is unknown but a good estimate of its value is available. 
However, once the information has been used to estimate the 
transformation parameters, coordinates flagged as APX are subsequently 
treated as UKN (unknown). 
 
There is no corresponding Axyz flag. If Axyz needs approximate data it 
simply assumes than the current coordinate values are reasonable estimates 
and a specific flag is not required. The Axyz flag WEIGHTED has no 
corresponding value in ECDS since ECDS does not allow for variation in 
quality of reference values. 
 
ECDS 3:2:1 and 3:2:2 transformation 
The ECDS techniques based on the use of  minimum control can also be 
achieved by providing equivalent minimum control to the 
"Transformation" function in Axyz. See: 
"Transformation onto reference coordinates" on page 79. 
"3-2-1 Transformation" on page 83. 
 
Alternatively a similar effect can be achieved using the "Axis Alignment" 
function in Axyz. See "Axis alignment" on page 72. 
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5.7.8 Transformation parameters 
A transformation provides a new origin point and new axial directions. The 
purpose of the transformation is to take coordinates known in one system, 
typically the base coordinate system, and display them with respect to the 
new origin and axes. 
 
The transformation makes use of the following parameters: 
1) Location of the new origin with respect to the current coordinate system 
2) 3 rotations from the current system into the new orientation 
3) A scale change 
 
The 3 rotations are implemented as a rotation matrix R. 
 
Let new origin coordinates = (xn,yn,zn) 
Let scale change = s 
For current coordinates (x,y,z), corresponding transformed coordinates 
(xt,yt,zt) are then given by: 
 

xt
yt
zt

s
x xn
y yn
z zn

















= ⋅ ⋅
−
−
−

















R  

 
Rotation matrix R 
The rotational parameters ω, ϕ, κ, are given about the current x, y and z 
axes. Each produces an individual transformation matrix as follows: 
 

Rx( ) cos( ) sin( )
sin( ) cos( )

ω ω ω
ω ω

=
−

















1 0 0
0
0

 

 

Ry( )
cos( ) sin( )

sin( ) cos( )
φ

φ φ

φ φ
=

−















0
0 1 0

0
 

 

Rz( )
cos( ) sin( )
sin( ) cos( )κ

κ κ
κ κ= −

















0
0

0 0 1
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They are combined into a single matrix R = Rz * Ry * Rx where the 
elements of R are given by: 
 
r11 = cos (κ) * cos (ϕ) 
r12 = sin (κ) * cos (ω) + cos (κ) * sin (ϕ) * sin (ω) 
r13 = sin (κ) * sin (ω) - cos (κ) * sin (ϕ) * cos (ω) 
 
r21 = - sin (κ) * cos (ϕ) 
r22 = cos (κ) * cos (ω) - sin (κ) * sin (ϕ) * sin (ω) 
r23 = cos (κ) * sin (ω) + sin (κ) * sin (ϕ) * cos (ω) 
 
r31 = sin (ϕ) 
r32 = - cos (ϕ) * sin (ω)  
r33 = cos (ϕ) * cos (ω)  
 

5.8 Types of coordinates 
Coordinate systems are normally defined by 3 mutually perpendicular axes 
through an origin. The axes are conventionally labelled X,Y,Z in a right 
handed sequence although alternative labels are used in certain industries. 
With respect to these coordinate systems a point is usually located by its 
distance from the origin along each axis. The resulting triplet of numbers 
(x,y,z) is known as a point's Cartesian coordinates (named after the French 
mathematician René Descartes) or rectangular coordinates. 
 
However this is not the only way of expressing coordinate values and 
alternative ways may be more convenient. For example, when measuring a 
cylindrical object such as a storage tank it may be useful to define a point 
by its position along the cylinder's axis, the perpendicular distance out 
from the axis and angle around the axis from some defined zero direction. 
 
The right handed rectangular system is used by Axyz as the starting point 
for conversion to other coordinate types, since the Axyz base system is of 
this type. 
 

5.8.1 Rectangular coordinates 
3D rectangular coordinates are defined by 3 mutually perpendicular axes 
(each is at right angles to the others). The axes are often called X, Y and Z 
and a set of coordinates is conventionally given in the order (X,Y,Z). 
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Right handed axes follow the right handed convention for the first, second 
and third axes. 
 
Left handed axes follow the left handed convention for the first, second 
and third axes. When Axyz changes from a right handed to a left-handed 
system, the signs of the X coordinates change but Y and Z values remain 
the same. 
 

5.8.2 Cylindrical coordinates 
In Axyz cylindrical coordinates are derived from a right handed 
rectangular system. In a cylindrical system the X and Y values are 
expressed in terms of a radial (distance) offset from the Z axis and a 
horizontal angle of rotation. The Z coordinate remains the same. 
 
This is a convenient system for measuring cylindrical objects where the 
cylinder axis corresponds to the Z axis of the rectangular system. If the 
cylinder is standing upright, the Z axis corresponds to a height 
measurement, which is the alternative name implied in the diagram. Angles 
are then horizontal angles of rotation around this axis. 
 
A set of coordinates is conventionally given in the order (radius, horizontal 
angle, height). 
 
In two dimensions only the angle and radial distance of the point from the 
origin are required. In this case coordinates are conventionally known as 
polar coordinates (but see also Spherical) 
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In a clockwise system horizontal angles are measured starting at zero on 
the Y axis and increasing towards X which is at 90°. This is a clockwise 
increase when viewed from above. 
 
In a counterclockwise (anticlockwise) system horizontal angles are 
measured starting at zero on the X axis and increasing towards Y which is 
at 90°. This is a counterclockwise increase when viewed from above. 
 
 

 
Note 
It can be useful to define a cylindrical coordinate system where you have 
a number of points which should be approximately the same distance 
from a particular axis. The offsets from the axis should then show up as 
similar radial coordinate elements. 

 
5.8.3 Spherical coordinates 

In Axyz spherical coordinates are derived from a right handed rectangular 
system. In a spherical system a point is located by a distance and two 
angles rather than the 3 coordinate values along the rectangular axes. For 
axes labelled XYZ, and Z regarded as vertical, the point is located by its 
distance from the origin, horizontal angle in the XY plane and zenith angle 
measured from the Z axis. 
 
A set of coordinates is conventionally given in the order (distance, 
horizontal angle, zenith angle). 
 
Coordinates in this format are directly produced by instruments such as 
Total Stations and laser trackers. These measure the distance to a point and 
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the corresponding horizontal and vertical angles. Spherical coordinates 
may sometimes be confused with polar coordinates which are the two 
components (distance, horizontal angle) recorded in the 2D case (see also 
"Cylindrical coordinates" on page 90). This is because the descriptive term 
polar is often applied to these types of instruments. 
 
The naming of the second angle in a spherical system is also potentially 
confusing. It is mathematically known as a zenith angle whose zero 
direction is vertically up. It is not the angle of elevation or depression with 
respect to the XY plane, both of which are also called vertical angles 
(positive if elevation, negative if depression). However the encoder on a 
polar instrument which measures this value is known as the vertical 
encoder or vertical circle and its output is sometimes called the vertical 
angle even if it is actually a zenith angle, as is the case with all Leica 
instruments. 
 

 
 
In a clockwise system horizontal angles are measured starting at zero on 
the Y axis and increasing towards X which is at 90°. This is a clockwise 
increase when viewed from above. 
 
In a counterclockwise (anticlockwise) system horizontal angles are 
measured starting at zero on the X axis and increasing towards Y which is 
at 90°. This is a counterclockwise increase when viewed from above. 

 
Note 
It can be useful to define a spherical coordinate system where you have 
a number of points which should be approximately the same distance 
from a particular point. These should then show up with similar distance 
coordinate elements. 
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5.8.4 Theodolite and Total Station readings (spherical coordinates) 
There is a lack of standardization regarding coordinate elements, the way 
they are specified and the way they are grouped. This is not simply an 
issue for Leica. For example, standard mathematical conventions are 
slightly different from those used in surveying and navigation. 
 
Leica's theodolites and Total Stations generate horizontal angles, zenith 
angles and distances. A reading from either instrument type will generate a 
measurement group which is very similar to a set of spherical coordinates. 
However they may be presented in a slightly different way. 
 
Conventionally, readings from a theodolite are given in the order 
(horizontal angle, zenith angle). By extension, readings from a Total 
Station simply add the distance to this group, i.e. the readings are given in 
the order (horizontal angle, zenith angle, distance). 
To keep both types consistent, Axyz adds a dummy zero distance value to 
theodolite readings, so that each produces the set (horizontal angle, zenith 
angle, 0.0). 
 
The horizontal angle is measured positive clockwise, in the same way as a 
bearing in navigation. In industrial metrology the local axes of a theodolite 
or Total Station are treated as right handed. They therefore follow the 
convention: 
• y axis on horizontal zero 
• x axis on horizontal 90° 
• z axis points vertically up when the xy plane is horizontal (i.e. when the 

instrument is levelled). 
The origin of the axes is at the centre of rotation. 
 
This is identical with the definition for a coordinate system defined as 
"spherical clockwise" except for the order of coordinate elements. 
 

 Instrument reading:  (horizontal angle, zenith angle, distance) 
 Spherical coordinate:  (distance, horizontal angle, zenith angle) 

 
In practice, instrument readings are presented by Axyz using a grid in the 
style of a spreadsheet. If wished, users can re-arrange the order of the 
columns to match the pattern of a spherical coordinate set. 
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6. Orientation Module 
6.1 Orientation Module in brief 

The Orientation Module takes all the current measurements, or a sub-set 
edited by the user, and mathematically builds a measurement network of 
stations from which further object points can be measured. This network is 
located in a common coordinate system known as the base coordinate 
system. All object coordinate data is stored in this system although they 
can subsequently be viewed and output in any other coordinate system 
defined by the user. 
 
The Orientation Module operates in two distinct stages. 
1. Initial and approximate estimation of station parameters (location and 

tilt), orientation point positions and scale bar locations using standard 
orientation methods 

2. Final and optimized estimation of these values, also known as a bundle 
adjustment. 

 
6.1.1 Orientation methods, measurements and points 

The initial estimation of values makes use of orientation measurements 
and basic orientation methods such as collimation or ECDS object 
orientation. It is up to the user to ensure that there are sufficient orientation 
measurements to enable the network to be approximately constructed, 
although the module will report difficulties if this is not the case. 
 
Some orientation measurements are only approximate and not used in the 
final optimization stage, the bundle adjustment. Again, therefore, the user 
must ensure that there are sufficient properly configured point 
measurements to ensure a solution, although a check is made that there are 
sufficient accurate measurements to calculate, in principle, the unknown 
orientation parameters and any associated point locations. 
 
Sometimes points may be measured purely to ensure that an orientation is 
successful or to improve its accuracy. These are not necessarily part of the 
measured object and may be called orientation points. However normal 
object points may be sufficiently good for orientation purposes. There is no 
distinction in the database between "orientation" and "normal" points. 
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6.1.2 Optimization by bundle adjustment 
The bundle adjustment is a least squares optimization. It takes the 
"bundles" of instrument pointings and makes successive "adjustments" to 
the network parameters until there is a best fit between the mathematical 
model of the network and the actual measurements. 
 

6.1.3 Changes as network is updated 
The Orientation Module can be used repeatedly as a measurement network 
is extended with further stations and measurements. Every time its results 
are accepted the base coordinate system may be re-defined and existing 
base coordinates may be modified. 
 

6.2 Building a measurement network 
In order to measure an object you need a measurement network. This is the 
arrangement of instrument stations from where most of the object points 
are measured and located in 3D. In order to obtain meaningful results, the 
instrument stations, object points and any other relevant targets and 
ancillary equipment must be located in a common frame of reference or 
coordinate system. The task here is therefore the mathematical 
construction of the measurement network in a single coordinate system. 
This is known as the base coordinate system and the task is carried out by 
the Orientation Module. 
 

6.2.1 Building a network for on-line measurement 
The basic stages in measuring an object on line are these: 
1) Construct a network. This itself is a 2-stage process 

• Find approximate initial values for the locations of stations and 
ancillary devices and targets 

• Optimize this approximate information to obtain an accurate picture 
of the network 

2) Measure the required object point coordinates on line. 
 
A large object may have to be measured in parts, so the sequence may be 
repeated as: 

1a) Construct part of the network 
1b) Measure part of the object on line 
 
2a) Add another section of network 
2b) Measure another part of the object on line 
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6.2.2 Single step network and object measurement (off-line analysis) 
An alternative to constructing an optimized network from which object 
points are measured, a single stage approach is possible. With this 
technique you measure all the required object points at the same time as 
any measurements needed to construct the network, and then compute 
everything simultaneously.  
 
In contrast to the 2-stage approach, all station and point locations are 
optimized in one procedure. In the 2-stage approach two completely 
separate optimizing procedures are active - one mainly for the stations 
(some object points included) and one for individual points measured on 
line. 
 
The alternative, single stage approach is often used in photogrammetry and 
videogrammetry. It is effectively an off-line calculation of object points. 
 
Example of single stage object measurement 
• Place targets on a radar dish 
• Take a dozen images (conventional or electronic) from different 

locations 
• Process the images to obtain camera locations and target coordinates in 

a common frame of reference 
• Do any further off line processing, e.g. fit a paraboloid to the target 

points 
 

6.2.3 Single step or 2-stage method in Axyz? 
Axyz users generally require on-line coordinates, so many features of 
Axyz accommodate the two stage process. However, the alternative 
technique will still work. You could take a single theodolite or Total 
Station, move it to different locations, make all possible pointings at each 
location and then process all measurements off line. 
 
The single stage process is really equivalent to first stage in the 2-stage 
process. To construct a network you must make measurements to some 
targets in the object space. All that happens in a single stage process is that 
extra points, i.e. all the object points, are added into this set of 
measurements. 
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6.2.4 Orientation methods 
When constructing the network Axyz makes use of "network building 
blocks". These provide different ways of positioning one station with 
respect to the existing stations in the network or directly into the 
coordinate system which has been established. These building blocks are 
known as orientation methods. They enable the initial and approximate 
orientation parameters for each station to be calculated. 
 
A station requires 6 orientation parameters to locate it with respect to 
another station or a frame of reference. These are the 3 coordinates of its 
position and 3 rotational or tilt parameters. The rotational parameters 
express its angular attitude, just as the angles of roll, pitch and yaw tell you 
what angle an aircraft has with respect to the ground. 
 
Targets are involved in the orientation procedures and they also require 
initial coordinate values in the common coordinate system. They may be 
scale bar targets, control points with known coordinates or just additional 
orientation targets with unknown coordinates whose sole purpose is to 
ensure that the network has a strong geometry and can deliver the required 
accuracy. Control points and orientation targets may also be points on the 
measured object. 
 
Orientation methods depend on the underlying technique for locating 
points which in Axyz can be one of two types: 
• Polar measurement 
• Triangulation 
 
These concepts are developed more fully in the following sub-sections and 
further details are given in sections: 
• "Initial orientation and target location" on page 112. 
• "Optimized orientation: the bundle adjustment" on page 121. 
 

6.3 Polar measurement 
Polar measurement records the angular pointing and distance from the 
measuring instrument to the target point. Total Stations and laser trackers 
work in this way. Polar measurements are equivalent to spatial coordinates 
in a spherical coordinate system and are easily converted into orthogonal 
3D values.  
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With this technique full 3D measurement is possible from a single 
instrument. However it is common to require more than one polar 
measuring station in order to fully cover all points of interest on an object. 
This can be achieved by using several instruments or one instrument 
moved to several locations. Individual stations must therefore be linked 
together into a common network in order to obtain object coordinates in a 
single coordinate system. 
 

6.3.1 Diagram: Principle of polar measurement 
 

Target location by polar coordinates
 

 
6.3.2 Orientation with polar measurements 

This linking or orientation procedure can be achieved using a simple 2D 
transformation if stations are levelled. 
 
The example shows a levelled station being oriented into an existing 
levelled coordinate system by a 2D transformation. If not all stations are 
levelled, or control points in a tilted system are used to link the station, 
then at least 3 existing points must be measured. This technique is 
mathematically identical to a 3D coordinate transformation. 
 
Although this technique can produce good results it can still be improved 
by optimizing with the bundle adjustment. Optimization will also deal with 
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redundant and overdetermined cases where, for example, more than one 
polar measurement is made to a particular point. 
Example: Orientation by polar measurements 

Existing measurements Orient new polar station by transformation 
using measurements to existing points

 
6.4 Triangulation 

Theodolites, which measure angle only, employ the principle of 
triangulation to locate points in 3D space. The diagram shows how the 
technique takes intersecting rays from at least 2 locations in order to 
generate 3D target coordinates. 
 

6.4.1 Diagram: Principle of triangulation 

Principle of triangulation
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6.4.2 Diagram: Analysis of triangulation 

Vertical planes
Horizontal plane

 
6.4.3 Simple analysis of triangulation 

The diagram showing the principle of triangulation represents a very 
simplified form of triangulation in which both instruments are levelled and 
measure horizontal angles from the common connecting line between 
them. 
 
Evaluation of the triangles gives the following: 
 
Assuming the horizontal base length b between the instruments is known, 
the following information is easily derived: 
 
The horizontal triangle is fully defined by the base length b and measured 
horizontal angles αA and αB. The horizontal ranges rA and rB can be 
calculated and the horizontal position of the target point, Nh, found. 
 
In the left hand vertical triangle rA is now known, as is the measured 
vertical angle βA. This is sufficient to calculate the target height hA. 
 
In fact the target height can also be computed from the right hand vertical 
triangle in a similar way, assuming that the instrument height difference h 
is known. This gives a second calculation for target height, hB. 
 
This simple case demonstrates redundancy and the need for an optimized 
solution. Clearly it is also necessary to know the instrument separation and 
the fact that both are levelled. In general, the orientation of one with 
respect to the other is required.  
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6.4.4 Simple orientation methods in triangulation 
Here are some simple techniques which can provide fairly accurate 
orientation. 
Diagram: Accurate collimation 

Existing station measures scale 
points and collimation pointing

Orient new station by aligning collimation 
pointings and fitting to scale points

 
Accurate collimation 
Collimation means the sighting of one instruments rotation centre from 
another, i.e. the base line between them is directly measured. This makes it 
particularly simple to line one up with the other. 
 
The diagram shows the procedure with two levelled stations which have 
additionally measured a scale bar identified by the targets T1 and T2. 
 
Diagram: Horizontal resection 

Existing measurements Orient new triangulation station by 
horizontal resection onto existing points
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Horizontal resection 
Existing stations oriented, for example, by accurate collimation can create 
some target points in a levelled system. A new levelled station can resect 
its location with respect to these targets, which links it into the existing 
network. 
 
Accurate orientation methods 
Although reasonably accurate, these simple orientation procedures still 
benefit from optimization which in any case is required in order to deal 
with redundant information. 
 
In some cases, particularly where stations are not levelled, additional 
orientation techniques are needed. 
 

6.4.5 Scale requirements in pure triangulation 
Since theodolites do not supply distance information, scale must be 
introduced in some other way. 
 
Normally correct scale is introduced by sighting the ends of one or more 
scale bars or by including orientation points with correctly scaled 
coordinates. Known distances between two target points are then either 
directly available or can be derived. 
 
Alternatively the inclusion of control points can be used instead of, or in 
addition to, scale bars. Control points have known coordinates which 
means that they inherently include scale information.. 
 
If scaling information is not available the orientation can be calculated at 
an assumed scale or model scale, for example by assigning the value "10 
cm" to the distance between two instruments. An unscaled network can be 
built up until such time as scale information appears, at which point 
everything can be re-scaled to the true scale. 
 

6.5 Control points 
Control points are locations with accurately known coordinates. It is very 
common for control points to be object features which have known design 
(CAD) or blueprint coordinates. 
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Control points are included in orientation methods for two purposes. 
• They force the results of the orientation into the coordinate system 

defined by the control, for example the CAD coordinate system used to 
manufacture the object. This is convenient for further data comparison. 

• They influence or control the results of an orientation, i.e. they affect the 
shape of a measurement network. This can improve accuracy when the 
geometry of the measurement network is not ideal. 

 
Control points can have various sources, for example: 
• Selected object features such as critical drill holes.  
• Specially designed and fixed targets in a reserved measurement area into 

which objects are brought for meas. 
• Points on a reference frame or object inserted into the measurement area  
 
When used to define a coordinate system it is not necessary to have full 
coordinate information at every control point. For example, a set of drill 
holes might only be required to lie in a particular XY plane. Only their Z 
values would be strictly used to define this aspect of the coordinate system. 
It is therefore possible to have partial control points. 
 
The fact that control points influence an orientation can be advantageous 
when a measurement configuration, for good reasons, has some 
geometrical weakness. (Unless you have a good excuse for a weak setup 
you should design a better one!) Adding control points to a weak 
measurement network will help preserve accuracy in new measured 
positions. 
 
Ideally control point coordinates should be known to a higher accuracy 
than they can be measured by Axyz.  
 
Since control points have known coordinates they also supply scale 
information to a network, although it is not normally good practice to rely 
exclusively on control points for this purpose. 
 
When control points influence a network's shape this means that there is an 
excess of control information. 
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6.6 Levelling constraints 
Theodolites and Total Stations are normally accurately levelled before use. 
This makes their primary (standing) axes parallel to the vertical. 
 
Some laser trackers can be referenced to the vertical by attaching a 
separate tilt sensor. In this case the standing axis is not set parallel to the 
vertical but its deviation from the vertical is accurately measured. 
 
Many laser trackers are operated without a tilt sensor and so cannot be 
considered levelled. It is also possible to switch off a theodolite's tilt 
compensator and operate the instrument in a tilted position. 
 
The Orientation Module will take account of all these situations. For 
example, a sub-group of levelled stations will have their standing axes 
forced to be parallel.  
 
Where instruments have been levelled or referenced to the vertical this will 
impose an additional constraint on the network which may simplify the 
orientation procedure and improve the accuracy of the measuring network. 
 

6.7 Optimized orientation (bundle adjustment) 
The bundle adjustment brings together all the items discussed so far: 
• Polar measurements (horizontal angle, vertical angle, distance) 
• Triangulation measurements (horizontal angle, vertical angle,) 
• Calibrated scale lengths (distance) 
• Control points (coordinate value) 
• Levelling constraints 
 
The bundle adjustment must process this diverse range of equations and 
constraints to generate an optimized configuration of stations and targets. 
This configuration ensures that angular pointings and polar measurements 
meet as closely as possible at the corresponding target positions. 
 
Unfortunately, the equations in a bundle adjustment are non-linear. This 
means that the optimized parameters which are computed must first be 
approximately known. Hence the need for mathematically simpler 
orientation techniques in order to "prime" the bundle adjustment with its 
starting values. 
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Some of these orientation techniques have already been mentioned. They 
may, in fact, generate very good starting values. In fact, you might 
consider them so good that further optimization is unnecessary. However 
they are not truly optimal and in any case other methods may be used 
which generate much less accurate starting values. In fact, even a rough 
manual estimate of relative positions by use of a tape measure may be 
sufficient to start the optimization. 
 
Once the optimization starts, any approximate measurements used for the 
trial orientation will be discarded. It is important to ensure that the 
remaining measurements are sufficient to compute the optimized result. 
 

6.7.1 The minimum measurements required 
The minimum number and distribution of  measurements needed for a 
successful calculation depend on the particular measurement configuration. 
In all cases only a relatively small number of measurements are required. 
The most difficult situation is also the most general case where two 
theodolites have not been accurately levelled and have only made sightings 
to common points. In this case a minimum of 5 common points must be 
measured in order to calculate the location and tilt of one instrument with 
respect to the other. 
 
A mathematical argument can explain how a minimum of five 
measurements provide sufficient information to locate one theodolite in the 
coordinate system of the first, as well as finding the positions of the five 
unknown points. 
 
One instrument arbitrarily defines the coordinate system. Its coordinates 
and rotational parameters are given the value zero. Targets and second 
instrument position are found with respect to this coordinate system. 
 
Unknown quantities Total 
Each of the five targets has three unknown positional elements 
(X,Y,Z). 
 

15 

The second instrument has three positional unknowns and 
three rotational unknowns, e.g. roll, pitch and yaw as in an 
aircraft. 
 

16 

Total number of unknown quantities: 21 
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Equations Total 
Each pointing generates two angle equations (one horizontal, 
one vertical). There are 10 pointings, 5 from each instrument 
 

20 

The separation between two targets (scale bar) provides an 
additional distance equation 
 

1 

Total number of equations: 21 
 
With as many equations as unknowns, an analytical solution for the 
unknowns can normally be found. Failure cases exist, for example, if all 
five targets lie on a straight line, but in practice these are easily avoided. 
Adding constraints to the situation will generally reduce the minimum 
number of measurements required. For example if both theodolites are 
levelled, a minimum of 3 common points will provide a solution. 
 

6.7.2 Classification of orientation 
Optimized orientations have a descriptive classification to indicate if 
control points were used or not. The following descriptions also emphasize 
the optimization methods in use. 
 
Controlled (object) orientation 
A controlled orientation makes use of control points which force the 
results into the coordinate system of the control and influences (controls) 
the shape of the measurement network. 
 
It may be called an object orientation since the control coordinate system 
generally has some direct meaning to the object. For example it represents 
the coordinate system used in the design and manufacture of the object. 
 
Relative (local) orientation 
A relative orientation does not make use of control points and the 
coordinate system is initially arbitrarily defined by the first station 
processed, which is the lowest numbered station. 
 
It may be called a local orientation because the local axes of a station 
define the final coordinate system which is "local" to the network itself. 
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Relative orientation with a balanced station network 
This option produces a very similar result to a standard relative orientation 
but distributes the estimated coordinate errors in a more even-handed way. 
 
The optimization starts with the origin defined by the first (lowest 
numbered) station processed. However as it proceeds the origin drifts away 
from this initial position. 
 
Relative and absolute orientation (Photogrammetry) 
Many of the concepts in Axyz are derived from photogrammetry where the 
following terms are common: 
• Relative orientation 

An orientation of one instrument with respect to another 
• Absolute orientation 

An orientation with respect to the coordinate system of an object 
 
In photogrammetry, absolute orientation could imply either the use of 
control in the orientation process itself or the subsequent transformation of 
a relative system onto "control" coordinates. In Axyz control points are 
exclusively used in the orientation procedure and the transformation 
function is implemented as a transformation onto reference coordinates. 
There is therefore a clear separation between these two similar but 
different functions. Furthermore, absolute orientation implies orientation to 
the measured object's internal frame of reference but control points for 
Axyz could have a source other than the main object of interest, such as 
targets in a test field. For this reason Axyz makes use of the explicit term 
orientation to control. 
 

6.8 Base origin and coordinates 
The location of the coordinate axes and the values of the associated station 
and point coordinates depend on the optimizing technique used by the 
bundle adjustment. This defines the base coordinate system for all point 
measurements. There may be small or even large changes in this 
coordinate system when the orientation is re-calculated with new or 
different measurements, or a new optimizing method. 
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6.8.1 Axes on the object (controlled orientation) 
If  reference coordinates on the object, defined by control points, are 
included in the orientation procedure then the origin and axes which define 
the control coordinates are used. 
 
This is a natural consequence of the fact that the measured control points 
must end up with coordinate values very close to their nominal values and 
this can only be achieved by forcing the measuring network into the same 
coordinate system. 
 

6.8.2 Axes at the lowest numbered station (relative orientation) 
In this case control points are not included in the orientation procedures. 
 
Since a meaningful origin and axes are not automatically provided, the 
origin and axes of the base system are arbitrarily located at the lowest 
numbered station.  
 

6.8.3 Axes near the lowest numbered station 
If the option for a balanced station network is chosen, then a relative 
orientation is calculated with base axes initially defined by the local axes 
of the lowest numbered station. 
 
As the optimization proceeds, the base axes drift away from this initial 
position. 
 

6.8.4 How the base axes and coordinate values can change 
The location of the base coordinate system, and the coordinate values of 
any existing points, can change by small or large amounts when the 
orientation is re-calculated. 
 
Same optimization, new information 
If an orientation is repeated with the same optimization technique but new 
information, typically another station is added to the network, then the 
base system will change. This happens because the optimization must 
accommodate different data than in the previous calculation and the results 
must be different although the changes should not be large. 
 
To some extent this can be avoided by fixing existing stations at their 
previous locations. However, this is does not then provide a fully optimal 
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inclusion of a new station. Also, if a the new station has measured existing 
points, the coordinates of these points will still change because of the 
additional measurements to them. 
 
Change from relative to relative plus balanced orientation 
This change will cause the base axes to move from local axes at the lowest 
numbered station to some location nearby. Users have reported movements 
between 200µm and 60mm.  
 
Change between relative and controlled orientation 
This will cause a very significant switch of base system axes between the 
local axes of the lowest numbered station and the axes defining the 
coordinates of the control points. 
 
The shape of the measurement network may also change slightly because 
of the influence of the control points. 
 

6.9 Transformation onto reference coordinates 
Instead of employing an orientation to control, there is an alternative way 
to use known design values to define a system of coordinates. This 
requires a 3D transformation. For more information see "Transformation 
onto reference coordinates" on page 79. 
 
With this method you first complete a relative orientation, i.e. an 
orientation which does not include control points. The relative coordinate 
system is then transformed onto the coordinate system defined by the 
design data using the 3D transformation. This design data is contained in a 
reference file. 
 
Since the design data is not included in the orientation procedure it cannot 
influence the shape of the measurement network. Clearly this is not the 
same effect as the use of design data in the form of control points. 
 
This technique is used to compare the effects of including or not including 
control points and may be helpful in tracking down problems associated 
with design data. 
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6.10 Good and bad geometry 
In triangulation, the geometrical configuration of the network strongly 
influences the quality of point locations. This is particularly important for 
triangulation techniques. Particular requirements are that orientation 
measurements provide a strong network and that points are located with 
good intersection angles. 
 
Diagram: Intersection geometry 

Effect of intersection angle on intersection error

 
 
Intersection geometry 
In triangulation, points must be intersected by at least 2 rays. This will not 
pick up a bad pointing in the plane of the intersecting rays, since the rays 
will still successfully intersect. Only an error out of the plane can be 
detected in this case. 
 
Multiple pointings (3 or more) are effective in detecting bad pointings and 
identifying the specific pointings which are in error. They are most 
effective when the rays are not all in the same plane. Placing stations at 
different heights will provide this condition. 
 
The intersections themselves create minimum error when the intersection 
angle is close to 90°. The diagram shows how fixed angular tolerances 
give rise to different errors at the intersected points. As the intersection 
angle gets narrow, the 3D positional error gets larger. 
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Failure cases 
Orientation methods require certain minimum conditions and if these are 
not met then an orientation will not, of course, be possible. However, even 
when the minimum conditions are apparently met, some geometrical 
configurations can still produce ambiguous results. 
 
When a measurement network is constructed, angular pointings and polar 
measurements should come together very close to the corresponding 
targets. In the end, this is how you know that the network is correct and 
can be used for further target location. If you can achieve this condition for 
different instrument locations then you have a problem known as a failure 
case. Obviously these situations should be avoided, as should a situation 
which is close to a failure case. 
 
Example: Connecting Total Stations 
Failure case if connecting points on a vertical line. 
 
If a new levelled Total Station is added into the network by measuring 3 
existing points lying on a vertical line, the station will not define a unique 
position. The station can lie anywhere on a circle around the vertical line. 
 
Example: Connecting theodolites in a relative orientation: 
Failure case if connecting points all on a line. 
 
If a new instrument is positioned with respect to an existing instrument by 
measuring 5 or more common points all lying on a straight line, the station 
will not define a unique position. The station can lie anywhere on a circle 
around the line of points. 
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7. Initial orientation and target location 
7.1 Relative orientation methods 

A number of relative orientation methods assume that instruments are 
levelled or approximately levelled. (Mathematically it is sufficient if their 
primary (standing) axes are approximately parallel, which is easily 
achieved when the instruments are levelled.) 
 
This simplifies many of the algorithms whose purpose is to obtain 
approximate instrument locations and angular attitudes. This does not 
mean that measured objects must be levelled or that instruments must be 
oriented to gravity in the final bundle adjustment. 
 

7.1.1 Collimation (accurate)  

Station 1 defines the coordinate system.

Align collimation pointings to locate station 2.
Provisional scale.

Re-set the scale to fit the scale bar length.
Further points by intersection.

Situation on site

Measurements at station 1

Measurements at station 2

 
 
This calculation assumes that the instruments are approximately levelled. 
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Accurate collimation pointings are sufficiently good to be used in the 
optimized orientation. 
 

7.1.2 Collimation (approximate)  
This is essentially the same technique as accurate collimation except that 
the collimation pointings are only made approximately. These 
measurements are therefore not used in the optimized orientation. 
 
This calculation assumes that the instruments are approximately levelled. 
 

7.1.3 Collimation to two instruments 

Stations 1 and 2 exist in a local system at 1.

Locate S3 by intersection from S1 and S2.

Situation on site

Measurements at stations 1 and 2

Measurements at station 3 Rotate S3 to align the collimation pointings.
Further points by intersection.

 
 
This calculation assumes that the instruments are approximately levelled. 
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Any collimation measurements which are accurate will be further used in 
the optimized orientation. 
 

7.1.4 Collimation with common point 

Station S2 and target T1 exist in a local 
coordinate system defined by station S1.

Align collimation pointings between 2 and 3.

Situation on site

Measurements at station 2

Measurements at station 3 Adjust location of S3 to intersect target T1.
Further points by intersection.

 
 
This calculation assumes that the instruments are approximately levelled. 
 
If the collimation measurement is accurate it is included in the optimized 
orientation. 
 
The target measurement should be accurate and will be included in the 
optimized orientation. 
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7.1.5 Horizontal resection 

Existing points (shown in an object system).

Station 1 located by horizontal resection.

Station 2 located by horizontal resection.
(Further object points by intersection.)

Situation on site

Measurements at station 1

Measurements at station 2

 
 
This calculation assumes that the network is approximately levelled by 
inclusion of approximately levelled instruments at one or more previously 
oriented stations. Any existing target coordinates are therefore located in a 
coordinate system referenced to gravity. 
 
The target measurements are assumed to be accurate and are included in 
the optimized orientation. 
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7.1.6 Orientation of polar measuring instrument 
This technique applies to Total Stations and laser trackers. 
Simple orientation with levelled instruments 

Station 1 defines the coordinate system.

Station 2 provisionally attatched at T2.

Rotation of station 2 to attach at T1.

Situation on site

Measurements at station 1

Measurements at station 2

 
 
The diagram shows the common situation of linking one polar station to 
another via two existing target points. This works when the network is 
approximately levelled. 
 
The existing contact points can be measured by any other instruments in 
the network, or can be control points in a levelled reference system. The 
only general requirement is that the contact points and station must be 
approximately referenced to gravity. 
The target measurements are assumed to be accurate and are included in 
the optimized orientation. 
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Orientation with non-levelled instruments 
In this case 3 existing contact points must be measured and the station is 
linked into the existing network by the same method as used for a 3D 
transformation. 
 

7.1.7 ECDS "local" orientation 
This technique corresponds to the ECDS method of "local orientation". It 
is a relative orientation method which can be used in its original ECDS 
format. However some modifications have been made which can make the 
method more flexible. 
 
Simple local orientation 

Station S1 defines the coordinate system.

S2 aligned with X pointing parallel to X axis.

Situation on site

Measurements at station 1

Measurements at station 3

S2 shifted to fit polar measurement to S1.
S3 fitted by same procedure as for S2.
Further points by intersection.

Measurements at station 2

 
 
All stations are assumed to be approximately levelled.  
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One "key" station (station 1) defines the origin and local axes and 
measures the local X axis. 
 
Further stations measure the X direction and the approximate polar 
location of the key station, i.e. by angular pointing (h,v) and manual 
estimation of distance (d). 
 
None of the axial pointings or polar estimations are accurate and so none 
of these measurements are used in the optimized orientation. 
 
Modifications to local orientation 
It is not necessary for the polar measurements always to refer back to the 
key station. Any previously oriented station can be used. 
 
Further stations need not be levelled. However in this case they must 
identify two of the local axes (X,Y or X,Z or Y,Z), not just one. This 
provides enough information to calculate the approximate tilt. 
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7.2 Controlled orientation methods 

7.2.1 Orientation to control from a relative orientation  
This technique assumes that some of the relative orientation methods have 
first created an oriented network. This complete network is then oriented to 
the control points by a 3D transformation.  
 

7.2.2 ECDS "object" orientation 

Simple object orientation 

Control point in object system

S1 aligned with X pointing parallel to X axis.
Y pointing not yet aligned.
Polar location of T1 from S1 not yet adjusted.

Situation on site

Rotate S1 to align Y pointing with Y axis.
Shift S1 to match polar location of T1.Detail of measurements

Site orientation measurements

PLAN ELEVATION

PLAN ELEVATION

PLAN ELEVATION

 
 
No assumption is made about stations being levelled. They may or may not 
be levelled. The basic assumption is that the coordinate system of the 
control points may be tilted with respect to the local coordinate system of 
the station. 
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Stations are therefore approximately oriented to the object's control points 
by two measurement components. 
 
Firstly a station approximately measures the directions of two of the object 
axes (X,Y or X,Z or Y,Z). This enables it to be given the correct angular 
tilt with respect to the object. 
 
Secondly a station locates a control point on the object by approximate 
polar location, i.e. by angular pointing (h,v) and manual estimation of 
distance (d). This enables the station to be given the approximately correct 
position with respect to the object. 
 
None of the axial pointings or polar estimations are accurate and so none 
of these measurements are used in the optimized orientation. 
 
Modifications to object orientation 
If a station's local z axis is parallel to the object's Z axis, only one object 
axis need be measured, X or Y. This situation occurs when the control 
points defining the object exist in a levelled system and the theodolite at 
the station is levelled. 
 
Positioning a station by polar location can be done using any existing point 
which has object coordinates. The point need not be a control point. 
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8. Optimized orientation: the bundle adjustment 
8.1 Bundle adjustment in brief 

A bundle adjustment is the name given to a general least squares analysis 
package which takes the bundles of pointings from theodolites Total 
Stations or cameras to identified targets and processes them to create an 
optimal set of target coordinates which is a best fit to the angular and 
distance measurements made. 
 
The adjustment simultaneously provides best estimates of the instrument or 
camera orientation parameters. These 6 parameters specify an instrument's 
3D position and angular attitude (e.g. roll, pitch and yaw as in an aircraft). 
 
Theodolite systems generally use the method to find orientation 
parameters. Further target coordinates are then found by intersection, 
which requires these parameters. 
 
Photogrammetric systems often use the method to find the 3D coordinates 
of all targeted points on the object. In addition, a photogrammetric bundle  
adjustment often models the internal geometry of the camera, which 
frequently improves measurement quality. This is known as self-
calibration because it does not require any external reference information 
as would be the case with conventional calibration techniques. 
 

8.2 Mathematical details in brief 
The equations used by a bundle adjustment are non-linear. In practical 
terms this means that it is not possible to compute instrument and target 
locations in a single computing step. In one step it is only possible to 
improve on an estimate of these positions by making suitable adjustments 
to the estimates. A technique of iteration is therefore required which is 
simply the process of repeating the calculation of improvements until no 
further improvement can be made. 
 
Clearly the whole iteration sequence must be somehow initiated and other 
approximate methods are required which generate initial values or trial 
values of all the elements being computed. These approximate methods 
can include manual estimation of values, the use of design information 
from blueprints or CAD models or measurement techniques such as space 
resection. 
 



Mathematics for Users Axyz ver. 1.4 

 

  MATHU.DOC 31/1/00 
 
122 

To improve measurement quality and determine potential sources of error, 
it is common to use more measurements that the minimum which are 
theoretically necessary to generate the required data. When an excess of 
information is available, the solution is known as overdetermined. Not 
surprisingly, too little information results in an underdetermined set of 
equations which cannot be solved. Overdetermined data sets can find faults 
such as a mis-pointed theodolite and improve measurement quality by 
helping to "average out" the effects of random error. 
 
Finally it is interesting to note that a bundle adjustment exhibits a 
distinctive structure in its mathematical solution which is particularly 
noticeable when applied to photogrammetry. Here there would typically be 
many more target points than camera locations. When the camera/target 
measurements are sorted according to target name rather than camera 
location (which is how they are first generated) then the matrices used to 
process the data contain large sections with zero values. Further re-
organization of these matrices is then possible and this enables the solution 
to be compressed into a much smaller storage area on the computer. 
Despite the large amounts of storage which modern computers offer, 
compression algorithms are still very much in evidence and this feature can 
still be usefully employed, even if only to provide a fast solution for 
orientation parameters. 
 

8.3 Bundle adjustment (and least squares) 
The relative positions of theodolites can be found by direct methods such 
as the collimation technique. Very often however some approximate 
knowledge of the relative positions of targets and instruments is required 
for a particular method to work. This initial estimate is found by some 
simple procedure based, for example, on approximate pointings as 
specified by the ECDS method of relative orientation. The standard 
mathematical technique of iteration then takes the initial estimate and 
continually improves it until no further improvement is possible. 
 
The mechanism used for improving estimates is the method of least-
squares. Measurements can never be exactly correct, which is an 
unavoidable fact of life. Systematic sources of error caused, for example, 
when the line of sight is not exactly perpendicular to the transit (trunnion) 
axis, can be identified and largely eliminated by software compensation. 
However small random effects, such as a short-term temperature change 
which causes a small refraction error in a pointing, cannot be dealt with in 
this way. Fortunately we can reduce the effects of random errors by 
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averaging repeated measurements or using more information than is 
strictly needed. 
 
The method of least squares creates a mathematical model of a situation 
and derives equivalent exact mathematical measurements from it. These 
values are compared with the actual measurements and the model altered 
in succeeding iterations until a best-fit between modelled measurements 
and actual measurements is obtained. The decision on the best-fit is 
reached by examining the sum of the squares of the differences and 
altering the model until this sum is a minimum. The model is then assumed 
to be the best description of the actual measurement situation. Typically 
the model will be defined directly in terms of the coordinates and 
rotational parameters needed for an orientation solution. 
 
What then is the bundle adjustment? Simply the name given to the general 
least squares analysis package which, in this case, takes the bundles of 
pointings from each theodolite and processes them to create a set of 
coordinates which is a best fit to the angular and distance measurements 
made. 
 
Although one objective of the bundle adjustment is to make proper use of 
excess measurements it will also function if only an absolute minimum of 
data is provided. Furthermore, although it may often be associated with 
non-linear solutions which require initial estimates it can also provide 
optimal results for simpler procedures such as orientation by collimation. 
(Although collimation may provide a direct answer it can still be further 
optimized. Indeed it must be further optimized if more than the minimum 
of measurements are made.) 
 
In fact, the bundle adjustment can deal with many different measurement 
configurations and produce an optimal least squares result for each. In this 
respect it may make use of its own internal parameters which can be set to 
force certain conditions. For example, it is obvious that if optimized 
coordinates of orientation targets can be generated in the setup phase, a 
few critical object points could be thrown into the adjustment as well. 
Some of these object positions may be very accurately known, so accurate 
in fact that the user may wish to keep them at their design values rather 
than generating a model which may give them slightly different values. 
This is not a problem for the bundle adjustment which can, with the correct 
parameter settings, provide the user with a more appropriate model. 
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Positions held at their design coordinates are known as control points. 
They provide a way of  forcing measurements into a particular coordinate 
system or even controlling the quality of a triangulation configuration if 
the situation on-site makes it difficult to optimize the measurement 
geometry. 
 

8.4 Principal features of Axyz bundle adjustment 

8.4.1 General 
Maximum number of stations = 99 
Stations can be occupied by theodolites, Total Stations or laser trackers. 
Number of targets is unlimited. 
Number of scale bars is unlimited. 
 
Optionally choose between a balanced station network (free net 
adjustment) or 7 arbitrarily fixed parameters (origin located at lowest 
numbered station). 
 

8.4.2 Measurements in general 
Mixed polar and angular measurements are permitted. 
 
Unlimited distance and angle measurements at any one station. 
Reciprocal instrument pointings permitted (collimation measurements 
between theodolites and Total Stations) 
Direct adjustment of angle and distance measurements, i.e. no conversion 
to other formats. 
Scale bar lengths included in the adjustment as measured distances. 
 

8.4.3 Points located by tracker 
Only pointings to stationary targets are used.  
 
Measurements made to moving reflector positions are excluded. 
 

Note 
Fixed points can be located indirectly by the circle and sphere methods. 
These are not included in the adjustment. There are no measurements 
associated with the target circle and sphere centres. 
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8.4.4 Hidden point devices 
Measurements to offset targets on hidden point devices (device points) are 
not included in the adjustment. 
 
Derived hidden points are also not included in the adjustment. There are no 
measurements associated with these points. 
 

8.4.5 Scale 
Measured scale bars may optionally be removed from the adjustment. If 
removed, the measurements to the scale bar targets are also removed, i.e. 
the scale bar targets are not treated as ordinary target points in this case. 
 
Scale can be provided by: 
• Inclusion of scale bar measurements 
• Inclusion of distance measurements from stations to targets 
• Inclusion of control points (targets with known coordinates) 
 
If scale is not included a solution can still be calculated by assigning a 
default separation of 10 cm between the first two processed stations. 
 

8.4.6 Weighting of measurements 
All measurements have an individual weighting but this cannot be 
individually adjusted. Weights depend on default standard deviation values 
defined for all horizontal angles, all vertical angles and all distances at a 
particular measuring station. Variations can only be made for individual 
stations. 
 
Multiple station/target pointings, including pointings in two faces, are 
always averaged or reduced to a single value. The bundle adjustment 
therefore only sees one weighted representative pointing between a station 
and a target. 
 
A single representative measurement derived from multiple pointings has 
the same weight as a single pointing. 
 

8.4.7 Weighting of targets 
Target coordinates can be treated as known values by weighting. 
Weighting is achieved by assigning suitable standard deviations to the 
coordinates. These weighted coordinates are normally called control 
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coordinates. Typically weighting is high so that the corresponding 
coordinate values effectively remain fixed in the solution. 
 
Control coordinates can be fully weighted or partially weighted and the 
weightings can be individually set and adjusted. Fully weighted means all 
three X,Y,Z values are weighted. Partially weighted means one or more 
individual coordinate values is treated as unknown and not weighted. 
 

8.4.8 Fixing stations 
Station parameters can optionally be held fixed. This treats the parameters 
as known values by weighting with a very small variance. 
 
This enables new stations to be added to a network without changing the 
parameters of existing stations. It also enables the adjustment to be used as 
a single point solution for locating further target points by fixing existing 
station parameters. 
 

8.4.9 Referencing to gravity 
There is no requirement for any instrument to be levelled. However, a 
network can be referenced to gravity in a number of ways. 
• Use control points with coordinates in a levelled coordinate system 
• Precisely level one or more theodolites or Total Stations 
• Make tilt sensor measurements at one or more laser trackers 
 
Theodolites and Total Stations are referenced to gravity by making their 
standing axes exactly vertical (within practical tolerances). 
 
Trackers are levelled by measuring the amount of residual tilt away from 
the vertical using a Leica NIVEL tilt sensor. 
 
Levelled instruments can be optionally treated as non-levelled. 
 

8.4.10 Theodolite modelling 
Theodolites and Total Stations cannot be manufactured according to 
design. For example the telescope axis may not be exactly perpendicular to 
the transit axis. The bundle adjustment offers an option to calculate a 
theodolite model, also called theodolite indexing. 
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Modelling does not apply to individual instruments but to individual 
stations. Each station can be independently modelled but there is no 
common model if the same instrument is used at several stations. 
 

8.5 Operation of Axyz control points 
Control points have already been introduced. See "Control points" on page 
102. Briefly, control points have the following features: 
• They force the orientation results into the coordinate system of the 

control 
• Excess control data influences the shape of a network and can therefore 

"control" weak network geometry to improve coordinate accuracy 
• They can supply scale to a triangulation network 
 
Typically all 3 coordinate elements of a control point are known but  
partially known control points are permitted. To define a coordinate system 
when scale is independently measured, control points must provide at least 
6 coordinate elements. For example: 
• One point supplies all 3 elements (reference X,Y,Z values) 
• One point supplies 2 elements (reference X,Y values) 
• One point supplies 1 element (reference Z value) 
 
If control also defines scale, 7 coordinate elements are the minimum. 
 
Normally at least 3 fully known control points, supplying 9 coordinate 
elements, are available. This is already an excess of control or over-
determined situation which will influence the network shape. Since control 
can influence network shape the control coordinates must be consistent to 
a high accuracy, where this accuracy is better than Axyz can deliver. If 
this is not the case, the control will distort and degrade the inherently 
better results which Axyz can provide. 
 
Control points are implemented by treating them as another type of 
measurement with a high weight. Use of weights allows them to "float" 
slightly from their nominal positions. This is a practical approach which is 
physically justified since they must themselves be measured by some other 
device such as a CMM. However it does mean that a bundle adjustment 
will compute small residuals for the coordinates. The technique used in 
Axyz does not permit control points to be absolutely fixed but by 
assigning them very small standard deviations, i.e. very high weights, they 
can for practical purposes be considered fixed. 
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Axyz does not alter control values but users should be aware that statistics 
involving residuals can indicate problems with control data. 
 
Users have the option to check control points by temporarily treating them 
as normal points, thereby removing their "controlling" influence from the 
bundle adjustment. 
 

8.5.1 Use of weight flags 
To create control coordinates which are effectively fixed, known with a 
small degree of uncertainty, or unknown, Axyz uses weight flags. These 
can be defined and edited in the Data Manager. 
 
FIXED 
This flag assigns a high weight to the coordinate. Its modelled value 
should change very little, producing a very small residual which for 
practical purposes is zero. 
 
Internal value = 10-6 (10-12 for variances). 
 
NOT FIXED 
This flag assigns a very low weight. Its value is effectively unknown and 
large changes in the modelled value are possible. 
WEIGHTED 
This flag assigns a specific weight to the coordinate. It allows for small 
differences in the quality of control coordinates. 
 

8.5.2 Operation of ECDS control with bundle adjustment 
ECDS control points are used both to control the ECDS bundle adjustment 
and to act as reference values for 3D transformations. 
 
As in Axyz, ECDS also permits the use of partial control points and 
operates with weight flags. 
 
ECDS weight flags 
The ECDS concept does not allow for individual weights of control points. 
In effect the control values are either known and not allowed to change, or 
they are unknown. All uncertainties in coordinate values are assumed to be 
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associated with the measurements. There is therefore no ECDS flag 
corresponding to WEIGHTED in Axyz. 
 
The actual ECDS flags are: 
 
FIX (fixed) 
The coordinate is given a very high weight and the modelled value changes 
very little from this. Effectively zero residuals are produced. 
 
UNK (unknown) 
The coordinate is assumed to be unknown and therefore has zero weight. 
 
APX (approximate) 
A coordinate flagged as approximate is also unknown but has been 
provided with a reasonable estimate of actual value. This is useful for 
calculating approximations, but otherwise the coordinate is treated as 
unknown. 
 

8.6 Levelling constraints 
Instruments need not be levelled in order to make successful and accurate 
measurements. Video cameras are good examples of instruments which are 
not designed to be levelled. Many laser trackers have only a simple bubble 
level and cannot be precisely levelled. 
 
Theodolites and Total Stations are designed to be precisely levelled 
although it may not always be convenient to do this. For example, on a 
floating oil rig under construction you might choose to operate a Total 
Station with the compensator switched OFF. 
 
Mathematically any instrument which is not precisely levelled must be 
treated by the bundle adjustment as non-levelled in order to preserve 
accuracy. However in practice most instruments will always be 
approximately levelled because they are designed to be used in an upright 
attitude. For initial orientation approximations it is sufficiently accurate to 
treat these as levelled, so there is no contradiction in treating instruments 
as levelled in the initial orientation phase and as non-levelled in the final 
optimization. 
 

 see 
MTM/STM 

As an option users can also temporarily remove the constraint to keep an 
instrument levelled in the bundle adjustment. This might be done to track 
down a source of error. 
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There are distinct advantages to levelling. 
• When instruments are levelled you have an automatic check and 

correction of small tilts which might develop during measurement. 
• Levelling also forces an additional constraint which can improve 

measurement quality.  
 
If levelled stations are in use, the bundle adjustment recognizes several 
cases. 
 

8.6.1 Relative orientation (no control points) with levelled theodolites 
Here instruments are held levelled by fixing the ω and ϕ rotations of 
instruments at zero using high weights. Weighting allows small residual 
tilts to develop, which corresponds to the actual situation. 
 

8.6.2 Orientation to levelled control points with levelled theodolites 
The X and Y values of the control points are on a horizontal plane and the 
Z values represent heights. The Z axis of the control system is therefore 
vertical and parallel to the local z axes of any levelled instrument. 
 

see 
CDM 

In this case a minimum of 2 control points is permitted. The user must 
explicitly indicate that the Z axis of the control system points vertically up 
by selecting this option in the Orientation Module. This identification must 
be made by the user since the system has no reliable way of determining 
this fact. Even the use of only 2 control points, which might indicate the 
fact, could be an error by the operator whose control system is actually 
tilted with respect to the vertical and who has forgotten to measure a third 
control point. 
 
Instruments are again held levelled by fixing their ω and ϕ rotations at zero 
using high weights. 
 

8.6.3 Orientation to non-levelled control points with levelled theodolites 
Here the Z axis of the control coordinate system is not vertical. You cannot 
therefore force ω and ϕ rotations of local instrument axes to zero as this 
makes an instrument's vertical axis parallel to the  Z axis of the control 
system when it should be parallel to the direction of gravity. 
 
In this case the levelled constraint is implemented by forcing all levelled 
instruments in the network to have their primary (standing or vertical) axes 
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parallel. This is done by adding two rotational parameters to the solution 
which effectively represent the direction of gravity with respect to the 
control system. The parameters are Ω and Φ representing rotations about 
the X and Y axes of the control system. They therefore represent the tilt of 
the control system with respect to gravity. The ω and ϕ values of every 
levelled instrument should be equal to Ω and Φ respectively and any small 
difference simply represents a small levelling error. 
 
What if the object moves? 
Axyz can only keep parallel the axes of a single sub-group of theodolites. 
This works when an object does not move during measurement and the 
instruments are moved around it. 
 
However if the instruments are levelled but fixed in position and an object 
with control points is moved instead, for example by mounting it on a 
turntable, then more than one group of parallel axes is created. 
 
To correctly process this situation you would need to have an additional 
pair of Ω and Φ rotational parameters for each sub-group. This is not 
currently possible. To resolve this problem treat one sub-group as levelled 
and remove the levelled constraint from all other instruments. 
 

8.6.4 Orienting laser trackers to gravity 
One or more laser trackers in a network can be "levelled" by mounting a 
NIVEL tilt sensor and adjusting the instrument so that the NIVEL is within 
its operating range for all pointings. Precise levelling by setting the 
standing axis vertical is not required since the residual tilt offset is 
measured. 
 
The instrument is then levelled in the Orientation Module by fixing the ω 
and ϕ rotations to values corresponding to the residual tilts. If non-levelled 
control is used then the additional Ω and Φ rotational parameters for the 
tilted network are superimposed on these. 
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8.7 Networks with and without scale 
The bundle adjustment will function without any scale information. 
Normally scale information is provided in several ways: 
• Measuring at least one scale bar 
• Making at least one polar measurement with a Total Station or tracker 
• Including at least 2 control points in a levelled coordinate system 
• Including at least 3 control points in a non-levelled coordinate system 
• A combination of the above 
 
If scale measurements have not been made a warning is given. However 
the  analysis continues by automatically setting the distance between the 
first two stations in the network to be equal to 10 cm. This prevents the 
solution from failing because of a missing mechanical degree of freedom. 
By choosing an impossibly short separation between the instruments the 
resulting coordinates are much too small to be realistic. This serves as an 
additional reminder to the user that scale information was not provided. 
 
Missing scale information is likely to occur when a network contains 
theodolites only, since trackers and Total Stations are probably employed 
precisely because they also supply distance information. The situation 
would then arise if the operators forgot to measure a scale bar.  
 
If possible the scale should be measured and the bundle adjustment 
repeated. This may not always be possible. For example, each end of a 
long scale bar might only be visible from different parts of a large network. 
If the theodolites have been moved the additional measurements cannot be 
made from the original stations. 
 

8.8 Balanced station v. free net adjustment 
 

8.8.1 In brief: the balanced station network 
The Bundle Adjustment has an option to select a balanced station network. 
This has similarities with a free net adjustment and is designed to remove 
an inconsistency in the quality analysis which results when an arbitrary 
datum is specified. When the datum is arbitrary the coordinates of the 
origin are assigned zero error. Since errors are relative this does not affect 
the quality analysis of derived elements such as the distance between two 
points, it only affects the errors estimated for coordinates. The balanced 
network distributes these in a more even-handed way. 
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If the option is not chosen the adjustment will set an arbitrary datum in one 
of two ways: 
1. The first station used to build the network will define the origin and 

axes of a relative coordinate system. This is a standard relative 
orientation procedure. 

2. If control points are used, the network will be located in the coordinate 
system of the control. This is an orientation to control. 

 
A relative orientation will produce a network of the same shape as the 
balanced network but the first station will define the base system origin 
and be assigned zero error. 
 
If orientation to control is used, this will override any selection of a 
balanced network. If you do not want this to happen you must indicate that 
any measured control points are to be treated as normal unknown points. 

 
Note 
An orientation to control will produce a network of a slightly different 
shape than a relative orientation, if the control specifies more than the 
minimum 6 or 7 elements. 

 
8.8.2 What is a free net adjustment? 

It is necessary to fix a minimum number of parameters in order to achieve 
a solution for the optimized network. In simple terms you need to force 
some location to be the origin, i.e. you must define a datum and the task is 
sometimes called  solving the datum problem. If this is not done successive 
iterations will keep adding small changes to station and target coordinates 
which will cause the whole network to drift continuously and the 
coordinates will never converge to a stable solution. 
 
If control points are used the problem is automatically solved. The network 
is attached to the control points which are fixed in space so the drift is not 
possible. Note that Axyz will only accept control if there is at least the 
minimum necessary to tie the network down and stop the drift. For 
example, including just one control point would not work since the whole 
network could still "spin" around this fixed point. 
 
In the general case where the instruments have not been levelled and no 
control points have been measured, you actually need to specify 6 elements 
which must remain fixed. These are 3 coordinates and 3 rotational 
elements which, in a conventional solution, are defined to have specific 
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values at one particular station. Normally the first station in a network is 
assigned 3 zero rotational values and the location (0,0,0) i.e. the first 
station defines the origin and axes of a relative coordinate system. Strictly 
speaking a 7th. element must be specified which is scale, but distance 
measurements for scaling purposes are normally made. See "Networks 
with and without scale" on page 132. 
 
This situation is known as a solution with minimum constraints. If further 
constraints are added, such as the condition that at least one station is 
levelled, fewer elements need to be arbitrarily specified. 
 
The quality analysis problem 
In the minimally constrained solution, any station can be the origin, not 
just the first one processed. No matter which is chosen the procedure still 
calculates the same shape for the network even though the actual spatial 
locations are different. 
 
The analysis also provides quality information in the form of variance 
estimates for station parameters and coordinates of orientation targets. This 
is useful information which is also required in subsequent procedures such 
as locating additional target points by the single point solution. 
 
The problem is that a statistical evaluation of coordinate errors depends on 
the choice of origin. Statistically the origin is assigned zero error and all 
other stations and points have errors with respect to this. If you change the 
origin then these numbers change. This does not affect error estimates of 
derived geometric elements, such as distances between points. Although 
the numbers at either end of the line may change, their combined effect on 
the length is the same. 
 
However since much of the user's work relates directly to coordinates it 
would be a convenience to have some form of analysis which estimates 
coordinate errors independently of the chosen datum. There is an 
alternative mathematical approach called the free net adjustment which lets 
you do this. 
 
 
 
 



Axyz ver. 1.4 Mathematics for Users 

 

MATHU.DOC 31/1/00  
 

135 

Simple free net mathematics 
The equations which define the network and relate the unknown 
parameters to the known measurements are processed by matrix analysis. 
The equations can be reduced to the following format: 
 
N x  = t 
 
x is a vector or list of the unknown elements such as all the station and 
orientation target coordinates in the network. 
t incorporates the known measurement data 
N is known as the normal matrix and contains numbers relating to the 
current shape of the network. 
 
If this was simple algebra you would divide t by N to get x. For example, if 
apples cost 10 Eurodollars each and you spend 50 Eurodollars, how many 
apples did you buy? There are an unknown x apples so: 
 
10 x = 50 therefore  x = 50/10, i.e. 5 apples. 
 
In matrix algebra you cannot simply divide by N which is an array of 
numbers, not a single value. Instead you calculate its inverse, written N-1. 
 
x  = N-1 t 
 
Mostly it is a standard procedure to calculate the inverse of a square matrix 
such as N. When you multiply the original matrix by its inverse the result 
is a unit matrix, which has a similar function to number "1" in normal 
algebra. 
 
Unfortunately, if the datum is not fixed in a bundle adjustment you cannot 
directly invert the normal matrix. If you attempt this you cause a division 
by zero at some point.  
 
As an alternative to fixing the datum you can use a generalized form of the 
inverse which avoids the division by zero. This involves imposing another 
condition, in an analogous way to fixing a station. This condition states 
that the trace of the inverted matrix (N-1) must be a minimum. The trace is 
the sum of the elements on the diagonal. 
 
This rather abstract condition has a practical physical effect. It holds the 
centre of gravity of all the coordinates (stations + targets) fixed at the 
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initial value during the process of iteration towards an optimal solution. In 
other words, in each iteration the solution moves the stations and targets to 
more optimal locations, but in such a way that their centre of gravity does 
not change. The solution cannot therefore continually drift and it will 
converge to a final optimized arrangement.  
 
Although this form of solution is described as "free" something else has 
actually been fixed, in this case a centre of gravity. However, with this 
technique the final shape of the network and object points is the same as 
before but the quality estimates are assigned in a more even-handed way. 
No one station or point is given preferential treatment by being assigned 
zero error. 
 
This effect on the quality analysis might be suspected from the 
mathematical condition of a minimum trace. When the weighting scheme 
is based on standard deviations, the inverse of the normal equations (N-1) is 
also the covariance matrix of the parameters which you are calculating. 
The diagonal elements of this matrix are the variances of the parameters 
and the square root of each diagonal element is the estimated standard 
deviation of the corresponding parameter. The condition of minimum trace 
simply means that the free net adjustment arranges matters so that the sum 
of the station and target variances is as low as possible. If you compare the 
results of a fixed and free net adjustment you will see that the error 
estimates have generally lower figures in the latter case. 
 
In a free net adjustment the centre of gravity will depend on the chosen 
starting values and this may influence the actual statistical values by a 
small amount.  
 
The description above is somewhat simplified. It is additionally necessary 
to prevent the system from "spinning" continuously so the method also 
holds the average rotation elements of all the stations fixed at their initial 
values. 
 
Finally, you may want to know where the origin of the final coordinate 
system is located. In a conventional solution the origin is located at one of 
the instruments. In the free net adjustment it is very likely that one 
instrument initially starts out at the position (0,0,0), i.e. it initially defines 
the origin. However because it is the centre of gravity which is held fixed, 
the instrument initially at this location will move away during subsequent 
iterations. In the final network there will be no instrument located exactly 
at the origin although one may be close to it. 
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8.8.3 Balanced station network 
In Axyz a balanced station network has been implemented instead of a 
free net adjustment in order to accommodate some differences in concept. 
 
A free net adjustment is typically used by a photogrammetrist whose 
camera stations and object points are often all processed together at the 
same time. When instruments such as theodolites and video cameras are 
used it is very common to first create a measurement network and then to 
add more points. The majority of object points are typically not processed 
in the Axyz bundle adjustment and the balanced station network therefore 
concentrates on the stations. 
 
When theodolites and Total Stations are used they are normally levelled 
and the balanced station network also incorporates this additional 
constraint. 
 
In practice the balanced station network adopts the philosophy of the free 
net adjustment by ensuring that no preference is given to any individual 
station. It achieves this effect by taking the practical consequence of a free 
net adjustment and directly applying it. This means that it normally fixes 
the centre of gravity of the initial coordinates of all stations as well as the 
average value of the initial rotational parameters of the stations. 
 
The method has the following features: 
 
Scale 
• If any distance measurements are made these will define an absolute 

scale for the network. 
• If no distance measurements are made a pseudo scale is introduced by 

fixing the distance between the first two instruments to 10 cm  
Since scale is always included by one of the above methods only a 
maximum of 6 further elements must be fixed in the network. 
 
No constraints 
If there are no levelled instruments and no measured control points then: 
• The centre of gravity of the initial station positions is held fixed 
• The average value of the initial ω, ϕ and κ rotations for each station is 

held fixed 
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Levelled stations 
If the only constraint is that one or more stations is levelled and control 
points have not been measured, then the direction of gravity must define 
the Z axis of the final coordinate system. This means that all ω and ϕ 
rotations are fixed at zero and only κ rotations (bearings) remain free. In 
this case: 
• The centre of gravity of the initial station positions is held fixed 
• The average initial κ value of every station is held fixed 
 
Existence of measured control points 
If the acceptable minimum number of control points has been measured 
then the control system defines the final coordinate system. The result is 
identical to a normal orientation to control. 
 
A balanced station network results in a relative coordinate system except, 
therefore, where control points override this to create a controlled 
coordinate system. 
 

8.8.4 How much does the origin drift? 
Users have reported that compared to a standard relative orientation with 
base origin and axes defined by the local axes of a station, the final 
location of the base axes might move from this as little as 200µm or as 
much as 2.5" (over 60mm). 
 

8.8.5 Why choose a balanced station network? 
A balanced station network results in a less biased view of the variance 
estimates of coordinates. In fact, it tends to produce smaller values for the 
variances, i.e. smaller values for the estimated standard errors. In contrast, 
an unconstrained relative orientation produces larger relative errors, but 
these are based on the fact that the station defining the origin has no error 
at all! 
 
Both methods produce the same quality estimates of derived features such 
as lengths between points, radii, etc. compared to an unconstrained relative 
orientation. Note, however, that quality estimates will be different if 
levelling constraints can influence the relative orientation. 
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Usually the balanced would be chosen to see the effect of removing excess 
control information so that the network depends purely on the quality of 
the instrument and scale measurements. 
 
To avoid the presence of control points from overriding the option for a 
balanced station network, control points must be treated as normal points. 
This is an additional option available to the user. 
 

8.9 Bad measurements: Blunder detection 
Blunders are genuine mistakes in measurement which will distort results 
and should be removed from the analysis process. 

8.9.1 In brief: blunder detection 
A simple form of blunder detection is implemented which detects a single 
bad pointing. 
 
At the end of a bundle adjustment the algorithm calculates the pointing 
error of each normal or scale bar point used in the solution. If the largest 
error exceeds the tolerance value set in the "Warnings" section of the 
instrument module, the pointing is flagged as a blunder. 
 
There is no automatic removal of blunders. Instead it is up to the user to 
respond to a blunder, for example by repeating the orientation without the 
offending measurement. Remember that there may be multiple blunders 
present which remain undetected and that a least squares procedure cannot 
guarantee that a bad residual means a bad measurement. 
 

8.9.2 Blunder detection in Axyz 
A blunder is a totally incorrect measurement or mistake such as a sighting 
to a wrong target or electronic corruption of data. In the Axyz bundle 
adjustment a very simple procedure is implemented to warn of blunders.  
 
Firstly, pointings are assigned a tolerance level, see: 
• STM/MTM Setup menu/Theodolite Warnings 

Coordinate tol. (distance) OR Coordinate tol. (angle) 
• LTM Setup menu/Tracker Warnings 

Error tolerance for coordinate (distance) 
 
When the bundle adjustment is complete the points are intersected to 
analyse the pointing error. Depending on specification by the instrument 
module, angle or distance offsets are evaluated. 
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The largest offset which exceeds the specified tolerance is reported as a 
blunder and the following message displayed: 
 
"Possible blunder on point [wp]/[id]" 
 
It is up to the user to respond to the flagged value, for example by 
eliminating the associated pointing or the target point itself from the 
solution and then repeating the computation. A bad residual might identify 
a bad target and not necessarily a bad pointing. If there were only two 
pointings into a target it may be the other one which is in error, although if 
either pointing were rejected it would no longer be possible to locate the 
target anyway. Users should remember that least squares is not an infallible 
method of detecting blunders and occasionally it is discovered that the true 
problem lies somewhere else. Some experimentation may be required and 
an adjustment may have to be run several times with different eliminations 
each time in order to track down the error. 
 

8.10 Normal and alternate rotational parameters 
Axyz uses three standard rotation parameters to define an instrument's 
angular attitude in space. Unfortunately their standard order of application 
(Ω * Φ *Κ) cannot be used to cover all cases in a bundle adjustment. If Φ 
is a multiple of π/2 then an infinite number of different combinations of Ω 
and Κ is possible in order to get the same final result. Since the adjustment 
works by making small changes to each parameter in every iteration, it 
would never converge to a solution in this case. Each change to Ω or Κ 
would be compensated by a corresponding change in the other parameter 
and the solution would chase itself in circles. 
The situation can be avoided by using the same 3 rotation parameters but 
applied in a different order (Φ * Ω * Κ). This case, of course, fails when Ω 
is a multiple of π/2 for exactly the same reason as the standard sequence 
fails. Together, however, both patterns cover all cases. (3 rotational 
parameters have quite different numerical values when they are used in 
different sequences to define a particular rotation matrix.) 
 
The adjustment examines the starting values of the rotational parameters 
for each instrument and if Φ is within ±π/8 of a multiple of π/2 then the 
alternate sequence is used to define the associated equations instead of the 
standard sequence. 
 
When the bundle adjustment finishes it always stores the final rotational 
parameters in the standard sequence. If the alternate sequence has been 
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used for calculation the full rotation matrix is first created and then the 
standard sequence derived from it. In the case that Φ is a multiple of π/2 
there is again the problem than an infinite number of combinations of Ω 
and Κ are possible. However in this case you can arbitrarily set Ω = zero 
and thereby derive a particular value for Κ, since any one of the infinite 
number of combinations produces the same result. The problem that 
existed in the bundle adjustment does not exist here because the final 
rotation matrix is known and a single, on-off choice can be made. 
 

8.11 Summary of error analysis in bundle adjustment 

8.11.1 Target residuals 
For each target, the pointings into the target generate the following data on 
residuals: 
• Individual EDM residuals, if relevant 
• Individual angle residuals 
• Maximum angle residual (reported as maximum angle pointing error) 
• Maximum pointing error in distance units 
 

8.11.2 Control point residuals 
Individual x, y, z residuals in base coordinate system of any control 
coordinates, if relevant. 
 

8.11.3 Network statistics 
• Individual scale bar residuals 
• Maximum angle residual in network 
• Blunder detection: 

Pointing with largest error exceeding 3 times set tolerance 
 

8.11.4 RMS values 
If RMS values have been requested: 
• RMS of full offset distances using perpendicular or spatial offsets, 

depending on whether measurements are directions or polar. Known as 
total RMS value. 

• RMS axial values of full offset residuals. Each residual is expressed in 
its axial components in the base coordinate system. The RMS is 
calculated for each axial set, i.e. RMSx, RMSy, RMSz 

• RMS of scale bar residuals 
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8.11.5 Variance factor 
Always calculated: 
• Individual variance factors for each point in the network 
• The variance factor for network, $σ0

2. 
 

8.11.6 Analytical quality estimates (Error propagation) 

Input 
• Preliminary variance factor σ0

2 = 1.0  
• Standard deviations of angles 

Estimates by user. Defined and edited in station setup. 
• Standard deviations of EDM measurements 

Estimates by user. Defined and edited in station setup. 
• Standard deviations of scale bar lengths 

Estimates by user. Defined in DM. 
• Measurements are assumed to be uncorrelated. 
 
Output 
• For each station a 3x3 covariance matrix of location and a 3x3 

covariance matrix of rotation. 
• No covariances recorded between stations 
• No covariances recorded between a station's location parameters and its 

rotation parameters 
• 3x3 covariance matrix for each target 
• No covariances recorded between targets 
 
The covariance matrices are calculated using the preliminary variance 
factor σ0

2 . 
 

8.11.7 Further use of analytical quality estimates 
The analytical quality estimates are further used as follows: 
• Station covariance data is used in the single point solution 
• Target covariance data is used in shape fits 
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9. Locating points by the single point solution 
9.1 Introduction to single point solution 

When the relative positions of theodolites in a triangulation network are 
known, i.e. after orientation, target coordinates can be found by the 
intersection of pointings from all theodolite positions which sight the 
target. Since pointings do not generally intersect at a single 3D location, 
and may not truly intersect at all, a least squares solution is used to find a 
single optimal location for the target which best fits the pointings. 
 

 
Targets can also be located from a single Total Station by polar location. 
Where several Total Stations are involved in a complex network, and a 
target is located from more than one Total Station, least squares 
optimization is again employed to find a single optimal target location. 
 

 
 
Axyz uses a single method to process both angular pointings only and 
angles combined with distances in order to locate points in 3D space. This 
technique is known as the single point solution. If measurements involve 
angles only it is equivalent to an optimized intersection. If the 
measurements come from a single Total Station it creates coordinates 
without residuals, equivalent to a polar location. 
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9.1.1 Measurements used in Single Point Solution 
The following measurements are used: 
• Normal measurements 
• Stationary target measurement by the tracker 
• Measurements to device points on hidden point devices 
 
The following features have no associated measurement and are not 
therefore processed: 
• Fixed points located by the tracker using circle or sphere methods 
• Calculated hidden points 
 

9.2 Computation in brief 
The single point solution uses the same equations as the bundle 
adjustment. However, since the station parameters (position and angular 
orientation of particular instruments) have already been computed by a 
previous bundle adjustment, they are no longer unknown values. Only the 
target position is a true unknown. 
 
The bundle adjustment permits both stations and targets to be either known 
or unknown. The choice in any particular case is decided by the weights 
assigned to the station parameters or target locations. Very accurately 
known targets, i.e. control points, can be given very high weights so that 
their values are fixed in the solution. The produces a controlled 
orientation. Conversely, stations themselves can be fixed by assigning high 
weights to their parameters. This is sometimes done in the bundle 
adjustment itself, when the operator wants to calculate the parameters for a 
new station in the network but also wants existing stations to keep exactly 
the same parameters as they currently have. 
 
The same mechanism is used in the single point solution to fix the station 
parameters. The only real source of uncertainty originates in the pointings 
and produces the measurement residuals. 
 

9.2.1 Summary of steps in solution 
The instrument orientation parameters (position and rotation) are known 
from the bundle adjustment. 
 
Approximate target coordinates are calculated as for the bundle 
adjustment.  
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Optimized target coordinates are based on the same co-linearity equations 
used in the bundle adjustment. 
 
Instrument parameters are held fixed by assigning each of them a very 
small variance value of  1/1016. A small variance generates a high weight. 
 
The individual pointings are weighted according to the preliminary 
estimates of standard error for horizontal angles, vertical angles and 
distances. 
 
The least squares solution minimizes the following sum: 
(weighted residuals of pointing)2 + (weighted residuals of inst. params)2 
 
Since the instrument parameters are effectively fixed, their residuals are 
effectively zero, so the minimized value is effectively: 
(weighted residuals of pointing)2  
 

9.3 A close-up of the action 

Single point solution with pointing residuals

v
H

Tot. Stn. 1

u
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Target

δD

δZn
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Theod. 2

 
 
The diagram outlines the elements involved in locating a target using 
measurements from a Total Station and a theodolite, but full details are 
only provided at the Total Station. The example has been deliberately 
chosen to indicate that both angle and distance measurements are 
processed. Briefly, in the diagram: 
• Black heavy lines indicate what you start with in terms of known data 

and measurements. 
• Dark grey fine lines show what is modelled. 
• Light grey indicates the difference between known and modelled data, 

i.e. the residuals. 
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The black instrument positions are produced by the bundle adjustment in 
the base coordinate system indicated by the reference axes XYZ. Local 
instrument axes are indicated by uvw. 
 
The measured values at the Total Station are horizontal angle H, zenith 
angle Zn (the vertical circle reading), and distance D. There are 
corresponding angle measurements at the theodolite (not explicitly shown). 
 
When the optimized target location is found, the difference between 
measured and modelled pointing produces the standard pointing residuals 
indicated by δH, δZn, δD. 
 
The best fit minimizes a sum based on the squares of these residuals from 
each instrument involved in locating the target. These are not summed 
directly since they must be weighted to allow for mixed angle and distance 
values and potentially different measurement qualities. It is the 
appropriately weighted sum which the least squares solution minimizes. 
 

9.4 Quality analysis of single point solution 
There are two aspects to the quality analysis. 
 
1. Any particular calculation produces gaps between the pointings (except 

for a single polar measurement). These are described by the residuals. 
 

2. Assuming that the pointings typically have a particular standard error, 
the standard error in the target coordinates can be derived purely 
analytically using the technique of error propagation. 

 
The analytical procedure is necessary because there are not generally 
enough pointings to generate reliable statistical estimates from the 
residuals themselves. Most users like to see the residuals in some form to 
find out how well they "hit the target", particularly since a bad residual 
may well indicate a mispointing. However a good estimate of the variance 
or standard error in the target's position can only be found by propagating 
good estimates of the quality of the measurements. The measurement 
quality is something the user has already defined and is based on 
accumulated experience and results. 
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9.5 Offset residuals and pointing error 
The residuals are a measure of the lack of intersection of a particular 
solution, in contrast to a purely analytical error propagation. 
 
As an alternative to the residuals of pointing, i.e. the measurement 
residuals directly produced by the single point solution, offset residuals 
can also be calculated for the optimized target location. 
 

Single point solution with offset residuals
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Two slightly different types of offset residual are produced, as illustrated 
by δv and δp.  
 
δv applies to full polar measurements and is the spatial (vector) offset 
between the optimal target position and the position calculated from the 
station using the actual measurements. 
 
δp applies to theodolite pointings and is the perpendicular offset from the 
optimal target position to the actual theodolite pointing from the station. 
 
Each residual subtends a corresponding spatial angle at the instrument, as 
indicated by the light grey triangle. 
 

9.5.1 Pointing error (linear and angular) 
Offset residuals are evaluated to produce a pointing error for the single 
point solution. This error is displayed numerically and graphically in an 
MTM measurement window. 
 
The pointing error is a single measure of how multiple rays into a single 
target fail to meet exactly at the optimized target location. The value is 
relevant to multiple pointings but not to single polar measurements. The 
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laser tracker module, which currently only supports a single connected 
instrument, does not therefore show this value in its measurement windows 
(Axyz ver. 1.2). 
The pointing error is given as either a linear or angular value.  
 
From the optimized point location, the perpendicular offsets to angle 
pointings or the vector offsets to polar pointings are calculated. The largest 
of these offsets is the linear pointing error. 
 
For each perpendicular and vector offset there is a spatial angle subtended 
at the corresponding instrument. The largest of these angles is the angular 
pointing error. 
 

9.6 Summary of error analysis in single point solution 

9.6.1 Pointing error 
One of the following is shown: 
• Pointing error in angular units (maximum spatial angle residual) 
• Pointing error in linear units (maximum linear offset) 
 

9.6.2 Target residuals (off line) 
The off-line Single Point Solution shows the following 
• Individual angle residuals 
• Individual EDM residuals, if relevant 
 

9.6.3 RMS values 
If requested: 
• RMS axial values of full offset residuals. Each residual is expressed in 

its axial components in the base coordinate system. The RMS is 
calculated for each axial set, i.e. RMSx, RMSy, RMSz. 

• Total RMS value. This is the RMS value of the lengths of the full offset 
residuals 

 
RMS values of angle and EDM residuals are not calculated and therefore 
not available. 
 

9.6.4 Variance factor 
If requested 
• The calculated variance factor $σ0

2. 
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Note 
There are often not many pointings into a target and the minimum of 
two would not be unusual. The statistical information is therefore 
limited in such cases and a value of the variance factor which is very 
different from 1.0 may not have much meaning. 

 
9.6.5 Analytical quality estimates (error propagation) 

Input 
• Preliminary variance factor = 1.0  
• Standard deviations of angles 

Estimated by user. Defined and edited in station setup. 
• Variances for station parameters = 1/106 (effectively fixes the values) 
 
Output 
• 3x3 covariance matrix for target, stored in job file 
 
The covariance matrix is calculated using the preliminary variance factor 
σ0

2 = 1.0 
 
The square root of the diagonal elements of this matrix are the estimated 
standard deviations of the individual coordinates in the base system. These 
are displayed in the measurement window. 
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10. Shapes 
10.1 Introduction 

This section deals with the creation of standard shapes by form fitting to 
measured 3D points. Axyz stores coordinate systems as shapes but these 
are separately discussed under "Coordinates and coordinate systems" on 
page 55. In this section a "shape" applies to standard geometric forms such 
as circles, cylinders and planes. 
 
For further analyses involving points and shapes, such as the intersection 
of planes or calculation of perpendiculars to the surfaces of shapes, see 
also: 
• "Intersecting shapes" on page 179 
• "Bisectors" on page 188 
• "Perpendiculars" on page 194 
• "Parallels" on page 202 
• "Evaluating points" on page 203 
• "Creating points" on page 209 
 

10.2 Creating shapes 
Shapes are created in several ways by: 
• Form fitting 
• Intersection of existing shapes 
• Geometric constructions 
 
In form fitting a shape is fitted to a set of points using a least-squares 
technique. Points have 3 sources in this case: 
• Measured 
• Calculated 
• Shape origins 
 
Most points are measured. Calculated points may be derived from the 
intersection of shapes, for example the intersection of a line with a plane. 
A calculated point may also be a shape origin, such as the centre of a 
circle, which has been separately stored as a point. However, by directly 
naming a shape in a list of points to be fitted, the shape origin is indirectly 
implied. 
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Shapes created by form fitting may be directly intersected to create 
additional shapes. For example, intersection of two planes to create a line. 
 
Points, lines and planes may also be used to construct additional shapes. 
These constructional features are: 
• Perpendiculars from points to shapes and between shapes which create 

new lines 
• Parallels which create lines and planes parallel to existing lines and 

planes 
• Bisectors between points and shape components 
 

10.3 Form fitting 

10.3.1 Form fitting in brief  
The Axyz shape fitting package includes routines to generate the 
following 7 standard shapes from a suitable set of measured points. 
 
• Line (3D) 
• Plane 
• Sphere 
• Circle (3D) 
• Cylinder 
• Cone 
• Paraboloid 
 
The standard shapes are created using a least squares procedure to find the 
best fitting shape for each set of points.  
 

10.3.2 Form fitting mechanism 
The best fit equations work in terms of coordinate offsets between the 
point to which the surface is fitted and the corresponding modelled point 
on the shape's surface. The result minimizes the weighted sum of squares 
of these offsets. 
 
With this technique the software can either treat all fitted points equally 
(unit weighting) or can take into account variations in measurement quality 
between points and/or allow for variable quality in different directions at 
an individual point. 
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Generally speaking, triangulation and polar methods generate point data 
whose quality varies in different directions and therefore it may be useful 
to take account of this. Alternatively unit weighting is a common technique 
used by other software packages and is sometimes convenient to use 
regardless of any variation in point 
quality.

Perpendicular

Fitted point

Modelled point

1) Fitting in progress 2) Final fit, unit weighting 3) Final fit, weight by s.d.

 
 
The diagram shows the situation in a simple 2D case and the following 
comments are readily extended to the 3D case. For each fitted point there is 
a corresponding modelled point lying on the surface of the fitted shape. 
The least squares analysis evaluates the residuals of each fitted point rx and 
ry in the direction of the base system axes. 
 
If the fitted points are treated equally and given unit weights, then for N 
measured points, the software minimizes the quantity: 
 

(r1x
2 + r1y

2) + (r2x
2 + r2y

2) + ... (rNx
2 + rNy

2) 
 
This is equivalent to minimizing: 
 

d12 + d22 + ... dN2 
 
This quantity is clearly a minimum when the offsets are aligned to the local 
perpendicular, hence this procedure effectively minimizes the sum of 
squared perpendicular residuals. 
 
Alternatively the fitting procedure can take account of a variation in 
quality of the fitted points. This technique uses the covariance matrix, 
which also defines the standard deviation (s.d.) of coordinates at a point, to 
create suitable weights. (Any correlations between points are ignored.) 
 
The diagram illustrates this with a situation in which points are much less 
accurately defined in the X direction than in the Y direction. The ellipses 
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indicate this variable quality. In this case the results of the best fit will tend 
to produce much larger X residuals than Y residuals. This makes better use 
of the best values but no longer produces a result which minimizes the sum 
of squared perpendicular residuals. 
 

10.4 Shape parameters 

10.4.1 Shape parameters in brief 
All standard shapes are defined by the parameters of a local origin, a set of 
3 local reference axes and possibly one other parameter of form. If 3 local 
axes are more than the minimum necessary, the excess axes are generated 
by default. Most 3D shapes require at least one main axis which is 
designated the local z axis. 
 
Shape Origin Local z axis Form parameter 

Line Any point on line Along the line None 
Plane Any point on plane Normal to plane None 
Sphere Centre 

 
Z axis of base 
system 

Radius 

Circle Centre Normal to plane 
of circle 

Radius 

Cylinder Any point on axis Along the axis Radius 
Cone Apex Axis of symmetry Apex angle 
Paraboloid Vertex Axis of symmetry Focal distance 
 
The parameters of the axes can be specified in two ways 
• Unit vector: 

 Components of local z axis unit vector in the currently active 
coordinate system. 

• Rotation angles: 
 Omega, phi, kappa rotation angles of the rotation matrix for the local 

axes with respect to the currently active coordinate system. 
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10.4.2 Shape parameters in detail 
All shapes are defined with a local frame of reference (local origin and 
local axes) and, in most cases, one other parameter. For example, a 3D 
circle has a local origin at its centre, local axes defined by its orientation in 
space and a radius. 
The parameters of the local reference frame are not always unique. For 
example, the local origin of a line can be any point along the line and one 
is chosen for convenience, usually close to the first measured point. 
Local axes are also not necessarily unique. Each shape has a full set of 3 
axes but some of these can be set arbitrarily. For instance, a line requires 
only one axis, the direction of the line, to define its orientation in 3D space 
but two other orthogonal axes are generated perpendicular to this line and 
through the selected local origin. There are an infinite number of pairs of 
axes lying in the plane normal to the line’s direction which could be 
selected. In the case of a line the additional axes depend on the current 
orientation of the active coordinate system and for other shapes the first 
measured point is typically used to define another local reference axis. 
 
Of the 3 local reference axes, one is always considered the main axis and is 
designated as the local z axis. The local z axis in all cases is: 
• Line (3D)  - the direction of the line 
• Plane    - the normal to the plane 
• Sphere   - arbitrary, depends on Z axis of base system 
• Circle (3D)  - the normal to the plane of the circle 
• Cylinder   - the direction of the cylinder axis 
• Cone    - the axis of rotational symmetry 
• Paraboloid  - the axis of rotational symmetry 
 
When displaying shape parameters the user can choose between 
unit vector components (direction cosines) of the z axis in the current 
coordinate system or angle parameters defining the rotation matrix 
between the local coordinate system and the current coordinate system. In 
each case there are 3 values. Angle parameters are standard omega, phi and 
kappa rotations. 
 
Since every shape has a local frame of reference associated with it, these 
reference frames can be used as alternative coordinate systems. For 
example, all measured data on a large engine block could be transformed 
into the coordinate system defined by one particular cylinder bore. 
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10.4.3 Inside and outside 
It is convenient to identify the positive side (outside) and negative side 
(inside) of a shape's surface. For example, when point offsets are 
calculated a positive offset will imply a point on the outside and vice versa. 
It is also important for identifying the direction of a corrective offset due to 
reflector dimensions and attached targets. 
 
Plane, circle 
The positive side is the side of the positive local z axis. 
 
Sphere 
A point on the  positive side is further from the centre than the radius. 
From the positive side the surface looks convex. 
 
Cylinder 
The negative side is on the same side as the axis. 
From the negative side the surface looks concave. From the positive side it 
looks convex. 
 
Cone 
The negative side is on the same side as the axis. 
From the negative side the surface looks concave. From the positive side it 
looks convex. 
 
Paraboloid 
The negative side is on the same side as the focus. 
From the negative side the surface looks concave. From the positive side it 
looks convex. 
 

10.5 Setup points for form fitting 
Since the least squares analysis is non-linear in every case (even for a line 
in space!), the shape must be approximately defined before a best fit can be 
calculated. The shape parameters may either be manually estimated or 
setup points can be used. Setup points represent minimum information and 
in some cases a simplified definition of the shape to be fitted. Much 
simpler algorithms, involving direct mathematical solutions, can be applied 
to these setup points in order to generate the approximate parameter 
values. 
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Setup points can be specified in two ways. 
1. The first points on the selected list of points to be fitted will be used by 

default. 
2. The user can specify exactly which points in the list of points to be fitted 

are to be used. 
 
In either case, the setup points may have to conform to a certain geometry. 
For example, the cylinder fitting routine requires 3 setup points which 
should lie approximately on a circular section of the cylinder. The 
parameters of this circle are then easily calculated and used as approximate 
values for the parameters of the cylinder. 
 
The number of setup points may be less than the minimum number of 
points required for the actual shape fit. 
 
Shape Minimum 

points 
Setup 
points 

 

Geometry of setup points 

Line (3D) 2 2 Two points, ideally with a wide 
separation along the line. 

Plane 3 3 Three points forming a triangle (i.e. 
not collinear) and ideally widely 
separated. 

Sphere 4 4 4 points not all on a circle and ideally  
widely separated. 

Circle (3D) 3 3 Three points on an arc of the circle and 
ideally widely separated. 

Cylinder 5 3 Three points on an arc of a circular 
section of the cylinder and ideally 
widely separated. 

Cone 6 6 Three points on one arc of a circular 
section of the cone and ideally widely 
separated. 
Another three points on an arc of a 
different circular section of the cone 
and ideally widely separated. 

Paraboloid 6 5 Three points on an arc of a circular 
section of the paraboloid and ideally 
widely separated. 
A 4th. and 5th. point at different 
positions along the axis and not in the 
same plane as the circular section. 
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The diagrams for the individual shape fits (see later) indicate the setup 
points and their geometric arrangement. 

 
Note 
As explained in "Shape parameters" on page 153, the parameters 
defining a shape are not unique. Different setup points will normally 
produce closely similar shapes but some of the parameters describing 
them may be very different. Users can see this effect by switching the 
view of parameters between unit vector and rotation angles. Apart from 
a possible change of sign, unit vector components of the local z axis 
should remain the same when setup points are altered. By comparison, 
rotation angles may show a change only in the rotation about the z axis 
but equally well may show changes in all 3 rotational elements, 
particularly if the order of the setup points changes between clockwise 
and anticlockwise. 

 

10.6 Manually estimating and fixing shape parameters 
The Axyz shape fitting routines give you the option to manually estimate 
parameters and optionally fix them by assigning high weights to the 
estimates. A typical use for fixing parameters is to display residual offsets 
from a design shape rather than generating a best fitting shape. For 
example, the user can force a circle's radius to be its design value rather 
than computing the best fit value. Another use is in cases where an origin 
is not unique and you may want to force it to be at a particular location. 
 
The parameters are classified into groups: 
• Origin coordinates (3) 
• Rotation angles (3) 
• Size or form parameter (1) 
 
When estimating parameters it is not necessary to estimate all 7 items but 
if you estimate any parameter within a group the others within the group 
must also be estimated. 
 
Estimated positional and shape parameters relate to the coordinate system 
active at the time. It is important to remember this since the values change 
depending on which coordinate system is currently in use. 
 
The following diagram summarizes the effects in the case of a 2D line fit. 



Mathematics for Users Axyz ver. 1.4 

 

  MATHU.DOC 31/1/00 
 
158 

Initial origin at P1
Initial direction to P2

Black line is best fit

Black best fitting line 
with origin fixed at P1

Black best fitting line with 
direction fixed at initial value

P2

P1

P2

P1

P2

P1

 
Notes 
In every case the direction of the local x axis is arbitrary. This 
orientation is defined by the κ (kappa) rotational parameter which is a 
rotation about the local z axis. The κ value can be fixed at very different 
values and the routines will still work. 
 
If parameters are fixed at certain values these must be very close to the 
values which would be calculated if they were not fixed. Fixing a value 
should be simply a way of preventing the algorithm from letting the 
value drift slightly. If the fixed value is too far away bad results will be 
obtained, i.e. the residuals will be large. 

 

10.7 Steps in the fitting procedure 
Approximate shape parameters are obtained either from setup points or are 
entered by hand. 
 
Internally the measured data is in the base coordinate system where 
calculations are actually made. Approximate parameter data entered by 
hand is transformed from the currently active system into the base system 
before use. This transformation procedure also converts any weighted 
parameters to an equivalent weight in the base system. 
 
In every case the local z axis is the main shape axis. For example, when 
fitting a cylinder to 5 or more points the cylinder axis is the local z axis. 
This z axis is critical to the fitting procedure. 
 
It is a mathematical convenience if the local z axis of the shape to be fitted 
is almost parallel to the Z axis of the base system. Since this is not 
generally the case the data is "pre-rotated" so that the initial local z axis is 
parallel to the base Z axis. 
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The best fit analysis is then actually applied to this pre-rotated version of 
the data and when it is complete the pre-rotation is reversed. A 2D 
example in the case of a line fit outlines the method. 
 

Change 
initial 
origin

Corrective shift 
and rotation to 
make Z-axis 
best fitting line

Apply corrections 
and change of 
origin in reverse 
direction

Steps in a best fit procedure

Pre-rotate Reverse
Pre-rotation

 
 
In the top right the first two measured points have been chosen as the setup 
points. They create an approximate line with local origin at P1 and local z 
axis positive towards P2. The points are then pre-rotated to make the local 
z axis parallel to the Z axis of the base system. At this point the best fit 
procedure can be started. 
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The steps in the best fit are indicated by (A), (B) and (C). 
A) Shift the local origin onto the base origin. 
B) Apply small shifts and rotations by an iterative procedure until the Z 
axis is the best fitting line to the data. 
C) Reverse the total shift and rotation computed in stage (B) and the origin 
shift made in stage (A). Include a copy of the Z axis so that the best fitting 
line moves with the data. 
 
Finally the pre-rotation is reversed to bring the data and the best fitting line 
back into the base system. 
 

10.8 Which method of weighting? 
When fitting shapes to measured points, it can be assumed either that the 
x,y and z coordinates of the points have the same measurement quality 
(unit weighting) or that the quality depends on their calculated variances 
(weighting by variance). Since different parameters are minimized, results 
are not the same in both cases, i.e the fitted shape parameters will depend 
on the selected weighting method.  
 
Where measurements are better than the shape, and imperfections in the 
object are the main source of deviation, then unit weighting is probably 
best. 
 
Where a very accurate shape is measured and measurement errors are the 
main source of deviations, then weighting by variance is probably best. 
 
The following sections explore these comments in more detail. 
 

10.8.1 Diagram: Measurements better than shape 
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10.8.2 Measurements better than shape 
Ideally measurements are so good that they detect the imperfect edge or 
surface on an object to which a perfect shape should be fitted. In this case 
the principal deviations from the shape are due to the imperfections in the 
object, not the measurement, and it would make little difference if unit 
weights or weighting by variance were used. 
Here it is simpler to apply unit weighting to the measured coordinates and 
thereby minimize the perpendicular offsets of the measured positions from 
the fitted shape. 
 
It may be that the imperfect edge or surface shows systematic effects. For 
example, a fitted plane may show a bulge on one side. This may indicate 
some damage which the user is looking for or that another shape, such as a 
sphere, would make a better fit. Either way the user has a pointer to the 
problem. 
 

10.8.3 Diagram: Shape better than measurements 

P1

P2

P3

P4
 

10.8.4 Shape better than measurements 
Here it is the measurements which are the main cause of deviations from 
the fitted shape's surface. In this case it may make more sense to maximize 
use of the best measurements, i.e. take variable measurement quality into 
account and use weighting by variance. 
 
The diagram shows a simplified situation in which a laser tracker measures 
4 points on a circle. Interferometric distance measurements are much more 
accurate than the angular measurements so that the region of measurement 
uncertainty is on a line perpendicular to the true pointing. True pointings 
are shown by grey lines, uncertainty regions by short black bars and the 
measured locations by black circles. (The error bars get longer in 
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proportion to distance from the tracker, since it is the assumed constant 
angle tolerance which determines their length.) 
 
P1 and P2 are almost on line with the tracker and the centre of the circle. 
Their separation depends almost exclusively on the high quality distance 
measurement and effectively provides a very good determination of the 
circle's diameter.  
 
Weighting by variance should therefore produce an accurate diameter. 
Small residuals would then be expected at P1 and P2 since all points on the 
corresponding bars lie close to the circle. Significant residuals would be 
expected at P3 and P4. 
 
In the example, P3 and P4 lie outside the fitted circle. If unit weights are 
used in this situation then the fitted circle could expand. This would reduce 
residuals at P3 and P4 and increase them at P1 and P2. This may be an 
acceptable result if residuals are then generally smaller and the diameter is 
not of prime importance. 
 
If weighting by variance gives a very similar result to unit weighting, then 
measurement quality does not significantly vary. This is an ideal situation 
which means that measurement quality has been optimized throughout the 
measurement space. It may therefore be worthwhile, if conditions permit, 
to create a measurement network which largely achieves this condition. 
 

10.9 Summary of error analysis for shapes 

10.9.1 Offset residuals 
Offsets are displayed as individual coordinate residuals in the shape's 
coordinate system, as well as the length of the equivalent 3D offset vector.  
 
The offsets represent the difference between a fitted point and its 
corresponding modelled point on the surface of the shape. If unit 
weighting has been selected, the fitted point is perpendicularly from the 
modelled point on the surface. 
 
Points fitted to 3D circles have their residuals expressed as coordinate 
offsets but instead of an additional total offset, two other components are 
used instead: 
• Radial, in the plane of the circle 
• Perpendicular to the plane of the circle 
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Note 
You expect residuals to have small values. If the displayed coordinate 
type is cylindrical or spherical a very small residual offset may well 
show large values for the angular components of the offset. These 
components simply indicate the direction of the offset and say nothing 
about the physical size. Directions can have any value between 0° and 
360°. 

 
10.9.2 RMS values 

Shown only if unit weighting has been selected. The RMS value of the 
vector length of the residuals is calculated. 
 

10.9.3 Variance factor 
Shown only if weighting is by covariance matrices. 
If the redundancy is zero in this case, the displayed variance factor is zero . 
 

10.9.4 Analytical quality estimates of shape parameters 

Input 
Depending on chosen option: 
Either 3x3 covariance matrices for points, calculated from bundle 
adjustment 
Or unit weights 
 
Output 
If weighting by variance: 
Error estimates of shape parameters are calculated by standard error 
propagation using a value of 1.0 for the variance factor (i.e. the preliminary 
value). 
 
If unit weighting used: 
Error estimates of shape parameters are calculated by standard error 
propagation using the calculated value of the variance factor. If there is 
zero redundancy, then a calculation is made using an assumed preliminary 
variance factor of 1. (The same procedure as used for error propagation 
when weighting by variance.) However, this means 1m2, which further 
means that you are propagating point errors with an assumed standard 
deviation of 1m. See "Error propagation with unit weighting" on page 52.  
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Note 
When fitting a shape there are two sources of error: 
• Errors due to measurements 
• Errors due to an imperfectly shaped object 
Error propagation can only assume errors in the measurements although 
the final residuals are due to both sources of error and both will 
influence the final shape parameters.  

 

10.10 Line (3D) 

10.10.1 Geometrical conditions 
Minimum 2 points. 
 
The 2 setup points should be well separated in order to ensure a reasonable 
estimation of line direction. 
 

10.10.2 Initial coordinate system and parameters 

 
 
Setup points P1,P2 
 
First setup point, P1, defines the local origin. 
 
Direction from P1 to second setup point P2 defines positive direction of 
local z axis. 
 
Local x,y axes are arbitrary and depend on the X,Y axes of base system 
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10.10.3 Manual definition of parameters 
The user can manually estimate: 
1. The position of the origin in coordinates of the currently active system 
2. The direction of the line by defining ω, ϕ rotations from the currently 

active system 
 
If you want to fix rotations to force the line into a particular direction, this 
will currently only function for definitions made in the base system. 
 
By fixing certain values of ω and ϕ with high weights (low standard 
deviations) the line can be forced to conform to standard geometrical 
configurations. 

 
 1 ω not fixed  

ϕ = 0 
 Line forced perpendicular to x axis of 

base system 
(Line is parallel to yz plane of base 
system) 

 2 ω = 0 
ϕ not fixed 

 Line forced perpendicular to y axis of 
base system 
(Line is parallel to xz plane of base 
system) 

 3 EITHER 
ω not fixed 
ϕ = π/2  

OR 
ω = π/2 
ϕ not 
fixed 

Line forced perpendicular to z axis of 
base system 
(Line is parallel to xy plane of base 
system) 

 4 ω = 0 
ϕ = π/2 

 Line forced parallel to x axis of base 
system 

 5 ω= π/2 
ϕ = 0 

 Line forced parallel to y axis of base 
system 

 6 ω = 0 
ϕ = 0 

 Line forced parallel to z axis of base 
system 
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10.11 Plane 

10.11.1 Geometrical conditions 
Minimum 3 points. 
The 3 setup points must define a triangle and not lie close to a straight line. 
 

10.11.2 Initial coordinate system and parameters 

 
 
Setup points P1, P2, P3 
 
First setup point, P1, defines the origin. 
 
Direction from P1 to second setup point P2 defines positive direction of 
local x axis. 
 
The local xy plane contains P1, P2, P3 
 
Local y axis is perpendicular to x and positive from P1 towards P3 
 
Local z axis is computed to create a right-handed set 
 

10.11.3 Manual definition of parameters 
The user can manually estimate: 
1. The position of the origin in coordinates of the currently active system 
2. ω, ϕ, κ rotations from the currently active system 
 
If you want to fix rotations to force the plane into a particular direction, 
this will currently only function for definitions made in the base system. 
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By fixing certain values of ω and ϕ with high weights (low standard 
deviations) the plane can be forced to conform to standard geometrical 
configurations. 

 
 1 ω not fixed  

ϕ = 0 
κ not fixed 

 Plane forced parallel to x axis of base 
system 
 

 2 ω = 0 
ϕ not fixed 
κ not fixed 

 Plane forced parallel to y axis of base 
system 

 3 EITHER 
ω not fixed 
ϕ = π/2  
κ not fixed 

OR 
ω = π/2 
ϕ not 
fixed 
κ not fixed

Plane forced parallel to z axis of base 
system 

 4 ω = 0 
ϕ = π/2  
κ not fixed 

 Plane forced perpendicular to x axis of 
base system 

 5 ω = π/2 
ϕ = 0 
κ not fixed 

 Plane forced perpendicular to y axis of 
base system 

 6 ω = 0 
ϕ = 0 
κ not fixed 

 Plane forced perpendicular to z axis of 
base system 
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10.12 Circle (3D) 

10.12.1 Geometrical conditions 
Minimum 3 points. 
Method not suitable for short arcs (subtended angles less than, say, 10°). 
 

10.12.2 Initial coordinate system and parameters 

 
Setup points P1, P2, P3 
 
The 3 setup points should be well separated in order to ensure a reasonable 
estimation of the circle parameters. The algorithm uses the first 3 points in 
the list of points to be fitted. 
 
A radius and centre point are first derived from the setup points. 
 
The direction from the centre to the first setup point P1 defines the positive 
direction of the local x axis. 
 
The local xy plane contains the 3 setup points. 
 
The local y axis is perpendicular to x and positive from the centre towards 
P2. 
 
The local z axis creates a right-handed set with the local x and y axes. 
 

10.12.3 Solution for best fit 
For a circle fit in 3D the data points are simultaneously fitted to two 
surfaces: 
1. A best fitting plane 
2. A best fitting circle in the plane 
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The least squares solution actually minimizes: 
   (sum of squared perpendicular offsets from plane) 
+ (sum of squared perpendicular offsets from circle) 

 
10.12.4 Manual definition of parameters 

The user can manually estimate: 
1. Radius of circle 
2. The position of the origin in coordinates of the currently active system 
3. ω, ϕ, κ rotations from the currently active system 
 
If you want to fix rotations to force the plane of the circle into a particular 
direction, this will currently only function for definitions made in the base 
system. 
 
By fixing certain values of ω and ϕ with high weights (low standard 
deviations) the plane of the circle can be forced to conform to standard 
geometrical configurations. 
 
 1 ω not fixed  

ϕ = 0 
κ not fixed 

 Circle forced parallel to x axis of base 
system 

 2 ω = 0 
ϕ not fixed 
κ not fixed 

 Circle forced parallel to y axis of base 
system 

 3 EITHER 
ω not fixed 
ϕ = π/2  
κ not fixed 

OR 
ω = π/2 
ϕ not 
fixed 
κ not fixed

Circle forced parallel to z axis of base 
system 

 4 ω = 0 
ϕ = π/2  
κ not fixed 

 Circle forced perpendicular to x axis of 
base system 

 5 ω = π/2 
ϕ = 0 
κ not fixed 

 Circle forced perpendicular to y axis of 
base system 

 6 ω = 0 
ϕ = 0 
κ not fixed 

 Circle forced perpendicular to z axis of 
base system 
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10.13 Sphere 

10.13.1 Geometrical conditions 
Minimum 4 points, not all on a circle. 
Method not suitable for small surface patches. Tests show that if the points 
subtend an arc less than 15° the solution will diverge or produce incorrect 
results. 
 

10.13.2 Initial coordinate system and parameters 

 
 
Setup points P1, P2, P3, P4 
 
The setup points are used to calculate the centre and radius by a direct 
linear method. 
 
Local axes are arbitrary and are set parallel to base axes X,Y,Z 
 

10.13.3 Manual definition of parameters 
The user can manually estimate and optionally fix 
1. Radius of sphere 
2. The position of the centre in coordinates of the currently active system 
 
Axyz currently does not offer the option to specify the directions of the 
local axes. 
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10.14 Cylinder 

10.14.1 Geometrical conditions 
Minimum 5 points. 
 

10.14.2 Initial coordinate system and parameters 

 
Setup points P1, P2, P3 
 
The 3 setup points should be well separated and lie on a circular section of 
the cylinder. 
 
A radius and centre point are first derived from the setup points. The circle 
centre is the local origin. 
 
The cylinder axis passes through the centre and is perpendicular to the 
plane through the setup points. 
 
The position of P1 along the cylinder axis defines the spatial position of 
the origin. 
 
The radius of the circle defines the cylinder radius. 
 
The direction from the origin to P1, perpendicular to the cylinder axis, 
defines the positive direction of the local x axis. 
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The local y axis is in the plane of the circle and positive towards P2. 
 
The positive local z axis is along the cylinder axis and forms a right-
handed set with the local x and y axes. 
 

10.14.3 Manual definition of parameters 
The user can manually estimate: 
1. Radius of cylinder 
2. The position of the origin in coordinates of the currently active system 
3. ω, ϕ, κ rotations from the currently active system 
 
If you want to fix rotations to force the axis into a particular direction, this 
will currently only function for definitions made in the base system. 
 
By fixing certain values of ω and ϕ with high weights (low standard 
deviations) the axis of the cylinder can be forced to conform to standard 
geometrical configurations. 

 
 1 ω not fixed  

ϕ = 0 
κ not fixed 

 Axis forced perpendicular to x axis of 
base system 
(Axis is parallel to yz plane of base 
system) 

 2 ω = 0 
ϕ not fixed 
κ not fixed 

 Axis forced perpendicular to y axis of 
base system 
(Axis is parallel to xz plane of base 
system) 

 3 EITHER 
ω not fixed 
ϕ = π/2  
κ not fixed 

OR 
ω = π/2 
ϕ not 
fixed 
κ not fixed 

Axis forced perpendicular to z axis of 
base system 
(Axis is parallel to xy plane of base 
system) 

 4 ω = 0 
ϕ = π/2  
κ not fixed 

 Axis forced parallel to x axis of base 
system 

 5 ω = π/2 
ϕ = 0 
κ not fixed 

 Axis forced parallel to y axis of base 
system 

 6 ω = 0 
ϕ = 0 
κ not fixed 

 Axis forced parallel to z axis of base 
system 
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10.15 Cone 

10.15.1 Geometrical conditions 
Minimum 6 points. 
Method is not suitable for apex angles close to 0° or 180°. 
Points should be well distributed around the axis. 
 

10.15.2 Initial coordinate system and parameters 

 
Setup points P1, P2, P3, P4, P5, P6 
 
The first 3 setup points P1, P2, P3 should be well separated and lie close to 
a circular section of the cone. 
 
The second 3 setup points P4, P5, P6 should be well separated and lie 
close to a different circular section of the cone. 
 
Centre points and radii are first derived for the two circles. 
 
The direction of the local z axis defines the axis of the cone and is positive 
from the small circle to the large circle. 
 
Note 1. 
When calculating the vector of the z axis, one of two methods is chosen. 
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• If the separation of the circles is less than the small radius r, the vector 
perpendicular to the plane of the large cone is used. 

• If the separation of the circles is greater than the large radius R, the 
vector joining the two centres is used. 

 
The apex of the cone defines the local origin. 
 
The direction from the first circle centre to P1, perpendicular to the cone 
axis, defines the positive direction of the local x axis. 
 
The local y axis forms a right-handed set with the local x and z axes. 
 
The difference in circle radii and the separation of circle centres enables 
tan (A/2) to be calculated, from which the apex angle A can be derived. 
 
Note 2. 
The fitting procedure uses a temporary origin at the first circle centre but 
the apex of the cone, when determined, defines the origin of the cone. The 
location of the apex is easily found from the half angle A/2 and the centre 
and radius of either circle. 
 

10.15.3 Manual definition of parameters 
The user can manually estimate: 
1. Slope angle (apex half angle) of cone 
2. The position of the origin in coordinates of the currently active system 
3. ω, ϕ, κ rotations from the currently active system 
 
If you want to fix rotations to force the axis into a particular direction, this 
will currently only function for definitions made in the base system. 
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By fixing certain values of ω and ϕ with high weights (low standard 
deviations) the axis of the cone can be forced to conform to standard 
geometrical configurations. 
 
 1 ω not fixed  

ϕ = 0 
κ not fixed 

 Axis forced perpendicular to x axis of 
base system 
(Axis is parallel to yz plane of base 
system) 

 2 ω = 0 
ϕ not fixed 
κ not fixed 

 Axis forced perpendicular to y axis of 
base system 
(Axis is parallel to xz plane of base 
system) 

 3 EITHER 
ω not fixed 
ϕ = π/2  
κ not fixed 

OR 
ω = π/2 
ϕ not 
fixed 
κ not fixed

Axis forced perpendicular to z axis of 
base system 
(Axis is parallel to xy plane of base 
system) 

 4 ω = 0 
ϕ = π/2  
κ not fixed 

 Axis forced parallel to x axis of base 
system 

 5 ω = π/2 
ϕ = 0 
κ not fixed 

 Axis forced parallel to y axis of base 
system 

 6 ω = 0 
ϕ = 0 
κ not fixed 

 Axis forced parallel to z axis of base 
system 
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10.16 Paraboloid 

10.16.1 Geometrical conditions 
Minimum 6 points. 
 

10.16.2 Initial coordinate system and parameters 

 
Setup points P1, P2, P3, P4, P5 
 
The first 3 setup points P1, P2, P3 should be well separated and lie close to 
a circular section of the paraboloid. A circle with corresponding centre is 
calculated for these points. 
 
The axis of the paraboloid passes through the circle centre and is 
perpendicular to the plane of the circle. 
 
A fourth point close to the vertex would be sufficient to create the 
approximate paraboloid. However on a physical object such as a parabolic 
radar dish, the vertex may not be readily accessible or even physically 
defined. Two additional points off the vertex are therefore used. 
 
Points  P4 and P5 should be at different axial heights and not in the same 
plane as P1, P2, P3. They are used to calculate the focus, focal point and 
vertex. 
 
The vertex is the local origin. 
 
The local z axis lies along the axis of the paraboloid. Its positive direction 
is from the origin towards the circle centre.  
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The direction from the origin, perpendicular to the axis of the paraboloid 
and towards P1, defines the positive direction of the local x axis. 
 
The local y axis forms a right-handed set with the local x and z axes. 
 

10.16.3 Manual definition of parameters 
The user can manually estimate: 
1. Focal length, F, of paraboloid 
2. The position of the origin in coordinates of the currently active system 
3. ω, ϕ, κ rotations from the currently active system 
 
If you want to fix rotations to force the axis into a particular direction, this 
will currently only function for definitions made in the base system. 
 
By fixing certain values of ω and ϕ with high weights (low standard 
deviations) the axis of the paraboloid can be forced to conform to standard 
geometrical configurations. 

 
 1 ω not fixed  

ϕ = 0 
κ not fixed 

 Axis forced perpendicular to x axis of 
base system 
(Axis is parallel to yz plane of base 
system) 

 2 ω = 0 
ϕ not fixed 
κ not fixed 

 Axis forced perpendicular to y axis of 
base system 
(Axis is parallel to xz plane of base 
system) 

 3 EITHER 
ω not fixed 
ϕ = π/2  
κ not fixed 

OR 
ω = π/2 
ϕ not 
fixed 
κ not fixed

Axis forced perpendicular to z axis of 
base system 
(Axis is parallel to xy plane of base 
system) 

 4 ω = 0 
ϕ = π/2  
κ not fixed 

 Axis forced parallel to x axis of base 
system 

 5 ω = π/2 
ϕ = 0 
κ not fixed 

 Axis forced parallel to y axis of base 
system 

 6 ω = 0 
ϕ = 0 
κ not fixed 

 Axis forced parallel to z axis of base 
system 
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10.17 Vector 
The main z axis associated with each of the standard shapes may be 
separately stored as a vector, which is stored internally as a further type of 
shape. 
 
A vector may only be created by first creating one of the standard shapes 
by a form fitting routine. Shapes created by other means do not allow the 
user to create a vector. 
 
Unlike the standard shapes a vector only records a single direction using 
unit vector components (direction cosines). An origin and local reference 
axes are not stored with the vector data so a vector cannot define a 
coordinate system. 
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11. Intersecting shapes 
11.1 Introduction to intersections 

 

CDM 
Analyse/ 
Intersection 

Intersecting elements can be calculated for the following combinations: 
• Shape axis - shape axis (line - line) 
• (z axes of any shape or coordinate system) 
• Shape axis - surface (line - surface) 
• (z axis of any shape with line, plane, circle, sphere, cylinder, cone, 

paraboloid. Results are points) 
• Surface - surface 
• (Plane intersected with plane, circle, sphere, cylinder) 
 
Tolerances on the intersection of lines and parallelism of lines and planes 
can be defined in the CDM "Warnings" menu. These are used to produce 
warning messages and may prevent calculation of a result if exceeded by 
defined amounts. 
 

11.2 Intersect: axis - axis (line - line) 
 

 
 
The diagram shows lines 1 and 2 with origins at O1 and O2. The feet of the 
perpendicular between the lines are at P1 and P2 and the intersection point 
M is midway between them. 
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11.2.1 Results 
Normal 
Intersection point M 
Intersection offset 
 
Parallel lines (within angle tolerance) 
Perpendicular connection starts by default at origin O1. 
 
Lack of intersection 
Ideally lines or axes intersect at a single point. In practice, they never 
intersect exactly and there will always be a small gap between their closest 
points. The intersection point is chosen midway between these two points 
and the intersection offset is half their separation. 
 
The intersection offset (half the line separation) is compared with the 
tolerance value to produce the following results: 
• Offset less than tolerance value: 

Result calculated, no message 
• Offset 1x - 2x tolerance: 

Result calculated, warning message "Intersection tolerance exceeded" 
• Offset > 2x tolerance: 

Result not calculated, warning message "Tolerance exceeded" 
 
If the lines are far apart and you still require a result, consider using the 
"Bisector" function. See "Bisector: Shape axis - shape axis" on page 190. 
 

11.3 Intersect: axis - surface (line - surface) 

11.3.1 Intersect: axis - PLANE (LINE - PLANE) 

 



Axyz ver. 1.4 Mathematics for Users 

 

MATHU.DOC 31/1/00  
 

181 

Results 
Normal 
Intersection point 
 
Line parallel to plane (within angle tolerance) 
Warning message, no result. 

 
Note 
If the line is not parallel to the plane but forms a small angle with it, the 
intersection point may be very distant and have large coordinate values. 

 
11.3.2 Intersect: axis - CIRCLE (LINE - CIRCLE) 

As for any shape axis - PLANE 
The plane of the 3D circle is used 
 

11.3.3 Intersect: axis - SPHERE (LINE - SPHERE) 

 
Results 
Normal 
Two intersection points 
Offset distance D 
 
Axis tangential to sphere 
One contact point, offset distance D = R 
 
Axis outside sphere 
No result 
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11.3.4 Intersect: axis - CYLINDER (LINE - CYLINDER) 

 
 
Results 
Normal 
Two intersection points 
 
Axis tangential to cylinder 
One contact point 
 
Axis outside cylinder 
No result 
 
Axis on surface of cylinder (parallel to cylinder axis) 
No result 
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11.3.5 Intersect: axis - CONE (LINE - CONE) 

Intersection on both
sides of cone pair

Intersection on one
side of cone pair  

 
Results 
Normal 
Two intersection points 
 
Axis tangential to surface of cone 
One contact point 
 
Axis on surface of cone (generating line of cone) 
No result. 
 
Axis through apex of cone 
One contact point identical with apex 
 
Axis outside cone 
No result 

 
Note 
The equation of a cone applies to either side of the apex and the 
intersection points may not therefore lie on one side only. 
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11.3.6 Intersect: axis - PARABOLOID (LINE - PARABOLOID) 

 
 
Results 
Normal 
Two intersection points 
 
Axis tangential to surface of paraboloid 
One contact point 
 
Axis through vertex of paraboloid 
One contact point identical with vertex 
 
Axis outside paraboloid 
No result 
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11.4 Intersect: surface - surface 

11.4.1 Intersect: PLANE - PLANE 
Plane 2

Plane 1

      

Intersection angle

z is positive 
out of the page

z is positive 
into the page

 
Results 
Normal 
Line of intersection 
Intersection angle between normal vectors (acute or obtuse, depending on 
directions) 
 
Planes parallel within angle tolerance 
Warning message, no result. 
 
Parameters of intersection line 
The origin of the intersection line is at P, midway between the feet of the 
perpendiculars P1 and P2 from the plane origins to the intersection line. 
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The local z axis is along the line of intersection. To determine its positive 
direction, look along the line of intersection. Imagine the normal vector of 
the first selected plane rotated through the intersection angle towards the 
normal vector of the second selected plane. If the rotation is clockwise the 
positive direction is away from you and if anticlockwise it is towards you. 
 
Local x,y axes are derived from X,Y axes in base system. X,Y,Z axes of 
base system are rotated about X and Y to point the Z axis along the 
bisecting line. Rotated X,Y axes of base system then represent the local x,y 
axes of the line. 
 

11.4.2 Intersect: PLANE - CIRCLE 

 
Results 
Normal 
Two points of intersection 
 
Plane tangential to circle 
Tangent point 
 
Plane outside circle 
No result 
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11.4.3 Intersect: PLANE - SPHERE 

 
 
Results 
Normal 
Circle of intersection 
Radius of circle 
 
Plane tangential to sphere 
Tangent point 
 
Plane outside sphere 
No result 
 
Orientation parameters of circle 
The local origin is at the centre. 
The local x,y,z axes are parallel to the local x,y,z axes of the intersecting 
plane. 
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12. Bisectors 
 

CDM 
Analyse/ 
Bisectors 

Bisecting elements are centre points, centre lines or centre planes and can 
be calculated for the following combinations: 
• Point - point 
• Point - shape axis (line) 

(z axis of any standard shape or coordinate system, result is a point) 
• Point - plane 

(result is a point) 
• Shape axis - shape axis (line - line) 

(z axes of any standard shape or coordinate system, result is a line) 
• Shape axis - plane (line - plane) 

(z axis of any standard shape or coordinate system, result is a line) 
• Plane - plane 

(result is a plane) 
 
Some of these calculations generate points. See also section 16 Creating 
points. 
 
Tolerances on the intersection of lines and parallelism of lines and planes 
can be defined in the CDM "Warnings" menu. These are used to produce 
warning messages and may prevent calculation of a result if exceeded by 
defined amounts. 
 

12.1 Bisector: Point - point 
This generates the following: 
• A point mid way between the two given points. 
• The distance from the mid point to either end point. 
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12.2 Bisector: Point - shape axis (line)  
 

 
 
The bisector between an offset point P1 and a line with origin at O2. The 
line can be the shape axis or z axis of any standard shape or coordinate 
system. 
 
Results 
A point M which is midway between the offset point P1 and the foot of the 
perpendicular P2 from this point to the line. 
 
The distance d between M and the offset point (or foot of perpendicular). 
 

12.3 Bisector: Point – plane 
 

 
Result 
A point which is midway between the offset point P and the foot of the 
perpendicular from this point to the plane. 
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The distance d between the mid point and the offset point (or foot of 
perpendicular). 

12.4 Bisector: Shape axis - shape axis  
 

       
 
This function creates the bisecting line between two lines or axes which 
may be the z axes of any standard shape or coordinate system. 
 
Result 
Each line or axis is defined by an origin point and a unit direction vector. 
The bisecting line has a unit direction vector whose direction is the 
average of the unit direction vectors of the two lines. 
 
In a simple case both defining lines intersect at a single point M which is 
conveniently taken as the origin point for the bisecting line. The bisecting 
line makes equal angles with the defining lines and lies in the plane 
defined by the lines. 
 
In practice the defining lines do not intersect. The origin point of the 
bisecting line is then the midpoint of the connecting perpendicular between 
them. 
 
Parameters of line 
Origin at M 
Local z axis defined by positive direction of bisecting line (unit vector Um) 
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Local x,y axes are derived from X,Y axes in base system. X,Y,Z axes of 
base system are rotated about X and Y to point the Z axis along the 
bisecting line. Rotated X,Y axes of base system then represent the local x,y 
axes of the line. 

12.5 Bisector: Shape axis - plane  
 

 
 
 
This function creates the bisecting line between a plane and a line or z axis 
of any standard shape or coordinate system. 
 
Result 
Normal 
The chosen axis will intersect the plane at an oblique angle. The 
intersecting axis will have a projected component in the surface of the 
plane. The new line has its origin at the point of intersection P of line and 
plane surface and its direction is the bisecting vector between the specified 
line and its projected component in the specified plane. 
 
Axis parallel or near parallel to plane (within tolerance) 
In this case the origin of the new bisecting line is the mid point P of the 
perpendicular of the origin OL of the selected line from the surface of the 
selected plane. The direction of the new line is calculated as in the normal 
case. 
 
Axis perpendicular to plane 
No result. 
 
Parameters of bisecting line 
Origin at P 
Local z axis along positive direction of the bisecting line 
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Local x,y axes are derived from the local x,y axes of the plane. Local x,y,z 
axes of plane are rotated about x and y to point the local z axis along the 
bisecting line. Rotated x,y axes of plane then represent the local x,y axes of 
the line. 
 

12.6 Bisector: Plane - plane  
 

Plane 1

Plane 2

Bisecting 
plane 3

 
 
Result 
Normal 
The planes intersect in a line. The new plane passes through this line. The 
new origin is the mid point of the feet of the perpendiculars P1, P2 from the 
origins Z1, Z2 of the selected planes to the line of intersection. The axis of 
the new plane is directed along the bisecting vector between the axes of the 
two specified planes. 
 
Parallel planes 
No result. 
 
Parameters of bisecting plane 
Origin at P3, mid-way between P1 and P2. 
Local z axis is Z3 which is never more than 45° away from Z1. 
 
Local x,y axes are derived from X,Y axes in base system. X,Y,Z axes of 
base system are rotated about X and Y to point the Z axis along the 
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bisecting line. Rotated X,Y axes of base system then represent the local x,y 
axes of the line. 
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13. Perpendiculars 
 

CDM 
Analyse/ 
Perpendicular 

The calculations between the following combinations result in a line and 
the length of the perpendicular between the elements. 
 
• Point - shape axis (line) 
(Point to z axis of any standard shape or coordinate system) 
• Shape axis - Shape axis (Line - line) 
(z axes of any standard shape or coordinate system) 
• Point - shape surface 

(From point to line, plane, sphere, cylinder, cone, paraboloid, but not 
circle) 

 
Tolerances on the intersection of lines and parallelism of lines and planes 
can be defined in the CDM "Warnings" menu. These are used to produce 
warning messages and may prevent calculation of a result if exceeded by 
defined amounts. 
 

13.1 Perpendicular: Point - shape axis (line) 
 

 
 
This function creates a perpendicular line from a point to a line which may 
be the z axis of any standard shape or coordinate system. 
 
Results 
Normal 
Offset distance d, LINE of perpendicular 
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Point lies on axis 
No result. 
Parameters of perpendicular line 
The origin is the offset point P1  
The local z axis points from  P1 towards the shape axis (U1). 
 
Local x,y axes are derived from X,Y axes in base system. X,Y,Z axes of 
base system are rotated about X and Y to point the Z axis along the 
perpendicular line. Rotated X,Y axes of base system then represent the 
local x,y axes of the line. 
 

13.2 Perpendicular: Point - shape surface 
 

13.2.1 Perpendicular: Point – plane 
 

 
Results 
Normal 
Line calculated from offset point towards surface of plane. 
The offset point is the origin of the line. 
 
Offset point lies on plane 
No perpendicular is calculated in this case. 
 
Parameters of perpendicular line 
Origin is at the offset point. 
Local z axis is positive from the offset point towards the plane. 
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Local x,y axes are derived from X,Y axes in base system. X,Y,Z axes of 
base system are rotated about X and Y to point the Z axis along the 
perpendicular line. Rotated X,Y axes of base system then represent the 
local x,y axes of the line. 

13.2.2 Perpendicular: Point - sphere 

 
The perpendicular connects the centre of the sphere to the offset point. 
 
Results 
Normal 
If the point lies outside the sphere, the line is positive towards the centre. 
If the point lies inside the sphere, the line is positive away from the centre. 
 
Offset point is at centre of sphere 
No perpendicular is calculated in this case. (Infinite number of 
possibilities.) 
 
Offset point lies on surface of sphere 
The perpendicular is also calculated in this case. 
The line is positive away from the centre. 
 
Parameters of perpendicular line 
The origin is the offset point. 
The local z axis is positive as indicated above. 
 
Local x,y axes are derived from X,Y axes in base system. X,Y,Z axes of 
base system are rotated about X and Y to point the Z axis along the 
perpendicular line. Rotated X,Y axes of base system then represent the 
local x,y axes of the line. 
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13.2.3 Perpendicular: Point - cylinder 

 
 
The calculated perpendicular is a line through the offset point and 
perpendicular to the cylinder axis. 
 
Results 
Normal 
If the point lies outside the cylinder, the line is positive towards the axis. 
If the point lies inside the cylinder, the line is positive away from the axis. 
 
Offset point is on axis of cylinder 
No perpendicular is calculated in this case. (Infinite number of 
possibilities.) 
 
Offset point lies on surface of cylinder 
No perpendicular is calculated in this case. 
 
Parameters of perpendicular line 
The origin is the offset point. 
The local z axis is positive as indicated above. 
 
Local x,y axes are derived from X,Y axes in base system. X,Y,Z axes of 
base system are rotated about X and Y to point the Z axis along the 
perpendicular line. Rotated X,Y axes of base system then represent the 
local x,y axes of the line. 
 



Mathematics for Users Axyz ver. 1.4 

 

  MATHU.DOC 31/1/00 
 
198 

13.2.4 Perpendicular: Point - cone 

 
Results 
Normal 
The line is positive from the offset point towards the surface of the cone. 
If the offset point is inside the cone, the nearest part of the surface is 
chosen. 
 
Offset point is on axis of cone 
No perpendicular is calculated in this case. (Infinite number of 
possibilities.) 
 
Offset point lies on surface of cone 
No perpendicular is calculated in this case. 
 
Parameters of perpendicular line 
The origin is the offset point. 
The local z axis is positive as indicated above. 
 
Local x,y axes are derived from X,Y axes in base system. X,Y,Z axes of 
base system are rotated about X and Y to point the Z axis along the 
perpendicular line. Rotated X,Y axes of base system then represent the 
local x,y axes of the line. 
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13.2.5 Perpendicular: Point - paraboloid 

 
 
Results 
Normal 
The line is positive from the offset point towards the surface of the 
paraboloid. 
If the offset point is inside the paraboloid, the nearest part of the surface is 
chosen. 
 
Offset point is on axis of paraboloid 
There are an infinite number of possibilities in this case. One is chosen 
such that the perpendicular line lies in the local zy plane of the paraboloid. 
 
Offset point lies on surface of paraboloid 
No perpendicular is calculated in this case. 
 
Parameters of perpendicular line 
The origin is the offset point. 
The local z axis is positive as indicated above. 
 
Local x,y axes are derived from X,Y axes in base system. X,Y,Z axes of 
base system are rotated about X and Y to point the Z axis along the 
perpendicular line. Rotated X,Y axes of base system then represent the 
local x,y axes of the line. 
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13.3 Perpendicular: Shape axis - shape axis (line - line) 
 

      

Perpendicular 
between parallel lines

 
 
This function creates a perpendicular line between two lines which may be 
the z axis of any standard shape or coordinate system. 
 
Results 
Normal 
Offset distance, LINE of perpendicular 
 
Normal parameters of perpendicular line 
The diagram shows lines 1 and 2 with origins at O1 and O2. The feet of the 
perpendicular between the lines are at P1 and P2 and the intersection point 
M is midway between them. 
 
The origin of the perpendicular line is at P1  
Local z axis is positive from  P1 to P2. 
 
Local x,y axes are derived from X,Y axes in base system. X,Y,Z axes of 
base system are rotated about X and Y to point the Z axis along the 
perpendicular line. Rotated X,Y axes of base system then represent the 
local x,y axes of the line. 
 
Axes intersect at a point 
No result. 
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Parallel lines 
If lines 1 and 2 are parallel there are an infinite number of perpendicular 
lines between them. By default a perpendicular line is then chosen with 
origin at O1 and direction vector towards line 2. 
 
Parameters of perpendicular line between two parallel lines 
Origin is at O1, the origin of the first line. 
Local z axis is positive from line 1 towards line 2. 
 
Local x,y axes are derived from X,Y axes in base system. X,Y,Z axes of 
base system are rotated about X and Y to point the Z axis along the 
perpendicular line. Rotated X,Y axes of base system then represent the 
local x,y axes of the line. 
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14. Parallels 
 

CDM 
Analyse/ 
Parallel 

These calculations create one of the following: 
• A line through a specified point which is parallel to the z axis of any 

shape or coordinate system 
• A plane through a specified point which is parallel to another plane or 

circle 
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15. Evaluating points 
15.1 Introduction 

This section deals with dimensions involving groups of points and vectors.  
 

15.2 Two point analysis 
 

CDM 
Analyse/Two 
point 

The two point analysis provides full information on the vector between 
two specified points. This involves: 
• The distance between the points 
• The components of the unit vector between the points 
 

15.3 Distances between elements 
 

CDM 
Analyse/ 
Distance 

Computed distances are calculated along perpendicular connections 
between the following elements. 
• Point - Point 
• Point - shape axis 

(z axis of any standard shape or coordinate system) 
• Point - shape surface 

(plane, sphere, cylinder, cone, paraboloid, not circle) 
• Shape axis - shape axis 

(z axes of any standard shape or coordinate system) 
• Plane - plane 
• Shape axis - plane 

(z axis of any standard shape or coordinate system) 
 
Note 
These functions calculate distances based on the length of perpendicular 
lines. Axyz also provides separate functions to calculate perpendicular 
lines. See "Perpendiculars" on page 194. If there are two equivalent 
functions, the full perpendicular computation will generate the same 
value as the distance computation, as well as the definition of the 
perpendicular line. 
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15.3.1 Distance: Point - Point 
This calculation uses the standard formula for the distance between two 
points in space: 
 
vec x y z1 1 1 1= ( , , )               vec x y z2 2 2 2= ( , , )  
 

( ) ( ) ( )dist X X Y Y Z Z= − + − + −1 2
2

1 2
2

1 2
2  

 
15.3.2 Distance: Point - shape axis (line) 

 
 
Result 
The distance is the perpendicular offset of the point from the line or axis. 
 

15.3.3 Distance: Point - shape surface 

Distance: Point - plane 
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Result 
The distance is the perpendicular offset of the point from the plane. 
The positive direction of the local z axis is above the plane. 
The distance is positive if the point lies above the plane and negative if it 
lies below the plane. 
 
Distance: Point - sphere 

 
 
 
Result 
The distance is the perpendicular offset of the point from the surface of the 
sphere. 
The distance is positive if the point lies outside the sphere and negative if 
it lies inside the sphere. 
When a point lies inside the sphere the shortest perpendicular distance to 
the surface is calculated. 
 
Distance: Point - cylinder 

 
 
Result 
The distance is the perpendicular offset of the point from the surface of the 
cylinder. 
The distance is positive if the point lies outside the cylinder and negative if 
it lies inside the cylinder (on the same side as the axis). 
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When a point lies inside the cylinder the shortest perpendicular distance to 
the surface is calculated. 
 
Distance: Point - cone 

 
Result 
The distance is the perpendicular offset of the point from the surface of the 
cone. 
The distance is positive if the point lies outside the cone and negative if it 
lies inside the cone (on the same side as the axis). 
When a point lies inside the cone the shortest perpendicular distance to the 
surface is calculated. 
 
Distance: Point - paraboloid 

 
 
Result 
The distance is the perpendicular offset of the point from the surface of the 
paraboloid. 
The distance is negative if the point lies on the same side of the paraboloid 
as the focus (inside the paraboloid) and positive if it lies on the other side 
(outside the paraboloid). 
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15.3.4 Shape axis - shape axis (line - line) 

 
Result 
The distance between 2 axes or lines is the length of the perpendicular line 
between them. 
 

15.3.5 Plane - plane 
 

Separation of parallel planes          
 
 

Separation of planes which are not parallel  
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Strictly speaking the separation of two planes is only meaningful when 
they are parallel. Otherwise they intersect and their separation depends on 
where the separation is measured. 
 
In practice two nominally parallel planes will be measured with a slight 
angle between them and this angle must first be checked to see if it is 
within the currently set tolerance for parallelism. The angle between the 
normal vectors is the angle checked. 
 
If this angle is within the tolerance the separation of the planes is 
calculated as the perpendicular distance of the origin of the first plane from 
the surface of the second plane. 
 

15.3.6 Shape axis - plane (line - plane) 

Line parallel to plane      
 

 Line not parallel to plane  
 
As in the separation of two planes, the separation of an axis (line) and 
plane is only meaningful when they are parallel. (A line is parallel to a 
plane if it is at right angles to the normal vector to the plane.) 
 
Again a check is made to see if the line and plane are parallel within the 
currently set tolerance for parallelism. 
If this angle is within the tolerance the separation is calculated as the 
perpendicular distance of the origin point on the line from the surface of 
the plane.  
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16. Creating points 
16.1 Division of lines 

 

CDM 
Analyze/ 
Divide line 

This function creates a set of equally spaced points along a line defined by 
two existing points. The number of new points is specified and the spacing 
method can be chosen in one of two ways: 
1. The new points are equally spaced between the two existing points 
2. The new points are equally spaced along the line at a defined interval 
 
Any points or shape origins can be used to define the line. If only one point 
is requested between the end points the result is a mid point. In this case 
the same result is obtained using the bisecting function for "point - point". 
See section 12 Bisectors. 
 

16.1.1 Examples: Division of line 
100 units

25 units

+ 40 units

Start 1 2 3 End

Start End1 2 3

Equally spaced between start and end points

Spaced at equal positive intervals

- 15 units

Start End123

Spaced at equal negative intervals
 

The diagram shows an example of a start and end point separated by 100 
units. A number of new equally spaced points (3 in the example) can be 
defined in two different ways: 
1. Between the start and end points so that they are separated by 25 units in 

the example. 
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2. At equal intervals along the line from start point to end point. The 
example shows 3 points with a positive interval of 40 units and a 
negative interval of 10 units.      



Axyz ver. 1.4 Mathematics for Users 

 

MATHU.DOC 31/1/00  
 

211 

17. Bibliography 
17.1 References 

1. Analysis and adjustment of survey measurements. 
E. M. Mikhail, G. Gracie, Van Nostrand Reinhold, ISBN 0-442-25369-9 
(Out of print.) 
 

2. Statistical concepts and their application in photogrammetry and 
surveying. 
M. A. R. Cooper, P. A. Cross, Photogrammetric Record, 12(71):637-663 
(April 1988). 

 

17.2 Further reading 
An introduction to the algebra of matrices with some applications. 
E. H. Thompson, published by Adam Hilger, London. (Out of print.) 
 



Mathematics for Users Axyz ver. 1.4 

 

  MATHU.DOC 31/1/00 
 
212 
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