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1. Introduction

1.1 About this manual

This manual provides a descriptive explanation of a number of critical
mathematical concepts and methods used by Axyz.

It does not provide a detailed specification of internal algorithms but the
explanations should enable readers to understand how the functions work.

It is assumed that readers have a level of mathematical knowledge
appropriate for a university-educated engineer. It is further assumed that
they are familiar with the general techniques of optical triangulation and
polar location.
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2. Simple statistical ideas
2.1 Errors

2.1.1 Errors In brief

An error isthe difference between the true value of the measurement and
what you actually measure. Errors have 3 basic sources:

» Small random variations (afact of life beyond the user's control)

» Systematic effects (can be compensated by suitable modelling methods)
» Mistakes (can often be detected by check procedures)

2.1.2 Introduction to errors

M easurements can never be exactly correct, which is an unavoidable fact
of life. If the same angle or distance is measured many times, there will
always be avariation in results. Additionally, no instrument can be
perfectly manufactured, and some residual imperfections must remain,
even if small. Both these effects introduce measurement errors. The term
error isused in statistics to refer to the small deviations of measurements
from their true value although error in the normal English sense means
mistake. Thistermisreserved for more serious errors.

We try to keep errors a small as possible or adopt measuring strategies
which reduce their effects and enable usto get good estimates of the true
values. It is useful to identify different types of error.

Systematic errors arise, for example, when atheodolite's line of sight is not
exactly perpendicular to its transit (trunnion) axis. These can be identified
and largely eliminated by mathematical modelling and software
compensation.

Outright mistakes might be caused by the operator pointing at the wrong
target because it looks the same as the correct one. Even automated
systems can make mistakes, for example when an image processing
module locates a bright light source in the background instead of the
correct target which happens to be dimmer. Additional measurements and
diverse data filtering methods often detect mistakes which usually have
large and isolated effects. To properly identify atrue mistake it may also
be called agrosserror or blunder.

Quality issues are mainly concerned with random errors, such as a short-
term temperature change which causes a small refraction error in a
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pointing. These are beyond the control of the user. Fortunately we can
reduce the effects of random errors by averaging repeated measurements or
using more information than is strictly needed

2.1.3 Random errors

Random errors are small positive and negative variations in the value of a
measurement which is repeated many times. Thisis anatural physical
effect which cannot be completely eliminated by changing the design of
the measuring system. Random measurement errors follow the Normal or
Gaussian error distribution.

2.1.4 Systematic errors

Systematic errors follow a definite pattern caused by some particular
physical effect. For example an electronic distance meter may give
readings which are consistently too low or too high if the incorrect carrier
frequency has been applied.

2.1.5 Mistakes (gross errors, blunders)

Mistakes are caused by some failure in the measuring procedure. For
example an operator may accidentally sight the wrong target or an
electrical spike may corrupt the reading from an instrument. In a properly
designed measuring procedure mistakes rarely occur and are usually large
compared to other errors. This makes it relatively easy to find them.

2.2 The normal distribution of random errors

Although individual random errors, as the name implies, do not seem to
follow a pattern, in large numbers they do behave in a predictable way.
Most people are aware of the simple concept that you repeat a
measurement many times if you want to "average out” the variations in
each one. Thisimplies, correctly, that you can in the end get the true value
of aquantity even if each separate attempt is close but not exact.

The whole science of statisticsis built on thisideathat there isindeed
some predictable behaviour in random physical changes. However the
rules strictly only apply when large numbers of measurements are
involved. Naturally we try to get away with quite small numbers of
measurements and in practice this works well. However it is also possible
to make too few measurements, in which case any estimates of quality are
based on insufficient information and produce bad results.
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I magine measuring a distance between the same two points many times.
Y ou might get the following random spread of distance measurements:

Vauemm  Number of

measurements
810.11 1
810.12 3
810.13 7
810.14 19
810.15 20
810.16 36
810.17 38
810.18 29
810.19 24
810.20 10
810.21 11
810.22 0
810.23 2
Average Total
810.17 200

Relative
frequency

0.005
0.015
0.035
0.095
0.100
0.180
0.190
0.145
0.120
0.050
0.055
0.000
0.010

Deviation from

average value
-0.059
-0.049
-0.039
-0.029
-0.019
-0.009
0.001
0.011
0.021
0.031
0.041

0.061

The table shows how many times a particular value came up. The values
did not, of course, turn up in the order shown in the table, which involved
some re-packaging for the presentation. The relative frequency is simply
each measurement number divided by the total number of measurements
and it offers a convenient way to compare tests with different measurement

numbers.

0.1]-

e

810.1 810.12

i ’417{‘7{
o1 | !

810.14

810.16 810.18

810.2 810.22 810.24
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The diagram shows the same information as in the table, with the height of
the red blocks indicating the relative frequency of each of the
measurements. The blue, bell-shaped curved shows the pattern that the
blocksfall into if you take very many measurements, although the red
blocks already fit the curve quite well.

The curve indicates the probability of any particular measurement value
occurring. In particular it shows that somewhere around the middle, where
the average value lies, is the most probable region for obtaining
measurements.

This curveis so common that it is called the normal distribution (error
curve) where normal has its conventional meaning in English. It may also
be called the Gaussian distribution after the German mathematician Karl
Friedrich Gauss who made detailed investigations of the effects and
properties of errors.

2.2.1 Probability density

The curve describing the normal error distribution actually represents
probability density, i.e. a probability per unit. It can really only be used by
asking: "What is the probability that a measurement lies between value a
and value b?' The shaded area under the curve then indicates the
probability. Y ou do not use the curve to ask: "What is the probability that a
measurement has value c".

Imagine you have a bar made of some composite material whose density
variesin the same bell-shaped way. In casual conversation you can say:
"The bar is heavier in the middle than at the ends’ and the fact that the
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density of the material is highest in the middle clearly indicates this.
However to be quite specific you would have to say that the weight of a
section cut from the middle is heavier than the weight of asimilar length
section cut from the end. To obtain a section you must cut it out between
positionsaand b but it is meaningless to refer to the weight of a cross
section at position c.

2.3 How good is the measurement?

In conversation we use severa qualitative termsto explain how well we
can measure:

» Accuracy

* Precision

* Repeatability

* Resolution

Without proper definition the conversation can lead to confusion For
example:

"The robot can position its end effector with an accuracy of 0.1mm".
Will it always return to the same position within 0.1mm, or isthe
separation of any 2 points within its entire workspace never in error by
more than that amount?

"This measurement system has a resolution of 10 microns"'. Isthat the
smallest increment on the linear encoders, or the smallest increment at the
object which can be reliably determined? Either way, how good isit?

2.3.1 Accuracy

Accuracy isaglobal effect, extending throughout the measurement field. It
indicates how close measurements and derived quantities are to their true
values. Although true values can never be found in practice, calibration
and performance tests provide accuracy checks.

2.3.2 Precision

Precision isalocal effect. It indicates how well measurements of a
particular quantity agree with one another.

* |f precision is high the spread of valuesis small.

 |f precision islow the spread of valuesislarge.

Repeatability tests can show the precision of individual instruments and
compl ete systems.
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2.3.3 Repeatability

Repeatability is effectively another term for precision. Precision tends to

be used in connection with measuring instruments and repeatability with a

complete measuring procedure or particular objects.

* A well maintained laser tracker is a precise instrument.

» Anwell maintained industrial theodolite has high angular precision.

» A dual theodolite triangulation system should give good repeatability
when a set of test targets is measured on several occasions.

» A robot ideally shows good repeatability when returning to the same
programmed pose.

2.3.4 Calibration

1) Not precise 2) Precise 3) Accurate 4) Accurate
Not accurate Not accurate Not precise AND precise

Consider the results of the shooting practice session above. The precision
of a process indicates the potential accuracy which it can achieve but only
by making a suitable compensation or calibration can this accuracy be
realized. In sessions (3) and (4) the errorsin (1) and (2) respectively have
been corrected.

Lack of accuracy isagood indicator that some systematic error is still
present but once removed by calibration the random effects which cause
the spread seen in the precision (repeatability) will still be present.
Calibration cannot remove these as well.

2.3.5 Resolution

Resolution In brief

The resolution of a measuring component such as an angle encoder isthe
smallest incremental change which it can deliver. Resolution should be
higher than the expected measurement accuracy so that the measurement is
not degraded by an inefficient encoder.
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The resolution of an optical system such as atelescope is ameasure of its
ability to reproduce fine detail in the image. Fine detail implies a sharp
image and this contributes to a high quality pointing for both manual
observation and electronic imaging.

Introduction to resolution

Optical resolution and instrument readings obviously influence precision
and accuracy, but it should not be assumed that they indicate the limits. An
angle read to 0.1" will not necessarily have a precision or accuracy of that
order. These depend more on the ability of the observer or electronic
sensor to centre on the target and on the quality and definition of the target
itself.

Equally well, if atelescope can be reliably pointed to within + 2 arc secs,,
then a system which only reads to 10 arc secs will not reflect the potential
accuracy. Furthermore, repeated pointings to improve the result will not, in
this case, be successful, since the small spread cannot be detected by the
coarse reading. Generally, the minimum increment given by an instrument
should be somewhat smaller than the expected precision of the quantity
measured.

2.3.6 Significant figures

The number of significant figures indicates how many digitsin a numerical
value have any importance.

9.0075 misavalue with 5 significant figures. If thisisareading from an
electronic distance meter it suggests the distance is accurate to about %2
mm but the instrument might display a reading to another place of
decimals, e.g. 9.00753.

If the 2 mm is already in doubt, the final digit (9.00753) contributes no
information to the measurement.

However when making further computations with this value, small errors
can arise which are purely due to mathematical manipulation and have
nothing to do with the actual measurements. Rounding errors are an
example of this effect.

To reduce errors caused by this source, the extra digit is often carried
through the processing.
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2.4 How are uncertainties quantified?

Now that general terms for discussing quality have been specified,
concrete numbers need to be generated.

2.4.1 Average value

One of the most common ways of improving resultsisto take severa
measurements of the same quantity and use the average value, aso called
the mean value.

Average value In brief
For aset of N measurements of a quantity X:

- X+ X,+..+X
XW:Z% or X, =1 i\l N

More on average value

If the error quantities x; are the deviations from the average val ue such that
Xi =Xy X, then

(Xay +X1) +(Xa +%2)+.. H{X o +Xn)
X o = N

which leads to

(%) + (x2)+.-+H{ +xy)
N

I.e. the average value of the error quantitiesis zero.

These error quantities x; are not the true errors g since the average valueis
not the true value, athough the more measurements you make the more
likely the average isto be close to the true value. However the true errors
will also have an average value of zero.

2.4.2 Variance and standard deviation

The spread of random variations is obviously an indicator of measurement
quality. The quality of measurement islow if the spread islarge and high if
the spread is small.
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10

Considering the error values themselves, they are sometimes positive and
sometimes negative, with an average value of zero. The average error
provides no information about the spread, also called dispersion. If instead
the error terms are first squared and then averaged a positive number is
always obtained. The average of the squared terms does indicate the
spread, since it increases as the spread increases. This parameter iscalled
the variance. (In normal English the term relates to some difference or lack
of agreement asin the phrase: "Statement A is at variance with statement
B".)

Varianceis defined by the true errors g as.

var = Z eli\l) or var = (&) + (ezl)\l +.Hew)

Since the variance involves squared error termsit is not an easily
recognized number. A more useful figure is the square root of the variance,
called the standard deviation. It is commonly identified by the Greek
symbol ¢ (sigma):

2 2 2

o =+/var or 0:\/(61) + (&) +.Hew)

N
(The variance itself is then usually identified by the squared term, ¢°.)

' [ I I

0.3]- —

0.2|- |

0.1]- —
0 ' |

—30 —20 e 0 o 20

It can be shown that a measurement has a 68% chance of lying within +o
of the true value, iIf the measurements follow the normal distribution.
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Strictly speaking, these definitions only apply to an infinitely large set of
measurements. Since most users have better things to do than take repeat
measurements all day we must make do with alot less. If instead the
deviations x; from the average value of a small number of measurements
are used, then statisticians can prove that a good, unbiased approximation
to the standard deviation is given by:

sd = \/ (x0)? + (x2) +.+(xy )

N-1

The only practical differenceisthe use of (N-1) instead of N and the
difference is small once you have, say, 10 or more measurements. In fact,
If you take alessrigorous view of things and say:

e \/(X1)2+(x2)2+..+(x,\|)2

N

then this becomes a definition of the root mean square (RMS) value. (See
! “lon page 3

Very often we do not make a number of repeat measurements of the same
quantity but do measure similar quantities many times. For example, in an
orientation procedure involving a bundle adjustment many angular
readings are taken but to a number of different points. The bundle
adjustment can then produce quality figures such asthe RMS value for
angle measurementsin general.

2.4.3 Correlation and covariance

Random errors in measurements are usually independent of each other.
The random error in pointing at target A is not affected by the random
error in pointing at target B.

Some measurements are not made directly but are derived entirely from
others. In Axyz, angle measurements are used to derive coordinates. For
example, pointings to a specific target from two theodolites can be
intersected to compute the target's X,Y and Z coordinates. Errorsin each
coordinate value, dX, dY and dZ, are based on the angular errors of the
two pointings. Although the individual coordinate errors are different
because a different function is used to compute each one, they will still be
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related since they al use the same starting information, i.e. the same errors
in the same two angular pointings.

If errors are not independent but related in some way they are known as
correlated errors. Just as avariance can be defined for any set of errors as
ameasure of their spread, so a covariance can be defined for any two sets
of correlated errors and used as a measure of their correlation.

Correlations must always be taken into account when computing errorsin
one set of variables which are derived from another. In the example given,
correlations appear in target coordinates even though the basic pointing
information is uncorrelated. Any further processing of the coordinates
must take the corresponding covariances into account, for example, when
transforming the coordinates into another coordinate system. If thisis not
done the new variance values, which are usually the ones of interest, will
not be correctly calculated.

Covarianceis calculated for any two measurementsin asimilar way to
variance. Suppose the two measurements A and B are repeated N times,
generating two sets of deviations from mean values, a and b;. Using the
standard symbol o4, for the covariance between A and B:

N
_ . (b, _a, by +a, (b, +..+ay My
O _ZT or Oy = N

Note that op, Will clearly be the same as 0.

If the measurements are uncorrelated they will randomly have positive and
negative values. The individual product termswill therefore also be
sometimes positive and negative and the covariance will tend to average
out to zero. However if apositive error in A tends to be associated with a
positive error in B, then the covariance will tend to be positive. The same
appliesif anegative error in A correlates with a negative error in B. The
signs can also go in opposite directions, which would result in a negative
covariance.

2.4.4 The variance/covariance matrix

12

Thisis often called ssmply the covariance matrix. It is required in many of
the procedures which make use of matrix analysis and is often one of the
by-products. It provides a concise summary of the variances and

MATHU.DOC 31/1/00



Axyz ver. 1.4 Mathematics for Users

covariances between different measurements which need not be of the
same type. A typical mixture would involve angle measurements of
varying quality and distance measurements of varying quality.

Covariance matrix:

(01)2 O
2
021 (02)

L (on )2_
For measurements 1,2 .. N the variances appear on the corresponding
diagonal positions. The covariances between pairs of elements appear in
the corresponding off-diagonal elements. Since the covariance between
measurements j and k is the same as between k and j, this matrix is
symmetrical.

In the simple case of uncorrelated measurements this matrix becomes a
diagonal matrix of variance values.

(o) O
0 (o)

2.4.5 Tolerance

In manufacturing it is convenient to deal in numbers which cover all
possible deviations from design values. Although thisis literally
Impossible, agood practical approach isto quote error boundaries on
measurements such that, say, more than 99% of all cases are covered. This
range is known as the tolerance.

If agood estimate of the standard deviation of a particular measurement is
known, atypical tolerance quote would be £3 . Thereisthen a99.7%
chance that a measurement will fall between these limits.

The 3-sigmavalue is not a standard and other values are used. For
example, £2.5 o iscommon and it still covers almost 99% of all the
relevant measurements.

MATHU.DOC 31/1/00 13



Mathematics for Users Axyz ver. 1.4

3. Least squares and modelling

3.1 Introduction to least squares

14

Using Axyz we make angle and distance measurements in order to
calculate coordinates which describe the shapes of objects. The
coordinates themselves can be further processed to find out more shape
information. We therefore need a wide range of processing routines which
convert measurements to coordinates and coordinates into shape
information. If the original data source, the measurements, were free of
error all the routines would look mathematically very different. Since they
and therefore the coordinates are not perfect, all the routines at some point
use a general mathematical technique called least squares. Once the
particular set of equations have been constructed which describe the actual
task, such as an orientation or shape fit, the least squares method solves for
the values we want in an optimal way which resolves the conflicts caused
by incompatible data.

Since measurements are subject to error, methods which process them must
give us the best estimate of their true, error-free values. A crude method
would be to make every measurement many times and take the average, but
least squares offers a better solution.

The method of |east squares is avery common technique for processing
measurements which have small random variations and are therefore not
consistent. A simple example is the measurement of all three angles of a
triangle. They should add up to 180° but because of the random error in
each thisis very unlikely to happen. The 3 measured angles are therefore
not consistent with the laws of geometry. Any two of the angles could be
used to describe the shape of a plane triangle, and 3 dlightly different
triangles would be obtained in thisway. Which oneisthe "true" triangle?

Using least squares the problem is resolved by creating asingle
mathematical model of a situation and deriving equivalent and exact
mathematical measurements from it. These modelled values are compared
with the actual measurements and the model altered step by step until a
best fit between modelled measurements and actual measurementsis
obtained. The decision on the best fit is reached by examining the sum of
the squares of the differences and altering the model until thissumisa
minimum. The model is then assumed to be the best description of the
actual measurement situation.

MATHU.DOC 31/1/00



Axyz ver. 1.4 Mathematics for Users

Amongst the many methods which could be used to find the parameters of
amodel (instrument locations, circle radius, etc.), it can be shown that the
least squares technique gives the best unbiased estimates of these
parameters.

In Axyz the principle of least squaresis at the core of all the optimized
methods of transformation, shape fitting, orientation, target location and
calibration. In addition to providing an optimal answer such as the radius
of a best fitting circle, the methods can also supply quality estimates for
both measurements and modelled parameters.

Note

The procedure involving stepwise changes is the most common one
although there are special cases where the model can be created in a
single step.

3.1.1 Mathematical components

In mathematical terms, aleast squares analysis has the following
components:

1. Theinitial parameters of the model, e.g.
Positions of instruments and targets in an orientation procedure
The values which define acircle in a shape fitting procedure

2. Values derived from the model which can be compared with
corresponding measurements, e.g.
Horizontal and zenith angles (h,zn) from a modelled instrument to a
modelled target position
The modelled radius of the circle (r)

3. Corresponding values involving the known measurement quantities, e.g.
Measured horizontal and zenith angles (H,ZN)
The distances from measured points to the modelled circle centre (R)

4. Differences, known as residuals, between theoretical values from (2)
and measured values from (3) i.e.
v,=h-H,v,,=zn-ZN
V,=r-R

5. Equations which make the comparison between (2) and (3) in terms of
the parametersin (1) and which also involve the residualsin (4).
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In asimple least squares procedure, the quantity ® isthen minimized
where

®= (th + Vzn2 + Vr2 + )

The minimization is done by altering the parametersin (1) which changes
the valuesin (2) and possibly also in (3) until the residualsin (4) make ® a
minimum. The alteration of parametersis done in controlled steps using
the equationsin (5) to solve for improvements.

3.2 Iteration and non-linear solutions

16

In mathematics, repeating a process of comparison and modification until
some value has been optimized is called iterating towards a solution and
each of the stepsisasingleiteration. (In normal English we use the word
reiterate meaning to repeat again, asin the sentence "L et me reiterate what
| said before ..")

Iteration is needed when it is not possible to compute an optimized answer
inasingle step. Thisis because many mathematical formulations are non-
linear, i.e. the modelled measurements and parameters appear in squared,
cubic and higher powers or are multiplied together. With afew exceptions
a one-step solution does not then exist.

A one-step solution mostly only exists when the formulation contains no
product terms of parameters, i.e. parameters are only multiplied by
constant and known values and not by themselves or by other parameters.

Suppose a calibration method uses least squares to find the axistilt, A, and
beam tilt, B, of an instrument, and that different models are possible to do
this.

Typical equations which define the model Type of model

5* A+29.8* B=0.00032 linear
0.5* A%+ 7.66 * B = 0.0000097 non-linear

(note the squared term A?)
84* A+035* A*B =42 non-linear

(note the product term AB)

These are not real equations but simply illustrate the difference between
linear and non-linear formulations.
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When amodel is non-linear atechnique of linearization is possible. This
assumes you already have starting values of the model parameters which
are reasonably close to the values required for a best fit. Linearization then
allows you to convert the exact non-linear formulation into an approximate
linear formulation which isvalid for small changesin the starting values.
This approximate linear version of the model is then used for asingle
iteration which computes a small correction to the starting values. The
original starting values are then updated by the corrections to give new
starting values and the whole process is repeated (iterated). In the new
iteration the linear approximation is slightly different because the starting
values have changed by small amounts. When the corrections are so small
that starting values are not significantly changed then you stop.

Thisis the mechanism of the stepwise sequence of changes which
gradually improves the parameter values until you obtain your optimized
answer.

Obviously with this method you need to get the ball rolling so somehow
you need to know the answer approximately before you computeit! These
approximate answers have various names such as starting values, initial
values, approximate values, trial values.

Finding trial values can sometimes be very easy. In the case of instrument
calibration the optimized parameter is often a deviation from a nominal
design value and this deviation should be zero. For example in the laser
tracker the laser beam should be parallel to the primary rotation axis
(approximately vertical). Any residual beam tilt is deliberately
manufactured to be very small, so the |east squares calibration uses an
initial value of zero for beam tilt.

Other situations are more complicated, as when trial instrument positions
are needed before computing a bundle adjustment. However in all cases
where Axyz uses least squares there are simple methods for finding initial
values.

3.3 Redundancy

L east squares methods benefit from excess information, just as an average
value will get closer to the true value the more times a measurement is
repeated. The number of measurements above and beyond the absolute
minimum necessary to compute some set of parametersis called the
redundancy of the measurements. For example, if you need to calibrate a
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scale bar, one measurement is the absolute minimum you must make. If
you make 10 measurements the redundancy is 9.

To fully determine the shape and size of atriangle you need 1 side
measurement for scale and 2 angles for shape, atotal of 3 measured
elements. If you measure 2 sides and all 3 angles you have 5 measurements
which gives aredundancy of 2. Note that the type of measurement is
critical since 3 angles alone appear to be sufficient but in fact they would
not give a solution since they contain no scale information. The minimum
information must contain both angle and distance data in this case.

It is also good practice to measure as many different elements as possible.
In thetriangle, if you measure 2 angles once each and then one sideis
measured 3 times, there are 5 measurementsin total. The redundancy is
then 2. However it would be more efficient, if possible, to measure each of
the 3 sides once rather than the one side 3 times.

Redundancy can also be viewed as an excess of equations over unknowns.
A least sguares solution is often constructed so that each measurement
provides one equation involving some or al of the parameters of a
particular model. The parameters are the unknowns which must be
determined and mathematical solutions demand that there be at least as
many equations as unknowns.

With this approach the number of parameters or unknowns in the model is
the minimum necessary to describe the situation. For example, when
computing a best fitting sphere to a number of measured targets the sphere
would be defined in terms of its centre (3 coordinates) and radius. The
mathematical model therefore must therefore determine 4 parameters. To
do this it must have a minimum of 4 equations. Each set of target
coordinates generates one equation, so a minimum of 4 targets must be
measured. If you measure, say, 10 targets, the redundancy is 6, i.e.

redundancy = (number of equations) - (number of unknowns)
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3.4 Residuals and modelled observations

3.4.1 Residuals in brief

Residuals are the difference between a modelled value of a measurement
and what you actually measure.

The least squares method finds a model which minimizes the sum of the
squares of the residuals. The residuals therefore indicate how well a model
of a situation fits the measurements.

A largeresidual may indicate a bad measurement or defective reference
data, such as an incorrectly entered scale length or incorrect coordinates of
acontrol point.

However, the least squares method does not guarantee to indicate bad
measurements with large residuals. It sometimes happens that bad
measurements have small residuals and good measurements are then
assigned large residual s to compensate for the distortions introduced.

3.4.2 Residuals in detall

Residuals and modelled measurements, also called observations, are
effectively correlated because they are based on a mathematical mode!. If
one element of the model changes there must be changesin the other
elements. Thisis a property of the modelling process.

Example of atriangle:
The 3 modelled angles must add up to 180 degs. If one angle is changed
the others must change to preserve a consistent geometry.

Note that the 3 measured angles do not necessarily add up to 180 degs.
This discrepancy is the reason for attempting to find a best fitting model
which isinternally consistent and can therefore be used to provide
results. The errors in the measured angles (not the angles themselves)
are assumed to be independent of one another. Only a good reason, such
as systematic error in atheodolite, would invalidate this assumption.

The least squares solution can provide error estimates for the modelled
observations. Since modelled observations are the best estimates of the
true observations, their computed errors (in a covariance matrix) would be
accepted as the best estimate of measurement quality.
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If the modelling process is accurate and no errors are left unaccounted,
then residuals are a good indicator of typical measurement errors. If the
least squares procedure involves a reasonable number of measurements
(good redundancy), the RM S residual value is a good indicator of
measurement standard error. However, it tends to provide a smaller
estimate of error than arigorous analysis, i.e. it implies the measurements
are better than they are.

3.5 Weights and weighted least squares solutions

3.5.1 Weights in brief

20

When calculating a least squares solution to a measurement problem, a
measurement residual is assigned a value called a weight and the higher the
weight the more influence the corresponding measurement will have on the
final model of a situation. This means that the modelled and measured
values will be much closer and the corresponding residual will therefore be
small.

Weights provide two advantages:

» They can account for different measurement qualities

» They allow for processing mixed types of measurements such as
distances and angles

The value of aweight is often related to a measurement's cal cul ated or

estimated quality, as defined by its standard error. If the standard error is
small the weight value is high and vice versa. Calculating weights in this
way is known as weighting by standard error (or weighting by variance).

Sometimes it is convenient to ignore differences between measurements
and treat them all equally. In this case every measurement receives avalue
for weight = 1. This weighting scheme is known as unit weighting. Y ou
might choose unit weights in several situations:

» Relative measurement qualities are not very well known

» Measurement quality varies but only by small amounts

« For comparison with results from 3" party software packages

Unit weighting represents the ssimplest form of least squares analysisand is
very commonly used.
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Weights in practice

Consider for example control points, which have known coordinates. They
force an orientation into the coordinate system where the control points are
located. During the analysis the control point reference coordinates are
treated as measurements with very high weights so that they develop only
very small residuals. If the weights are high enough the residuals are
almost zero and the modelled control points are effectively fixed at the
reference values. Since the modelled control points end up identical to the
reference values, the rest of the model, including the instrument locations
and tilts, must adjust to conform to this, i.e. they end up in the same
coordinate system.

Welights provide a very flexible way to balance the influence of diverse
types of measurement but this very flexibility can provide problems for
unskilled users. Just as weights can be set sufficiently high to make some
values effectively fixed, they can also be set so low that some
measurements are effectively deleted from the solution. In thisway a user
might unintentionally remove a critical measurement and cause the
solution to fail.

Axyz routines often provide simpler weighting schemes in which the user
can treat values as fixed or unknown. Within the corresponding processing
routine these assignments are actually treated as either very high or very
low weights.

3.5.2 Introduction to weights

A simple least squares procedure minimizes a sum of squared residuals, i.e.
an expression of the form

(Va® + Vo~ + V3° + .. V)

where the procedure makes atotal of n comparisons between model and
measurement.

Thisimplies that the measurements are equally good. Consider the task of
calculating orientations in a measurement network. What happens if some
pointings are made by instruments of lower precision than others or
individual targets are poorly defined? Surely these pointings should not
have as much influence on the final result as the higher quality pointings?
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Another difficulty occurs with mixed types of measurement, for example
with polar techniques or even basic triangulation. Suppose the user has
created avery accurate 3m scaling length using an interferometer and
wants to ensure that the analysis holds this length to within 3 microns of its
interferometric value. Thisisarelative error of 1 micron per metre.
Suppose a'so that the theodolite pointings are assumed good to 1 arc
second. Since 1 arc second is approx. 5 microns per metre the scaling
length should be given more influence in the analysis than the angular
pointings.

Weights provide away of taking into account different measurement
qualities and allow for processing mixed types of measurements. A
measurement residual is assigned avalue called aweight. A high weight
tends to make modelled and measured values closer and produces smaller
residuals.

Welights are based on the fact that measurements which are known to have
ahigh precision have a distribution with a small standard error, and
measurements with alow precision have a distribution with alarge
standard error. Obviously high precision measurements should have a high
weight and low precision measurements should have alow weight. It is
mathematically more convenient to work with a variance rather than a
standard deviation and so for a measurement with variance o the weight is
defined as:

const

0'2

weight =

When the variance is small the weight is high and vice versa. Thisisthe
required mechanism.

The constant term has no natural value. It is simply a scaling factor which
can be assigned any value to make the weights convenient to handle
mathematically. Remember that the purpose of weightsisto distinguish
relative effects, for example to say:

measurements of type A are twice as good as measurements of type B
If type A has an assigned weight, = 100, then type B must have weightg =

50. The weighting could equally well be weight, = 0.01, weightg = 0.005
or any other 2:1 combination.
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In aweighted least squares analysis, the quantity to be minimized then
becomes:

(Wi Vo2 + Wo Vo2 + W3 Va2 + .. Wy Vi)
where w; etc. are the weights corresponding to the residuals.

If the measurements are all equally good and should logically have the
same weight w, this then reduces to:

W (V2 + Vo2 + v + .. vyd)
It isquite natural to assign the value 1 to w in this case and theresult is
then clearly identical to the original smple least squares concept. However
iIf w had some other value, e.g. 100 or 0.000396, it would make no
difference to the final result. The model which produces the minimum
value would still be the same model. The actual value of the minimum
might be bigger or smaller but it is still the smallest value which can be
achieved with the chosen weight assignment.

3.5.3 The weight matrix

Every least squares analysisin Axyz uses matrix algebraand it is
convenient to process the weights in a single weight matrix. In the simplest
case where measurements are uncorrelated, this has the form:

1
0
(01)2
1
3 0
w =k [ (02)2
:
(C’N)2

where k is the constant scaling factor.
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The matrix on the right-hand side is the inverse of the variance matrix of
the measurements, and so the weight matrix can be written:

(01)2

0

(02)2

(on)

-1

When a full mathematical analysisis done it can be shown that the weight
matrix is best defined as the inverse of the full covariance matrix when the
measurements are correlated, so that the most general weight matrix is

defined as:

This form of weight matrix occurs often, for example when fitting shapes
to measured points which normally have correlated coordinates. However
users have some flexibility to choose a weighting scheme in these cases.

3.5.4 Selecting a weighting scheme

The actual value of the weights used in any Axyz procedure depends on
the choice of scaling factor which is arbitrary. There are different ways to

choose the scaling factor.

Unit scaling factor: Weight = inverse of variance.

In this case the scaling factor k = 1 and it has no dimensions.

For simple, uncorrelated measurements

weight = iz
o

24
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This creates large numbers for weights. For example, if theweight is
applied to angles which are assumed to have a standard error of 1 arc
second and all calculations are done in radians, then:

o = 1" = 0.000004848 rad weight = 42550 x 1000 000 rad™
In practice this approach would define weights using the inverse of the full
covariance matrix to generate a corresponding weight matrix, i.e.

- -1
(01)2 O

W = 021 (02)2

(on)’

Here the scaling factor is still dimensionless with avalue 1, even if mixed
types of measurements are involved.

Simple unit weighting

In the very simplest case, all measurements are uncorrelated, of the same
type and equally good. The user need not even consider scaling factors and
variances but simply makes the statement:

weight =1
Here the weight is a dimensionless number of value 1, in contrast to the
previous method where the scal e factor was a dimensionless number of

value 1. With unit weighting the scale factor has units of variance.
Suppose the measurements in this case all have a standard error of g, then:

weightzlz(

i.e. the scale factor has effectively been assigned the value 6, even though
this may not have been a conscious choice by the user.

This scheme generates a diagonal unit weight matrix.
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Approximate unit weighting

If there is some variation in measurement quality, a unit weighting scheme
must be slightly modified to become:

(002)2

Now the user will have to consider some actual value for the scale factor
0o° which will generate weights of around 1 when combined with the
standard errors of the measurements.

weight =

For measurements of the same type the scale factor therefore has the same
variance units as the measurements themselves, e.g. mm?, rad”. Its actual
valueissimilar to atypical variance value within the measurements.
(Mikhail' p77 has a good example of this.)

This method remains valid, but loses its simple concept, when
measurements of mixed types are involved. The weight cannot then be a
dimensionless number for every type of measurement. (Mikhail®
demonstrates this with correlated measurements in his example 5-12.)

Weighting scheme used in Axyz

AXxyz orientation methods use the inverse of the covariance matrix for
weighting purposes. Thisis known as weighting by variance but within
Axyz it ismore loosely called weighting by standard deviation.

Axyz shape fitting routines permit the user to choose between this method
and simple unit weighting. Shape fitting packages used by other
measurement systems often employ unit weighting because these systems
generate afairly uniform error quality. Axyz users therefore have the
option to use the same weighting method in order to get similar results for
purposes of comparison.

3.5.5 Testing the weighting scheme after processing

26

When processing is complete the residuals can be examined to seeif they
correspond to the assumed quality of measurement. The scale factor used
for weighting is also atest statistic known amongst other names as the
variance factor. Using the residuals, it can be estimated purely analytically
and if it does not agree with the original value assumed for weighting
purposes then one of several problemsis indicated. For example, there may
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be one or two bad measurements, which should therefore have alow
weighting, or awhole group of measurements has been weighted
incorrectly relative to the others.

Thisis discussed in more detail later, see "\ariance factor"|on page@

3.5.6 Further use of the weighting factor

The weighting factor is generally known as the variance factor and isa
component in error propagation. This technique computes errorsin
parameters due to errors in the measurements from which they were
derived. For example the tolerance in the radius of acircle can be
computed when the errorsin the target points lying on the circle are
known. Error propagation is a by-product of the least squares solution and
since thisinvolves weights based on the variance factor, the variance
factor must be known in order to correctly scale the error estimates. See
"[Error propagation and the variance factor” jon page af. |
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4. Quality figures

4.1 Introduction

The section on simple statistical ideas outlines the sources of measurement
errors and tolerances and introduces some commonly used statistical
parameters such as mean values, standard errors and variances.

Once a measurement has been made, users will want to know how good it
IS, since quality isamajor consideration in any manufacturing or analysis
task. Thereisusually arequirement that the measurements meet or
Improve upon some quality goals.

Depending on the task, the processing routines in Axyz generate different
types of statistics or quality figures. These provide information about the
measurements which have been processed and the parameters such as
target locations and dimensions of shapes which are the objective of the
processing.

The routines are more complex than required for, say, the simple repeated
measurement of the distance between two points. Some of the figures
discussed in this section are also a little more complex than the ssmple
figures already mentioned, but they are developed on the same statistical
basis.

Note

The optimized processing routinesin Axyz all use the method of |east
squares which mathematically generates the best estimates of the
parameters they are designed to calculate.

4.2 Preliminary and calculated quality estimates

28

L east squares procedures often require estimates of measurement quality
before datais processed. These are called a priori estimates whichisa
Latin term used to imply "before processing”. These estimates are therefore
preliminary values made manually by the user but are likely to be based on
previous experience and should represent reliable values.

After processing is complete it may be possible to supply good a posteriori

guality estimates. Thisis another Latin term used to imply "after
processing”. These estimates will be calculated by the processing program
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and depend on the quality of the actual data supplied. Actual quality may
be different from the user's a priori assumption!

For convenience, any further discussion will refer to preliminary and
calculated estimates rather than a priori and a posteriori estimates.
However the Latin terms are used in text books and reference sources.

It is important to realize that good statistical estimates can only be
computed if a sensible number of measurements are made, i.e. if there are
more measurements than strictly needed to compute aresult. Thisis known
as redundancy.

Example:

1. Toss acoin 10 times and you get maybe 8 heads.

2. Toss a coin 100 times and you get maybe 55 heads.

3. Toss acoin 1000 times and you get approximately 50% heads.

From the first test you might assume heads are much more likely than tails,
but this would be wrong, as the improved tests show. It may not always be
possible in a particular measurement situation to get a good estimate of
measurement accuracy from the measurements themselves. For example,
only very limited statistical information about atarget's position and
associated pointingsis available from a dual theodolite intersection. In
such cases it is better to use quality estimates based on experience and
which are ultimately derived from other more valid sets of measurements.

The quality figures which are of primary interest are error estimates for
computed target coordinates and elements derived from them. However,
since the original source of coordinates are the measured angles and
distances, quality estimates are also required for these.

To obtain preliminary error estimates for angular pointings and distance

measurements users have the option of:

» Evaluating an earlier least squares analysis such as the results from a
bundle adjustment

» Making multiple independent test measurements such as repeated
pointings from a stable instrument position to a well defined fixed target
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4.3 Summary of quality statistics provided by Axyz

4.3.1 RMS error

The RMS error has the following features:

|t appliesto residuals of a selected type and not necessarily all the
residuals in a particular least squares procedure

* |t has the same units as the quantity evaluated, e.g. arc secs, mm

* |t can act as an estimate of quality of the selected measurement type and
isroughly equivalent to a standard error

* If larger than expected it may indicate the presence of bad measurements

* |t requires redundant measurements (more than theoretically necessary)
in order to be meaningful.

In Axyz shape fitting routines the RM S error is associated with unit
weighting of the measurements. It is not a mathematical requirement to
link RMS and unit weights but it is a convenient approach in the design of
the routines. See "Quality results from unit weighting” bn page 45

4.3.2 Calculated variance factor (ManCAT "mean error")

30

The variance factor calculated after processing has the following features:

* |tisstatistic which involves all the residuals, possibly of different types,
In aleast squares analysis.

* In Axyz routines the factor is a dimensionless number which should be
closeto 1.

* |f thefactor islarge this can indicate problemsin the relative weighting
of measurements. Amongst other possibilities, incorrect weighting may
imply a bad measurement, .

* |t requires redundant measurements (more than theoretically necessary)
or the factor cannot be computed.

The variance factor is mainly useful for indicating weighting problems.
Welights are assigned before processing with an preliminary variance factor
of 1. Problems are detected after processing when the variance factor can
be estimated again, using the actual results. This statistic always has an
element of "before and after" comparison.

In Axyz shape fitting routines the variance factor is associated with
weighting of the measurements according to their covariance matrices.
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It is not a mathematical requirement to make thislink and the factor can
also be computed for measurements of unit weight. The link is made for
convenience in program design. In fact, the variance factor isindeed
computed for shape fits using unit weighting since it isrequired for error
propagation but it is only used internally in this case. See "Etror ]
propagation with unit weighting™ jon page 5¢. |

4.3.3 Variance/covariance estimates from error propagation

V ariance/covariance estimates have the following features:

» Based on quality figures for the measurements, they provide estimates
for standard errors and variances of specific calculated parameters, e.g.
coordinates of atheodolite's position in a measurement network.

* In Axyz routines the calculated error estimates are ultimately derived
from the user's preliminary estimates of measurement quality. Itisup to
the user to decide if estimates are consistent with the results returned.

4.4 Root Mean Square (RMS) error

4.4.1 RMS in brief

The Root Mean Square (RMYS) error is derived from a set of measurement
residuals produced by aleast squares analysis such as a bundle adjustment
or shapefit. It relates to a particular type of measurement quantity such as
angles, distance measurements or coordinate offsets.

The RM S value provides a single quality figure in the units of the
measurement concerned. It is an estimate of the spread of the
measurements and/or an estimate of the closeness of afit.

An RMS value larger than expected may indicate the presence of a small
number of bad measurements. In this case the residuals may have to be
examined, and other tests made, in order to track down the problem.

4.4.2 Simple definition of RMS
For aset of N residuasv; the RMS vaue is defined as:
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4.4.3 Full definition of RMS

32

The RM S value can be applied to any set of N related measurements to
generate a single value which is representative of the full set of
measurements. It is defined as:

When estimating measurement quality the RM S is often applied to the
deviations of measurements from their mean value, rather than to the
measurements themselves. Since deviations are sometimes positive and
sometimes negative, the squared terms enable a single quality figure to be
calculated which represents the spread of the measurements, i.e.

RMSge, = |2

Thisisfine for evaluating the same physical quantity which has been
measured a number of times, such as a distance between two particular
targets but the statistic is most useful when applied to measurement
residuals resulting from some least squares processing method. The
definition is then:

Vi :Xi _Xel RMSresd =

Here Xeisthe least squares estimate of the corresponding measured value
X, and v istheresidual.

To be meaningful the residuals must al be of the same type. However they
relate to different physical elements such as the various offsets of a set of
targets from afitted surface, rather than repeat measurements of the same
quantity. The following two examples of acirclefit and target intersection
demonstrate this.
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In these examples, the minimized |east squares sum is the same one used to
create the RMSvalue, i.e. the RMSis minimized. In more complex |east
squares solutions, such as a bundle adjustment involving angle, distance
and control point measurements, the minimized least squares parameter
involves mixed types of residuals and weighting factors.

Example: RMS residual for circle fit

A circleisfitted to a set of measured points on aplane. The analysis finds
the RM S of the perpendicular offsets (d; .. ds) from the circle.

d1

d4

Example: RMS residual for target intersection

A target isintersected from three theodolite positions. The method of
analysis finds the RM S of the 3 perpendicular offsets (d; .. d; )from the
target position to each line of sight

\

4.4.4 RMS for zero redundancy

When there is no redundancy, residual values are zero and the RMS value
Is also zero.
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4.4.5 Practical use of RMS

If the RM S is derived from areasonably large number of residuals (e.g.
>10) it is areasonable estimate of the standard deviation (o) which in turn
indicates a typical measurement error.

An RMSwhich islarger than expected may indicate one or more bad
measurements and the individual residuals should be reviewed.

M easurements with large residuals are often in error. They can be removed
from the least squares procedure provided there are still sufficient
measurements | eft to generate a sensible result!

Alternatively if the large RM S results from afit to design coordinates or a
shape fit, the design data or assumption may bein error. For example, one
of the design coordinates might be faulty or the points might not lie on a
well defined shape.

If the RM S value is derived from a small number of residualsit is best
regarded as indicating the closeness of fit rather than an estimate of
measurement quality.

Example RMS: Bundle adjustment

Bundle adjustment with 50 targets and 2 theodolites (resolution of 1 arc
second or better).

RMSangleresidual = 1.2 arc secs
Good result. This figure should be a reasonabl e estimate of the standard
deviation of a pointing.

RMSangleresidual =4 arc secs
Worse than expected. Check the individual residualsto seeif there are
some obviously bad results.

Example RMS: Intersection (single point solution)

3-ray intersection from a baseline of 2m to atarget 5m away using high
resol ution theodolites.

RM S intersection error = 50.
Thisisthe RM S value of the offsets of the target from the pointings.
Good result.
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RM S intersection error = 250u
Bad result.
Check the pointings to seeif oneisin error.

Best-fit coordinates
Fit of a set of measured target coordinates to a design set.

RM S coor dinate offset =65

Thisisthe RMS value of the lengths of the small space vectors between
the design coordinates and the transformed target coordinates.

Good result.

RMS coordinate offset =315

Bad result.

Check if there are asmall number of bad individual residuals. Either the
measurements are bad or the design datais faulty at those points. If all
residuals are bad, check if the correct set of design coordinates has been
used.

Note

Residuals which are generally poor may indicate that the reference
information is of lower quality than the measurements, rather than the
other way around. A similar case can occur with shape fits. If points
give generally poor results when fitted, say, to a cylinder, then perhaps
the object does not define a very good cylinder. In this case the
measurements could be used to map the deviation of the object from its
nominal design shape.

4.4.6 RMS error (ECDS)

Intersection

The ECDS intersection method uses theodolite parameters derived from
the ECDS bundle adjustment and finds the target position which minimizes
the sum of the perpendicular offsets from the line of sight. The theodolite
parameters are effectively regarded as fixed.

The RMS value of these offsetsis provided.
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Bundle adjustment

The ECDS bundle adjustment does not directly use theodolite pointings
but converts them into " pseudo-photographs’ with anominal principal
distance of 100mm. The least squares solution therefore processes photo
observations in mm rather than angles.

The adjustment computes an RM S value for the photo residualsin mm. An
RMS value for scale bar distancesis not quoted.

4.4.7 RMS error (ManCAT)

The RMS error is not provided but the "mean error” displayed instead.

4.5 Mean error (ManCAT system)

4.5.1 Background to Mean error

36

The mean error is a name employed by the ManCAT system as an
alternative to variance factor. For afull discussion see"” ariance factor'

on page 3§.]

Use of the term "mean error” gives rise to terminology problems which
will be avoided in the Axyz system. The mean error is generally known in
English textbooks under one of several other names:

* reference variance

 variance of a measurement of unit weight

* unit variance

* variance factor

The statistic can be defined in slightly different ways, so there is some
justification for more than one name. However Axyz has chosen to adopt
the term "variance factor" as being most appropriate to the type of
definition in use. This avoids adding yet another name to the list and
avoids other potential sources of confusion.

The term "mean error” was originally selected as more user-friendly than
"reference variance', since many ManCAT users are not familiar with this
specialist mathematical term.

However, German textbooks use a statistical figure called the "mittlerer
Fehler". Thistranslates as "mean error” and is the square root of the "mean
error” defined in ManCAT, i.e. it isthe square root of the variance factor.
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Also the terms"mean" and "average" are interchangeable in English and a
definition of "average error” existsin English literature. The "average
error isaquantity typical of the physical error values which can occur and
in atriangulation system would have dimensions of angle or distance
depending on the type of measurement.

In agreement with the definition of variance factor in Axyz, ManCAT's
"mean error” is adimensionless quality figure which should have the value
1if preliminary estimates of measurement quality are close to their true
values. It is not an error in the sense of having units such as mm, arc secs,
etc.

4.5.2 Mean error in brief

The mean error isadimensionless quality figure derived from all the
measurement residual's produced by aweighted least squares analysis such
as a bundle adjustment. It does not have units of measurement such as mm
Or arc Secs.

The mean error is useful as an indicator of a weighting problem such as the
presence of a bad measurement which should be given alow weight or
eliminated from the processing.

In awell structured solution with good data of known quality the mean
error should have the value 1. If thisis not the case, the data may be
affected by one of the following problems:

* One or two bad measurements with large residual's which should have a
lower weight

» Unbalanced weights, for example control points which are given too
much weight relative to theodolite pointings

* Anerror in atrue element shape, for example measured pointslie on an
ellipse but you try to fit themto acircle

* A simpleinternal scaling error which does not affect the values of
calculated parameters but which may cause incorrect error estimation of
those parameters

Other quality figures may have to be investigated in order to identify the
specific problem
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4.6 Variance factor (calculated)

4.6.1 Variance factor in brief

In Axyz the calculated variance factor is a dimensionless scaling factor for
weightsin aleast squares calculation. It involves all the measurement
residualsin aparticular analysis. If the weighting scheme is correct and
there is good redundancy, it should theoretically have the value 1. If not, it
may indicate an error in the weighting scheme due to one of several
SOUrces:

* One or two bad measurements with large residuals which should have a
lower weight

» Unbalanced weights, for example control points which are given too
much weight relative to theodolite pointings

* Anerror in atrue element shape, for example measured points lie on an
ellipse but you try to fit themto acircle

* A smpleinternal scaling error which does not affect the values of
calculated parameters but which may cause incorrect error estimation of
those parameters

The variance factor can only warn of a problem in aleast squares solution
but may not uniquely identify it. Other quality figures may have to be
investigated, or individual residuals examined, in order to track down a
problem.

The variance factor will only provide significant information if the
measurement set has high redundancy. If the redundancy islow, avalue
different from 1 may not mean very much. Values between 0.3 and 1.8
would normally be considered acceptable.

4.6.2 Introduction to variance factor

38

The discussion on weights showed that a scale factor isrequired in order to
generate suitable values for the weights of measurements used in aleast
squar alysis. (See "Wei ghts and weighted least squares solutions’ bn
page 20.) This scale factor is an arbitrary number defined before the least
squares calculation is made. The scale factor is generally known as the
variance factor and thisisits preliminary value.

It can also be shown that the variance factor can be estimated in a different
way after processing is complete. This value depends on both the chosen
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weights and the actual residuals which result from the least squares
analysis. The valueis defined as

vi v
r
(correlated measurements)

var_factor =

Thisisthe calculated value of the variance factor and is the one reported
by Axyz routines.

The weights involve an assumption about the quality of the measurements,
based on an assumed variance. If thisis correct the residuals should be
consistent with the assumption, i.e. for measurements of a particular
quality the spread of their residuals should roughly correspond to the
assumed variance.

The calculated variance factor has two main uses. It checks the consistency
of the weighting scheme and, because it involves the residuals, reflects the
presence of any bad measurements. Bad measurements point to another
weighting problem since they are effectively low quality measurements
which have been initially assigned a weight which is too high.

Since an arbitrary (preliminary) variance factor is set before processing,
problems are detected by comparing this with its value after processing
(calculated). They should be roughly the same, i.e. their ratio should be
approximately 1. When reporting this statistic, Axyz routines set the
preliminary value to a dimensionless value of 1 so that the calculated value
should also be 1.

Alternative ways to define the variance factor

It isaconvenience to have the calculated value of the variance factor = 1,
but there are other ways of handling the numbers depending on the values
created for weights. This also givesriseto aternative names for the
variance factor.

In the discussion on weights, a measurement of assumed variance 6° is
given aweight defined as:

weight = k / ¢° where k is a constant scale factor
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40

This gives a high weight to measurements with alow spread and vice
versa. The terms high and low are purely relative and have no real meaning
If al measurementsin a particular job are equally good or equally bad. In
either of these casesit would be valid to assign the same weight to all the
measurements. Purely for convenience, weights could all be assigned the
dimensionless value 1 for each job.

Job A Job B
weight=1=k/0,,  weght=1=k/ao,’
k=Ga2 k=0b2

The value of the constant then depends on the measurements used in the
job. In this case the constant term is itself a variance with units of variance
such as mm? or rad®. In this weighting scheme, where the weight has the
dimensionless value of 1, it is not surprising that the constant term is often
called the reference variance or the variance of a measurement of unit
weight.

Most cases are more complex than this and there is a need to use different
weights, for example when mixed measurements are employed. A polar
measuring system uses both angular and distance measurements. These
have different units as well as different standard errors. Even if all the
angles are equally good and all the distances equally good, angles and
distances need to be weighted differently. When different measuring units
are processed the reference variance can itself only be expressed in terms
of one of these and the weights will end up having mixed dimensions
(some of which may be dimensionless).

Since weighting simply ensures that the relative influence of different
measurements is appropriate to their respective quality, the numbers can be
set in an alternative way. Given that

weight = k / ¢°

the value 1 can be assigned to the scale factor k rather than the weight, i.e.
set k=1 therefore weight=1/0°

Now the weight of a measurement is directly related to the dimensions of
the measurement itself and is different for every measurement type. Its

dimensions are inverse variance, such as mm?, rad. With this approach
the term variance factor is more appropriate. Thisisthe approach used in
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Finally, here are the different names for variance factor which may be used
in other literature:

» "reference variance" also called "variance of a measurement of unit
weight"
* "variance factor" also called "unit variance"

"reference variance" is a particularly common term.

4.6.3 Simple definition of variance factor (calculated)

The variance factor for uncorrelated measurements of the same quality, and
which are weighted by variance, is defined as:

N 2
(vi)
0.2
var_factor ==L r=N-u
r

N the total number of measurements made

v; indicates the residual of measurement number i

o isthe preliminary estimation of the standard error of the measurements
r is the redundancy in the measurements

u is the minimum number of measurements to enable a solution.

If the residuals are typically of the same magnitude as the preliminary
estimate of standard error, then this value tends to averageto 1 for alarge
number of measurements.

To alow for the general case of correlated measurements of different
guality, the following definition is made.
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4.6.4 Full definition of variance factor
vl v
r

var_factor =

where
vi=(vp v, .ovy)

- -1
(01)2 O

w=| %2 (02)2

(on)

(Weighting by variance.)

If there are no correlations then the covariances are zero and the weight
matrix, w, simplifies to:

0
(01)2 .
0
W= (02)2
. ;
(C’N)2

If theindividual standard errors are the same value g, the variance factor
then reduces to the same form as given in the ssmple definition.

4.6.5 Definition of variance factor in Axyz bundle adjustment
v WV + v N M
r

var_factor =

This definition is necessary because the bundle adjustment splits up
matrices in order to permit a more efficient solution, but it is effectively
the same definition as the full definition.
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4.6.6 Variance factor for zero redundancy

When there is no redundancy all residualsare zeroand r = 0. In this case
the variance factor would be an indeterminate value 0/0. In practice Axyz
routines forces the redundancy to have its actual value or 1, whichever is
greater. As a consequence the variance factor would be given the value
zero when redundancy is zero.

4.6.7 Practical use of variance factor

The variance factor is a convenient single parameter for expressing the
quality of aleast squares result. Many ManCAT users have standard
measurement procedures where, after some initial experience, they
routinely generate relatively small values for the factor but do not make
special effortsto forceit to the value 1. However when something goes
wrong the value will usually become very large and thisis used asa
warning signal to check for errors.

There are many reasons why the variance factor has some value
significantly different from 1. For example this may indicate that the
preliminary estimates of measurement quality need some fine tuning, either
because of some general imbalances in the weighting or because there are
afew bad measurements.

In the comments which follow it may help to have asimplified and
expanded definition of the calculated variance factor to see the reasons for
avalue different from 1. For uncorrelated measurements of different
measurement quality:

1 ? 2 2
var factor:_[%(ﬁj +(ﬁ] +__+(V_Nj ]

wherer isthe redundancy in the measurements.

Low redundancy

The redundancy itself isimportant. If it isnot areasonably large value,
which means the number of measurements N must be reasonably large,
then the value of the variance factor will not be reliable.
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For example, if there are not many terms within the brackets (N islow) the

following situations can occur:

» A few residuals just happen to be at the tolerance limits (30). This
makes the factor greater than 1.

» The few measurements happen to be consistent and therefore generate
small residuals. This makes the factor less than 1.

In both cases there would be nothing actually wrong with the result. The

further comments assume that there is reasonable redundancy.

Bad measurements

A small number of bad measurements in the set are likely to produce some
large residuals, well outside the tolerance limit. Thiswill increase the
factor. Individual residuals need to be checked in this case.

Bad design data or assumption

Large residuals and alarge variance factor are also generated when the
measurements are perfectly good but some reference information is at
fault. This occurs when you transform points onto design values but one of
the reference coordinatesisin error, or you try to fit pointsto acircle when
they actually lie on an ellipse. Here the design data should be checked.

Unbalanced weights

Alternatively, if a sub-group of measurements have assumed standard
errors which are either too low or too high, thiswill also affect the factor.
Suppose the standard error istoo low, i.e. these measurements are
generally not as good as expected. Then typical residuals will generally be
higher so that the terms v/o will tend to be greater than 1 and will cause
the factor to rise. Equally well, if the actual measurement quality is better
than expected, this would tend to make the factor less than 1.

This can happen when mixing control coordinates with instrument
measurements in a bundle adjustment. It may be difficult to estimate
different variances for very different types of data and an imbalance results
in favour of the control. Before making any changes to the assumed
standard errors of the control it may be sensible to repeat the adjustment
treating the control points as unknown. In a second step the calculated
coordinates for the control points can be transformed onto their design
valuesto seeif there are one or two badly fitting points.
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Generally high or low estimated errors

If measurements are all of the same type and their estimated standard error
Istoo low or high, then the variance factor will correspondingly be greater
or less than one. Re-scaling their standard errors to bring the cal cul ated
reference variance close to unity will not actually ater the results very
much. Thisis because the relative weights stay the same and it isonly
relative weights which affect the calculation of the target coordinates or
the circle radius or whatever the objective of the analysisis.

However the solution has told the user that the measurement quality, on the
basis of the statistics present in the actual processed measurements, is
different than the user orlgl nally thought. Unless changed, error estimates

gation willLnot be reliable. See
7-

4.7 Quality results from unit weighting

When measurements are of the same quality and not correlated it is
convenient to assign them weight values of 1. In asimple least squares
analysisthisis very common. In fact, the issue of aweight never explicitly
appears in this case. The method simply minimizes:

(V2 + V2 + .+ v

It isthen quite likely that the RM S of the residuals would be produced as
an approximation to the standard error of the measurements, i.e.

RM Sresid =0, = \/(Vl)z + (Vzl)\lz +..+(VN)2

Viewed in terms of weights, measurements of standard error o,,, are here
assigned weights according to the definition:

weight =k / 07
Since the weight is 1, k must be given the value 6%, i..€.

weight = 1= 0,2/ O
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k isthe variance factor, although as explained earlier it would be better to
call it the reference variance in this case since it is equivalent to the
variance of the measurements.

It is not necessary to know the estimated measurement variance and
variance factor before calculation, since the weight has been directly
assigned. That isall that is needed to get the least squares answer.
However, a subsequent calculation of the variance factor could obviously
be used to provide the estimate of measurement variance and hence an
estimated standard error.

By definition:
VAREYIK'

p
For uncorrel ated measurements of unit weight this reducesin the current

example to:
2 2 2
Var_factorz(om)2 =(v1) +(v2)r +.+vy)

The estimate of the standard error of the measurement is then:

G, = \/ (ve)? + (Vo) +.Hvn)

r

var_factor =

Thisisvery nearly the RM S54 Value, but using the redundancy r instead
of the number of observations N. Note that r < N and the RM S,4 Would
be smaller, i.e. imply that the measurements were slightly better. However
once the number of measurements becomes reasonably large this
difference is not so important.

The method of unit weighting is offered in Axyz shape fitting routines.
Thisisuseful for comparison with the results from similar routines in other
software packages which often use unit weights.

See al'so "Efror propagation with unit weighting'] on page
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4.8 Linking the error type and weighting type

When unit weighting is employed in shape fitting routines and
transformations, only the RM S error is produced. The calculated variance
factor could be offered but its value in this case would be avariance. In
other cases using the alternative weighting scheme its theoretical valueis
1, and it is better to present results in a consistent way.

In contrast, if standard errors are used for weighting purposes in shape
fitting and transformation routines, then only the variance factor is offered
asastatistic. In this case its value should be one.

Seeaso"E ' ' It weighti "onpageéz

4.9 Error propagation and the variance factor

4.9.1 Error propagation in brief

Error propagation provides variance and covariance values for quantities
which are derived from some set of measurements. It does this by
evaluating the errorsin these quantities due to the errorsin the
measurements.

Error propagation answers guestions such as:

"If my angles are good to 0.7" and distances good to 2 microns, how
good are the measured point coordinates?"'

"If my point coordinates have standard errors of 50 microns, how good
Isthe radius of the fitted circle?’

Propagation here means to carry through the error effects from start to
finish. In Axyz elements build on other elements, and most originate at the
Instruments, i.e. angles and distances produce points which can create
shapes which in turn can create further shapes and points. If you start off
with an accurate knowledge of measurement quality for angles and
distances it should be possible to generate good error estimates for point
coordinates and shape parameters.

Very conveniently, error propagation is a by-product of least squares
solutions. Since these involve weights based on the variance factor, the
variance factor must be known in order to correctly scale the error
estimates
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For error propagation, Axyz always uses the preliminary variance factor =
1, except for shape fits where an RM S statistic has been requested. In these
cases the calculated variance factor is used. Thiswill only give meaningful
values for the error estimates of shape parameters if reasonable redundancy
is provided. Y ou will not get a good value of the error in afitted circle's
radiusif you only use 4 points to create the circle.

The Axyz routines therefore effectively rely on the user to provide good
quality error estimates.

4.9.2 The scaling mechanism at work

48

In asimpleleast squares analysis, the following matrix equation is
developed:

Ax=l+v

where

* The vector x represents the unknown parameters

» The coefficient matrix A depends on the actual equations describing the
model

* | isaknown vector derived from the known measurements

* v isthe vector of measurement residuals

A weight matrix W is associated with the residuals and the solution is
given by:

[ATW Al x = [ATW] I

which can be written as:
Nx=t whereN=[ATW A]andt =[AT W] | (i)

The solutionis:
x=N"t (i)

To obtain statistical information about the unknowns, x, two matrices are
involved. %, is the required covariance matrix and Q,y, ascaled version of
this, isthe co-factor matrix (notation used by Mikhail). It is also necessary
to make use of either the preliminary variance factor a,? or the calculated
variance factor (6,)* of the residuals.
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Mikhail® proves
Qu =N*

By definition Q. issimply aversion of Z,, scaled by the variance factor,
I.e
Zxx = O-02 Qxx or Zxx = (60)2 Qxx

therefore
Y. =0y N? or = 6,°N* (iii)

Thisindicates how the least squares solution for the parameters also
automatically provides the statistical information about the parameters via
the matrix N™.

Either expression should give the same result, since both versions of the
variance factor should be the same.

Re-scale the variance factor with fixed measurement errors

The actual value of the variance factor is decided by the user's choice for
0o’ but this does not really affect results and in particular does not affect
the values of the parametersin (ii) or the values in the covariance matrix in
(iii). Thisis because a change in the value of o, affects the weight matrix
W and hence both N and t as follows.

Suppose oy’ is doubled without changing estimated measurement errors,

because the user thinks that makes better numbers for the weights. The

following effects are then automatic:

 All the elements of W are doubled

* N andt aredoubled, asindicated by (i).

« Theinverseof N, i.e. N, is halved (matrices often work just like
ordinary numbers)

It isthen obvious from (ii) that x remains unchanged and from (iii) that %,

remains unchanged.

Re-scale the measurement errors with fixed variance factor

In contrast to re-scaling the variance factor, re-scaling the standard error
estimates of the measurement residuals with afixed variance factor has a
dlightly different effect.
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Suppose the measurement residuals are uncorrelated and their estimated

standard errors are reduced by a factor of 2.

» Each element of W then increases by afactor of 4 since the weight isthe
inverse of the square of the standard error.

* N andt increase by afactor of 4

e Theinverse of N reduces by afactor of 4

Againitisobviousfrom (ii) that x remains unchanged. However equation
(iii) shows that, using the preliminary variance factor, Z,, is now reduced
by afactor of 4 since the inverse of N reduces by this factor but the
variance factor stays the same.

Re-scale the variance factor but keep unit weighting

If the variance factor isre-scaled but a unit weight matrix is still used then,
in effect, the estimated measurement errors are re-scaled by the same
amount as the variance factor in order to keep the weights = 1.

A change of variance factor has no effect on the parameter values or their
error estimates.

A change of estimated measurement error has no effect on parameter
values but affects their error estimates. Thisis the net result.

4.9.3 Error propagation with preliminary or calculated variance factor?

50

|'s there then any reason to choose either oy’ or 6, when calculating the

variances and covariances of the computed parameters? With the exception
of unit weighting for shape fits, Axyz always uses o,” = 1 in all cases of
error propagation. This effectively means that the user'sinitial estimates of
measurement quality are always carried through the analysis.

Several cases can be considered. Remember that 6,° is calculated as 6,° =
(vI W v) / r, wherer is the redundancy.

No redundancy

If there is no redundancy 6,% simply cannot be cal culated. The least

squares analysis will still give a perfectly correct solution for the
parameters but residuals are zero, redundancy is zero and 6, = 0/0 which

Is an undefined mathematical quantity. In this case the user's preliminary
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estimation of measurement quality and relative weightsis the best
information available and so the only choiceisto use (0g)°.

Simulations

Something similar happens in asimulation if you feed the solution with an
excess number of perfect measurements. Because everything fits exactly,
all the residuals are zero although there are redundant measurements. The
calculation of 6,%isthen 6,°=0/r = 0. If thisvalueisused in (iii) then the

parameters are also estimated to have zero variances and covariances, i.e.
they are also perfect. Thisis mathematically logical and consistent but not
of much practical use. Instead the user would arbitrarily set avalue for oy’
e.g. 0o> = 1, and use this in combination with simulated variances for the
measurements.

Thiswould create a specific weight matrix and hence a specific estimate
for the errors in parameters corresponding to this particular ssimulated
measurement quality. If the simulated variances of measurements are then
scaled up to some other value, the weight matrix is similarly re-scaled.
Thiswill not change the values of the simulated parameters since N
scales down by the same amount ast scales up (equation (ii)). However the
simulated error estimates for the parameters will scale up, as they should
do when you simulate the use of lower quality measurements. Note that re-
scaling the measurement quality is not quite the same as re-scaling the
variance factor oy, discussed earlier.

oy> and 6,° are not very similar in value

Thisimplies one of the problems discussed in " Ptactical use of variance |
factoron page

If there is reasonable redundancy the lack of agreement indicates that the
weights are not correctly balanced, either because of the presence of some
bad measurements which should have alower weight or because some
group of measurements is assumed to be better or worse that it really is.
Ideally the bad measurements should be found and removed or the weights
re-assigned more appropriately and the solution run again.

If redundancy islow and there is no good reason to eliminate
measurements or re-assign weights, then the best procedureis to use o’.
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gy> and 6,% are consistent

When oo and 6,2 are consistent, Mikhail recommends aways using oy’
(see Mikhail* p250).

Directly assigned weights, e.g. unit weighting.

When weights are directly assigned, the user has not consciously chosen a
value for o, but 6, can be calculated and used for error propagation.
From the above discussion it can be seen that the best approach in error
propagation is to obtain agood feel for the errorsin the original data
source and propagate this information by using o , rather than using 6,°.

4.9.4 Error propagation with unit weighting

In shape fitting routines Axyz permits the user to calculate shapes using
unit weighting for the fitted points. As aresult al coordinates are treated
equally and no information about the actual measurement quality is used.

Asexplainedin "T}Lescaung-nqechanlsmat-woﬂ(ﬂon page Zi8__,lhe

preliminary or calculated variance factors are required in order to obtain
quality estimates of the computed parameters. When shape fitting uses
existing variances to create weights then the preliminary variance factor
(value=1) isused.

In the case of unit weighting the calculated variance factor is used. In this
case it has units of variance and its size should be typical of the residuals
produced. Unfortunately, if there is very little redundancy the residuals
will not be very meaningful in statistical terms and if thereis zero
redundancy there is no information at all from the results of processing.

If the redundancy is zero the variance factor cannot be calculated. In this
case errors are propagated using a preliminary variance factor of 1, which
iIswhat is done for error propagation when weighting by variance. Thisis
done ssimply in order to generate values for the data base. However since
the weights are dimensionless in this case, the variance factor is not
dimensionless. In fact, it is equivalent to avariance of 1 m?. In effect you
are estimating errors in shape parameters assuming that the fitted points
have standard deviations of 1m.
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4.10 Quality of angle and distance measurements

The quality of measured angles and distances determine the quality
estimates for all measured coordinates and any further 3D or shape data
derived from those coordinates.

Within Axyz, angles and distances are assumed to be uncorrelated. Their
quality is defined by standard deviations estimated by the user from
experience or analysis of previous work. These estimates are assumed to
depend on a particular instrument.

Default values of standard deviation are therefore separately defined for
horizontal angles, vertical angles and distances at each station during the
station setup procedure. These values can be changed at any time. The
default value cannot, however, be individually set for a specific
measurement.

Note

If these estimates are incorrect then the calculated quality estimates of
derived elements, particularly point coordinates, will also be incorrect. If
you assume measurements are better than they actually are, then point
coordinate quality will be estimated better than it actually is and vice
versa. It is therefore worthwhile ensuring that these estimates are good.

4.10.1 Multiple and 2-face measurements

Within Axyz it is possible to make multiple, repeated measurementsto the
same target.

If arepeated single face pointing is made, an average valueis calculated
and thisis then stored as the representative pointing.

Single pointings in both faces are separately stored, but combined into a
single representative pointing when used in the Orientation Module and
Single Point Solution.

Multiple pointings in both faces will generate an averaged value for each
face which are then used in the same way as single face pointings.

Multiple pointings can also be made in the form of bolt hole

measurements, which require evenly spaced pointings around the edge of a
bolt hole. In this case the average horizontal and vertical angleis
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calculated as the single representative pointing to the hole centre and
stored inthe job file.

In al cases of multiple measurements the same default standard deviation
isused for the final single representative value, as defined in the station
setup. Animproved quality figureis not generated.
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5. Coordinates and coordinate systems

5.1 Introduction

A 3D object is defined by pointslocated in a particular coordinate system.
A coordinate systemisaset of 3 mutually perpendicular, intersecting axes
and the coordinates of a point are defined with respect to these axes.

The axes intersect at the origin and a point is usually located by measuring
its distance from the origin along each axis. Thisis not the only type of
coordinate which is possible and the various types in use are described in
this section.

The coordinate values will also depend on the location of the origin and
the directions in which the axes point. Although the location and direction
of a coordinate system's axes does not affect the object's shape, it is often
convenient to work with coordinate values which have some direct
meaning, for example where the origin is the centre of adrill hole.

AXxyz permits users to define any number of coordinate systems and offers
several methods to do this. Once defined, users can easily switch between
coordinate systems and coordinate types.

5.2 Base coordinates and other coordinate systems

All 3D points on an object are derived from angle and distance
measurements made by the network of instruments which surround it. The
locations of the instruments are defined in a single common coordinate
system calculated by the Orientation Module. By using a single system,
any one point can be related to any other and this coordinate system
represents the source of all measured 3D data. Until the system exists
common coordinate data cannot be generated and further coordinate
systems and shapes cannot be defined.

This fundamental system is known as the base coordinate system. Its
parameters are stored in the "default” workpiece and given the name
"BASE", which is also used as the type name. Axyz stores all 3D object
coordinates here.

The base system has the following general properties
» Right-handed Cartesian coordinates
» Units of dimension in metres
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However, the user frequently wants to view the datain a different way and

can make the following alterations:

» Transform coordinates to a different origin and orientation, for example
to force a particular point to represent the origin (0,0,0)

» Choose adifferent type of coordinates, such as cylindrical (r,a,h) rather
than Cartesian (X,y,2)

» Select different dimensional units such as millimetres or inches

Any of these changes do not affect internal coordinate values and
coordinate data remains stored in its standard base format. Instead such
changes requested by the user are stored, together with any computed
parameters necessary to implement them. Whenever coordinate datais
displayed on screen, printed out or transferred to an external fileitis
temporarily modified according to the defined coordinate type,
measurement units and parameters of the chosen output coordinate system.
In effect the internal datais passed through a mathematical filter every
time the user viewsit.

5.2.1 Where is the base coordinate system?

56

The base coordinate system is defined by the Orientation Module, which
calculates the station locations and any orientation points in a common
network.

Briefly, in the final optimization of the network, the base coordinate
system ends up in one of two places.

1. On the object

Thisisafeature of acontrolled (object) orientation. Reference coordinates
on the object, defined by control points, are included in the orientation
procedure. The origin and axes which define the control coordinates are
used as the origin and axes of the base system.

2. At, or closeto, one of the stations

Thisisafeature of arelative (local) orientation. In this case control points
are not included in the orientation procedures. Since a meaningful origin
and axes are not provided, the origin and axes of the base system are
arbitrarily located at one of the stations. Depending on afurther optimizing
option the base axes may drift slightly away from this initial position.
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5.2.2 Can existing base coordinates change?

Base coordinates of existing points can change when the number of
measurements to a point change and/or the number of stationsin the
network changes. In both casesthere is different information available
which would normally result in a change of optimized coordinate values.
Typically this occurs when additional measurements are made to a point or
anew station is added to the network, but deletion of measurements or
stations has the same effect.

If a new measurement is made to a point from an existing station, the
point's coordinates are automatically re-calculated. These optimized point
coordinates must take account of this new measurement and will change
dlightly from the old values.

If anew station, with its new measurements, is brought into a network by
re-cal culating the orientation, the optimal shape of the entire network will
change dlightly to accommodate the new data. Users have the option to fix
existing stationsin their current locations but thisis not an optimized
result. If an optimized result is chosen all existing points will be re-
calculated to reflect the changes in station locations and angular
orientations.

If the re-calculation of orientation uses the same optimizing procedure,
then changes in coordinate values are expected to be small. However a
change in optimizing procedure can have much larger effects on existing
base coordinate values. For example, switching from arelative orientation
to a controlled orientation will move the base system originto a
completely different place and cause base coordinate values to change
significantly.

5.2.3 Definition of other coordinate systems

All other coordinate systems created by the user are defined with respect to
the base origin and axes by a shift, rotation and optional scale change.

For a definition of the parameters, see " Ttansformation parameters’ jon

page 8
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5.3 Classification of coordinate systems

5.3.1 Classification in the database (job file)

In the database, coordinate systems are identified in two ways:

Coordinate system name
In Axyz each coordinate system is given a name to uniquely identify it.

Coordinate system type

Coordinate systems are assigned a type which indicates the method used to
create them.

Example 1

A system of type "base" is created by the Orientation Module. Thisisthe
coordinate system used for storing all measured data and derived elements
and only one of these exists.

Example 2

A system of type "best-fit" is created when a best fitting 3D transformation
iscalculated in order to display coordinates in a coordinate system used to
design the object.

Example 3

If the axes defining a shape are used as a coordinate system the shape's
type will be given as the coordinate system type, e.g. "circle" if acircle has
been used.

5.3.2 Descriptive classification

58

Three additional terms are often used in discussions and explanatory text
and which indicate what coordinates and axes relate to.

Object coordinate system

The most meaningful coordinates which describe an object are generally
defined by selected features on the object itself. By suitably locating the
origin and axes of the coordinate system, measured coordinate values can
correspond very closely to the design coordinates used to manufacture the
object. Thisisvery convenient for building and inspecting features.
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Object coordinate systems can be created in two ways:
» By orienting the measurement network to control points

« By transforming an existing system onto design values, see 5.f ]
ransformation of coordinates

Local coordinates and axes

Theterm local is often used to indicate that a coordinate system is most
relevant to the feature which definesits origin, i.e. the coordinates and
axes are primarily of local interest rather than relevant to all measured
features.

Example 1: L ocal shape coordinate system

A circle, for example, is created with its centre defining the origin of a
local coordinate system. The xy axes of this system are in the plane of the
circle and the z axis is perpendicular to the plane.

Example 2: Local station coordinates

If atheodolite, for example, occupies a station in the measurement
network, itslocal axes, with origin at the centre of rotation, sometimes
define the base coordinate system within which 3D data are recorded [xref
to base system].

Note

Although every oriented station in a network can, in principle, display
local station coordinates, Axyz does not have a function which permits
every station to be used in thisway.

Instrument coordinates

Individual polar measuring instruments such as Total Stations and laser
trackers directly provide enough information to locate pointsin 3D space.
It is sometimes convenient to see these coordinates before the station
occupied by the instrument has been oriented into a network of two or
more stations.

Like local station coordinates, instrument coordinates are referred to the
internal axes of an instrument. However, unlike local station coordinates,
only points measured from the relevant instrument are displayed in its own
instrument coordinates. Other points in the network, measured from
Instruments located at other stations, cannot be displayed in a different
instrument's coordinate system. Instrument coordinates are intended for
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use at stations not yet oriented and, by definition, the necessary link does
not then exist between different instruments.

Note

Thereisaspecial case whereasingle Total Station or laser tracker is
used to measure an object and the base system is defined by the
measuring station. In this case base system coordinates are equivalent to
local station coordinates which are identical to instrument coordinates

ECDS local and object systems

ECDS users are familiar with the terms "local" and "object” coordinates
and coordinate systems. These are closely related to the ECDS terms
"local" (relative) and "object" (controlled) orientation, aswell asthe ECDS
"local to object” transformation.

ECDS alowed only two systems to exist, one located in a station which
was called "local" and generated by a"local" (relative) orientation. The
other was located in the object. This was named "object" and generated
directly by an "object" (controlled) orientation or by a 3D transformation
froma"loca" system onto the object.

Axyz has adopted the more flexible approach introduced in ManCAT in
which there can be many coordinate systems. Since more than two are
possible, the terms "local" and "object” cannot easily indicate a specific
coordinate system but the use of unigue names makes clear which system
Is being identified.

In Axyz theterms "local" and "object” are therefore used in a descriptive
way as outlined earlier.
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5.4 Examples of multiple coordinate systems

5.4.1 Example 1: Single instrument, relative orientation

v R

y 1 CIRCI;E-1 m
R

~—

The diagram shows a section of pipework measured by asingle Total
Station with several defined coordinate systems. (The axes look parallel
but thisis simply a convenience in drawing the diagram. In practice they
may point in any direction.)

Original coordinates were computed in arelative coordinate system called
"BASE", located by default at the centre of the Total Station and labelled
XyZ.

The coordinate system used to design the pipework has main axes along
the cylinder axes and origin at their intersection. These are labelled XY Z.
Thisisthe main object coordinate system. By measuring points on the
cylinders from the instrument and fitting cylindrical surfaces to these data,
a coordinate system called "PIPE-REF" has been created which is
eguivalent to this original object coordinate system.

An circular section has also been measured as "CIRCLE-1". It hasitsown
local reference axes labelled uvw which can also be used for viewing
other data.
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Finally the user has established an array of fixed targets with accurately
known coordinates in a coordinate system labelled "TARGET-REF". In
effect, these define a second object in the measurement field. The user
could measure the targets and calculate a best-fit 3D transformation which
would locate the coordinate system "TARGET-REF" with respect to the
base system. Thisis not particularly useful. It is more likely that this
configuration would be used to control the orientation of atriangulation
network, as the next example shows.

5.4.2 Example 2: Multiple instruments, controlled orientation

\'

CIRCLE-1 m
th i
R

~———

In this configuration the fixed reference targets are used as control points
in a second measurement of the pipework, for example using a
triangulation technique. As aresult of the controlled orientation, the
coordinate system defining the reference targets becomes the base system.
Thisislabelled "BASE" but is equivalent to the system labelled
"TARGET-REF" in the earlier example.

Once again shape fitting methods can establish the coordinate systems
"PIPE-REF" and "CIRCLE-1" which are now defined relative to the new
base coordinate system.
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5.5 In brief: changing coordinate types and systems

+Y +Y
A
X P ch P
ange
y coordinate type r .
=+X =+X
Transform
coordinates
+Y +Y
A ay A +Y
O , d
Y P P
XD XO
% 0
Yo +X' Yo +X'
=+X =+X

For a 2D situation the diagram summarizes two ways of presenting
coordinates. The situation in 3D is essentially the same.

(A) Changing the type of coordinate

Coordinate systems are normally based on orthogonal (rectangular) axes
and thisisthe casein Axyz. To specify the position of a point with respect
to the axes it is most common to record its distance from the origin along
each axis. Coordinates of point P are then (x,y).

However thisis not the only way of defining the position of P with respect
to the axes. It could also be located by defining its distance from the origin
along a specified direction. In the example the two elements defining the
location of P are called polar coordinates and expressed as (r,0).

Note that there is no change of origin or reference axes. A different
coordinate type is simply an alternative way to locate a point with respect
to the same coordinate system. In fact, it is necessary to keep the axesin
order to define uniquely any rotational values, for example 6.
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Converting between coordinate types is a simple mathematical procedure.
In the 2D case above:

From (x,y) to (r,0):

r = X2 + y2

0 = arctan (y/x)

(must use afunction which finds the correct quadrant where P is
located)

From (r,0) to (x,y):

X = cos(0)
y =r sin(0)

(B) Transforming coordinates to a different coordinate system.

Sometimes the position of the coordinate system is not convenient and you
want to transform coordinates into another coordinate system.

The diagram shows how the coordinates of P would be defined in a new
coordinate system X',Y". If you know the transformation parameters
X0,Y0,00 YOu can easily convert (x',y") to (x,y) or (X,y) to (x',y"). The user
has several options for defining the transformation parameters:

» Manually specify the shift (Xq,yo) and rotation (a)

» Select apoint to be the new origin and another point to define the
direction of x' or y'. Transformation parameters can then be
automatically computed from the existing coordinates of these two
points.

» Supply coordinates in the new system for at least two points measured in
the old system. Transformation parameters can again be automatically
computed.

Transforming between coordinate systems is again a simple mathematical
procedure. In the 2D case above:

From (x,y) to (x',y"):
X" = (X - Xo) €0S(0lp) - (Y - Yo) SIN(0lo)

y' = (X - Xo) sin(ag) + (Y - Yo) cos(0lp)
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From (x',y') to (X,y)

X = Xg + X' c0S(0) +Y' sin(0)
Y = Yo - X' sin(0o) +Y' cos(dl)

(C) Transforming coordinates and changing type

Both techniques can be combined. Once the transformation has been
specified the transformed data can then be displayed in any of the optional
coordinate types.

5.6 Mathematical rules

It isdifficult to discuss coordinate systems and transformations without
establishing some conventions, two of which are briefly reviewed here,

5.6.1 Right and left handed axes

The order in which axes are defined isimportant. A simple 2D case
illustrates the point.

X Y NI
QO at(0,0) y y
A at(1,0) @ n E]_{%
[ at(0,1)
- D) —_—
X & C & X
Left handed Right handed

If axes are defined in an order say X then Y, the set of coordinates defining
apoint are assumed to correspond to this order. For example, a point with
coordinates (3.8,4.5) has X value= 3.8 and Y value = 4.5. However, the
axes can be physically drawn in two different ways and the shapes form a
different pattern in each. One pattern isamirror image of the other.

Y our hands provide a simple way to remember the arrangement. With
palms up and thumb and forefinger of the left and right hands extended as
shown, they point in the positive directions of the first and second axes
respectively (here called X and Y). If the third finger is extended upwards,
it will point in the positive direction of the third axis of a 3D system
(typically called Z).
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5.6.2 Direction of rotation

Transformations usually involve either rotating objects or their reference
axes into new positions. Directions for positive rotations follow aright
handed rule.

x 20®

ﬁ + n + axis

x\B\'i\\QQ
Right hand rule for determining the positive direction of rotation about an axis

Right handed systems

+Z

+Z
+Z' +Z'
+Y'
+Y +Y Y +Y
+X'
+X +X +X
+X'

Positive rotation of axes about X Positive rotation of axes about Y Positive rotation of axes about Z

Left handed systems

+7 +Z' +Z +Z
+7'
+X'
+ +Y'
X +Y +Y +X +Y
+Y' +X +Xv
Positive rotation of axes about X Positive rotation of axes about Y Positive rotation of axes about Z

The upper diagram shows the right hand rule for positive rotations.
Imagine you grip the axis in your right hand with the thumb pointing
towards the positive direction of the axis. The curl of your fingers towards
the tips then shows the positive direction of rotation. Note that this
definition is not linked to right and left handed axes and is simply away of
defining a positive angular direction about a single axis.
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The lower two diagrams show the creation of new axes by applying
positive rotations about each of the existing axes, for both right and | eft
handed systems. A positive rotation about X movesY and Zto Y'and Z'
respectively. The X axisitself does not change in this case. Similar effects
are seen for positive rotations about Y and Z.

In summary, right handed axes:
+ X rotation moves +y axis towards +z axis
+y rotation moves +z axistowards +x axis
+z rotation moves +x axis towards +y axis

In summary, left handed axes
+ X rotation moves +z axis towards +y axis
+y rotation moves +x axis towards +z axis
+z rotation moves +y axistowards +x axis

Note
Rotations about the X, Y and Z axes are often labelled with the Greek
letters w/Q (omega), ¢/d (phi) and k/K (kappa) respectively.

5.7 Transformation of coordinates

5.7.1 Overview

The purpose of atransformation isto view coordinatesin a different
coordinate system from the one they are stored in. If the origin and
direction of axes of the new system is known with respect to the old
system, it is asimple mathematical procedure to convert coordinates from
one to the other (see "Im brief: changing coordinate types and "|on page

63).

Transformation of the coordinate system is often used if measurements
have initially been made in arelative system defined by an instrument but
it is more convenient to view datain an object system which relates to
design or blueprint coordinates.

A new coordinate system can be defined by 4 different transformation
methods.

In brief: Manual transformation

At the simplest level coordinate transformation involves re-scaling,
shifting and rotating the existing reference axes. If you manually specify
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the scale factor, shift or rotation it is then a simple matter to define
coordinates with respect to the new reference axes rather than the old ones.

Axyz provides functions to separately:

» Re-scale current coordinates

» Trandlate (shift along each axis) the current origin
* Rotate current axes

In brief: Alignment of axes

The new reference axes can be aligned to a particular set of points. For
example:

Point A should be the origin (0,0,0), the X axis should pass through point
B and the XY plane should pass through point C (which must form a
triangle with A and B)

In brief: Transformation onto reference coordinates

The new coordinate system can be defined by the design values of selected
measured points.

This method requires at least 3 measured points which form atriangle to
have nominal design values in the object's own coordinate system. Since
the measured points will not conform exactly to the design shape due to
manufacturing tolerances and measurement uncertainties a best fit using
least squaresis used for the transformation.

In brief: Transformation onto computed shapes

The new coordinate system can be the local coordinate system of any
computed shape

5.7.2 Manual transformation

68

Manual transformations require the definition of an initial coordinate
system since scale factors, shifts or rotations are relative values which will
have different effects depending on the starting point. In Axyz therefore
the functions below need to know the starting system.

Manual transformations can be applied successively, with each new
definition based on the previous one. However the complete
transformation sequence is referenced directly back to the base system, in
which coordinates are actually stored, by combining the individual
transformations into a single transformation.

MATHU.DOC 31/1/00



Axyz ver. 1.4 Mathematics for Users
Starting Transformation New Action
system system
BASE t1=> SYST1 Create anew coordinate system
SY ST1 by some method.
SYST1 t2=> SYST2 Apply scaling, shifting or rotation to
SYST1tocreate SYST2
AXyz computes: t1xt2=tA
Stored information:
BASE tA=>» SYST2
SYST2 t3=> SYST3 Apply scaling, shifting or rotation to
SYST2to create SYST3
Axyz computes tA xt3=tB
Stored information:
BASE tB= SYST3
efc.
Re-scale
Y Y
a) Apply scale factor = 3 b b) Apply scale factor to to make hole separation =10
10.0
X X
X x'=3x
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A coordinate system can be re-scaled by either defining the scale factor
directly or by re-defining the separation between any two points to have a
certain value.

The 2D example shows:

a) Re-scaling by afactor of 3, i.e. al coordinates are multiplied by the
scale factor.

b) Re-scaling by defining the distance between the hole centresto be 10
units. The current separation is 3.14 units and the program derives a scale
factor of 10/3.14 = 3.1847. All coordinates are then multiplied by this
factor.

The 3D procedure functions in exactly the same way.

Note

Defining a new coordinate system by re-scaling an existing system can
be useful if you want to work in model coordinates. Suppose you are
constructing a 1/5 scale model of a component and you directly created
a BASE system using control points with design values of the actual
component. BASE values are therefore in an object system. Y ou would
also like to see the coordinates at the model scale. Define a new
coordinate system, e.g. MODEL, with a scale factor of 0.2 applied to
BASE and switch between them as required.

Rotate

A
< a) Rotate axes about the existing origin b) Rotate axes about the hole centre

L
e

€

o7

= 2
o Z

= A

o E
o
o
0
o
o
o
o
S

New coordinates can be defined by rotating the axes of the current system.
AXxyz permits a single rotation about any one of the 3 existing coordinate
axes using aright-handed system. This causes only the other two axes to
move. Additionally the fixed point of rotation can be either the existing
origin or any other named point.
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Rotation about origin

A positive rotation [3 about the Z direction which is not indicated but is
positive out of the page and towards the reader. The rotation is applied
through the existing origin. The bottom left corner of the object islocated
at thisorigin and it remains at the origin in the new system.

Rotation about specific point, e.g. hole centre

A positive rotation a about the Z direction, applied through the hole
centre. This time the origin changes. The hole centre will have the same
coordinate values in the new system but the bottom left corner will have
new coordinate values because it is no longer located at the origin in the
new system.

Note that the axes are rotated, not the object.

Shift

SX X'
sy

X

x'=20
a) Shift axes by sx and sy b) Shift origin to hole centre c¢) Shift hole centre to coords. (20,10)

Shifts can be applied in 3 different ways. The 2D example is shown for
convenience but the operation in 3D isidentical. Shiftsare applied using a
right handed system.

Shift axes by defined amount
The axes can be directly shifted in any axial direction. All X coordinates
are reduced by the value sx and all Y coordinates are reduced by the value

sy.

Shift axesto defined point

The shift is calculated by placing the new origin of coordinates at a defined
point. In the example the hole centre becomes the origin. If the old point
coordinates are (px,py) then these effectively become the axia shifts, i.e.
all X coordinates are reduced by the value px and all Y coordinates are
reduced by the value py.
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Assign coordinatesto named point

Thisiseasier to visualize as a shift of the object. The example shows the
hole centre coordinates increased by an amount in X to 20 and reduced by
anamount in'Y to 10. All X coordinates are increased by the same amount
and all Y coordinates reduced by the same amount.

5.7.3 Axis alignment

72

This technique creates a new object coordinate system by aligning new
axes to directions and planes defined by the object points. The new axes
may be freely oriented to object points or they may be placed in the object
but additionally oriented to gravity. The technique defines a new right-
handed system of axes.

Axis alignment does not require a starting system since the new system
axes are not defined relative to an existing system but defined directly on
the object. However for gravity oriented systemsit is assumed that the Z
axis of the base system represents the direction of gravity.

Note

It is not possibleto tell from coordinate values if a Z axis represents the
direction of gravity and the Axyz database does not explicitly record if
the base system has been levelled. For this reason the algorithms can
only assume that thisisthe case if the user requests an alignment to
gravity. No errors are introduced if a new systemis"aligned to gravity"
when the base systemis not levelled. In reality, the new system isthen
only aligned to the Z axis of the base system .
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Axis alignment by free orientation: Summary

Stn. 2

Stn. 1

Axis alignment: free orientation

The example shows a base coordinate system xyz established at station 1
and which is not levelled. A second station 2 is shown which is levelled,
I.e. its primary axis of rotation is parallel to the direction of gravity with
the upwards direction shown by the double headed arrow. This merely
IHustrates a mixture of possibilities. It isirrelevant to the free orientation
technique if there are one or more stations and if any, al or none are
levelled.

New axes are defined in the object by first selecting a controlling point c.
This point acts like an origin but it does not need to have coordinates
(0,0,0) in the new system and can take any value such as (100, 100, 50).

A second axis point ais selected so that the line c-aindicates the direction
of the first new axis. In the example thisis |abelled u and shown positive
from c to ain the example.

Finally athird offset point o is selected which creates a plane c-a-0, shown
shaded in the example. The purpose of the plane is to define the second
axislabelled v in the diagram. Thisliesin the plane and is perpendicular to
thefirst axis. In the example it is shown positive towards point o.

The third axis labelled w in the example can then be automatically
calculated. It is made perpendicular to the plane and creates a right-handed
system with the other two. The diagram assumes that the right-handed
order of axesis (u,v,w).
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Axis alignment by free orientation: Steps in procedure

~
=
=

Free Axis alignment: Offset point o must not lie on the line
Definition of axes 1 and 2 joining the controlling and axial points

In the following discussion the labels "axis 1", "axis 2" and "axis 3" only
indicate the sequence in which axes are defined and do not define the order
of coordinates.

The line between controlling point ¢ and axis point a defines axis 1, which
can be made positive in either direction.

The offset point o must form atriangle with ¢ and ato ensure that only one
plane and a unique second axis can be defined. If the offset point is on the
same line as c and & an infinite number of planes can be generated through
the line, three of which are shown in the example.

Axis 2 liesin the plane and is perpendicular to axis 1. The direction from
axis 1 towards the offset point o can be chosen as either the positive or
negative direction of axis 2.

Z (axis 3)

J

Y (axis 1)

X (axis 2)

Free axis alignment:
Definition of axis 3 (example).
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Axis 3 isautomatically created to make aright-handed rectangular set of
axeswith axes 1 and 2. In the example, right-handed coordinates are
assumed to be labelled X, Y and Z. The Y coordinates have been assigned
to axis 1 and made positive from c to a. X coordinates were assigned to
axis 2 and made positive towards the offset point. Z coordinates were then
automatically assigned to axis 3 such that their positive direction makes a
right-handed rectangular system with the other two axes.

Axis alignment by free orientation: Offsets
w

It may not be convenient in practice to measure points which lie exactly on
the new axes or planes. Instead, nearby points with known offsets in the
new coordinate system can be used.

The example shows how the controlling point ¢ may be substituted by
point ¢', with 3 axial offsetsalong u, v and w.

Point a may be substituted by point a with two offsets (along v and w in
the example).

Point o may be substituted by point o' with asingle offset (along w in the
example).

Axis alignment by orientation to gravity: Summary

Partial alignment to gravity ensures that the new first and second axeslie
in avertical plane.

Full alignment to gravity ensures that:

* Thenew first and third axes define a horizontal plane

* Thenew second axisis parallel to the direction of gravity (positive UP
or DOWN).
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a) Axis alignment: Partially oriented to gravity b) Axis alignment: Fully oriented to gravity

In example (a) a base coordinate system xyz has been established using
levelled instruments. The base z axisis therefore parallel to the direction of
gravity and positive up.

A controlling point c is selected as an origin for the new axes in the object.

The axis point a defines the direction of the first axis labelled v aong the
line c-a

A vertical planeisthen set through c and a. This plane defines the second
axis labelled u which liesin the vertical plane and is perpendicular to the
first axis. In the example it is positive in an upwards direction.

The third axis labelled w in the example can then be automatically
calculated. It is made perpendicular to the vertical plane and creates a
right-handed system with the other two axes. (The example assumes the
right-handed order of axesisu,v,w.)

In example (b) the above procedure is taken one stage further. When
aligning axesto gravity, it isvery likely that the existing coordinates are
very nearly levelled and the new axes should show this. When axes are
fully aligned to gravity it istherefore assumed that the line c-ais
approximately horizontal and the new second axis u isintended to be
vertical. This also means that the plane defined by the first and third axes
(v and w) is aso approximately horizontal.
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However since the line c-amay not be exactly horizontal a correction must
be made to the directions of the new axesin order to level the new system
exactly. By rotating the system about the third axis w, the plane containing
the v and w axes can be set exactly horizontal.

Note

When axes are fully aligned to gravity, the first axis v no longer passes
through the axis point a.

Axis alignment by orientation to gravity: Steps in procedure

9'\
4
? uP
uUP
Vertical plane 1 a
Horizontal plane
c
o | % _ -

Axis alignment to gravity: ) Controlling and axial points
Definition of axes 1 and 2 < must not form a vertical line

In the following discussion the labels "axis 1", "axis 2" and "axis 3" only
indicate the sequence in which axes are defined and do not define the order
of coordinates.

The line between controlling point ¢ and axis point a defines axis 1, which
can be made positive in either direction.

A vertical planeisthen placed through ¢ and awhich will define axis 2.
Axis 2 liesin the vertical plane and is perpendicular to axis 1. Its positive
direction may point either up or down.

The axis point a must have some horizontal separation from controlling
point c. If it lies vertically above or below ¢ then an infinite number of
vertical planes can be placed through c and a. Three of these are shown in
the diagram. If the line c-ais reasonably close to the horizontal it isalso
easy to recognize the up and down directions for specifying the positive
direction of axis 2.
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UpP

X (axis 2) ¢

»

Z (axis 3)

Y (axis 1)

Axis alignment to gravity:
Definition of axis 3 (example).

Axis 3isautomatically created to make a right-handed rectangular set of
axeswith axes 1 and 2. In the example, right-handed coordinates are
assumed to be labelled X, Y and Z. The Y coordinates have been assigned
to axis 1 and made positive in the direction from ato c. X coordinates were
assigned to axis 2 and made positive upwards. Z coordinates were then
automatically assigned to axis 3 such that their positive direction makes a
right-handed rectangular system with the other two axes.

Xl
Axis alignment to gravity (X up): Axis alignment to gravity (X down):
Set YZ plane horizontal Set YZ plane horizontal

Full orientation to gravity is possible with afinal rotation about the axis
which is exactly horizontal, i.e. the axis labelled Z in the example. This
rotation makes the plane of the defined first and third axes exactly
horizontal and the defined second axis exactly vertical. In the example the
first axiswas defined as Y, the second as X and the third asZ. The
example also defined X as pointing up. The diagram shows what happens
If X iseither positive up or down. In both casesthe Y Z planeis made
exactly horizontal.
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Axis alignment by orientation to gravity: offsets
Partial alignment
\ to gravity

Full alignment
A to gravity

Asin alignment by free orientation, it may not be convenient in practice to
measure points which lie exactly on the new axes or planes. Instead,

nearby points with known offsets in the new coordinate system can be
used.

The example for partial alignment shows how the controlling point ¢ may
be substituted by point ¢', with 3 axial offsetsalong u, v and w.

Point amay be substituted by point a with two offsets (along v and w in
the example).

If the system if fully aligned to gravity, then point a can only have one
offset (along w in the example).

5.7.4 Transformation onto reference coordinates

The final way of defining a new coordinate systemisto do the
mathematical equivalent of picking up an object and moving it into its
correct position by attaching it to fixed locating points. Thisis known as a
transformation onto reference coordinates and in some textbooksis called
asimilarity transform.
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Basic principle of 3D transfromation
The components of this action are a shift, coupled with angular tilts and
twists which match up object points Py, P,, P; with their design
counterparts Ry, Ry, Rs. If the object points are not quite at the same scale
as the design data then a scale factor may also be required to make the fit
as exact as possible.

Axyz uses design values located in areferencefile. The set of measured
points selected for calculating the transformation must contain at least 3
points which form atriangle. It is not necessary to have full coordinate
information at the reference points. The transformation cal culates 3 shifts,
3 rotational values and an optional scale factor, making 6 or 7 elementsin
all. Corresponding to this there must be at least 6 or 7 pieces of reference
coordinate information. This could, for example, be

e Full XYZ information at R;

e YZinformation at R, (or full XY Z information if a scale factor is
calculated)

e Zinformation at R;

If minimum reference datais used, see the additional commentsin "3
fTransformation'Jon page 8B. Normally more than the minimum 7 reference
elements will be specified by using full coordinate information at more
than 3 points. Since the measured points will not conform exactly to the
design shape, due to manufacturing tolerances and measurement
uncertainties, the transformation is calculated by a best fit using least
sguares.
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The algorithm provides options to hold the transformation parameters
fixed at values defined by the user. A typical option, for example, isto
request no change of scale by fixing the scale factor = 1.

Use of FIXED, NOT FIXED, WEIGHTED

The Axyz transformation program allows a degree of uncertainty in both
the transformed points and the reference points. This permits a high degree
of flexibility in tailoring the solution to operate in different ways and to
accommodate different measurement configurations.

Transformed points are typically measured points which are recorded with
acovariance matrix. This matrix defines the measurement quality of the
point. The square root of the diagonal elements (variances) are the standard
deviations of the point with respect to the coordinate system axes.
Reference data can also be defined with a measurement quality and each
individual coordinate can be assigned a standard deviation. (This can be
used to create a covariance matrix although there is no provision for
defining correl ations between coordinate values and hence covariances are
automatically zero.)

This facility enables transformed and reference points to be assigned a
weighting and in the solution each will develop small residuals. However
it would be common to ensure that the reference points have very small
standard deviations and hence very high weights so that in practice their
calculated values are almost identical to their nominal values.

It has also been explained how reference points may sometimes only be
partially known. For example, a reference point may only defineaZ
coordinate and be equivalent to stating that a particular point lieson a
gpecific XY plane. In this case thereisno need for X and Y values.
However, a partially known coordinate can be regarded as a known
coordinate of very low quality.

Finally it is sometimes convenient to treat all transformed points equally,
by assigning them unit weights and ignoring any covariance values or
standard deviations associated with them.

In order to accommodate the different features described above, weight
flags are defined for reference points.
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FIXED

If areference coordinate is defined as fixed, the user is stating that the
valueis either very accurately known or isanominal (design) value.
Internally avery small standard deviation is assigned to the value which
will ensurethat it has avery high weight when atransformation is
calculated. Thiswill ensure that the values do not change significantly
during the solution. In effect they are treated as known values.

NOT FIXED

If areference coordinate is defined as not fixed, the user is stating that the
coordinate value is unknown. Internally avery large standard deviation is
assigned to the coordinate which givesit avery low weight when a
transformation is calculated. Thiswill permit the values to change
significantly. In effect they are treated as unknowns.

Note

If points are used as setup pointsin the transformation and their
reference coordinates are only partially known, then the unknown
elements must be given reasonabl e estimates or the algorithm may fail.

WEIGHTED

If areference coordinate is defined as weighted, the user is stating that the
coordinate is accurately known but there is some degree of uncertainty
which is significant compared to the uncertainty in the points to be
transformed. For example, the reference values might not be defined by a
CAD system or blueprint but may have been measured by some other
system. In this case the user will also define a standard error to express this
degree of uncertainty.

Note

If the reference standard errors are much smaller than the standard errors
of the transformed values, it may make more sense to define them as
FIXED.

If the reference standard errors are much larger than the standard errors
of the transformed values then you should carefully consider if it makes
sense to use these values as reference val ues.
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Flags for unit weighting

If unit weighting has been selected then all points to be transformed onto
reference will be treated equally and given aweight value of 1. Their
covariance matrices will be ignored in this case.

If the corresponding reference values are defined when unit weighting is
active, only the flags FIXED and NOT FIXED are available. This allows
for the possibility that a reference value may not exist (NOT FIXED) but if
it does exist (FIXED) then the reference valueis given avery high weight
(much larger than 1) which ensures that it does not change in the solution.

Suppose however that you have switched between unit weighting and
weighting by standard deviation, and some reference values already have
the WEIGHTED flag . In this case the reference value will be treated as
FIXED and given avery high weight. This may not produce the effect you
want so it is always advisable to check the flags before computing the
transformation.

5.7.5 3-2-1 Transformation

A 3:2:1 transformation is anormal 3D coordinate transformation which
uses minimum reference elements, i.e. reference points whose coordinates
are only partialy known.

Although full reference coordinate information is not required for
calculating the transformation parameters, good approximate values are
needed for any unknown elements at 3 points defining less than 9 reference
values. There are two reasons for this:

1. The algorithm requires 3 setup points with full coordinate information in
order to calculate approximate transformation parameters. In such cases
the Axyz software will assume that any unknown coordinates in the
setup points have been provided with values which are good enough to
make the approximate calculation. If thisis not the case the
approximation may be bad and the transformation may not work.

2. If the algorithm worked directly with the minimum information, more
than one solution would be possible. See "Ambiguitiesin |
{ransformation"| on page dﬁ-lowever If reasonable approximations are
available for the missing elements this effectively forces the choice of
only one solution.
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The use of minimum reference information (6 or 7 coordinate values) is
very similar to axis alignment and produces an exact fit at the reference
values.

Assisting the solution

Y ou may have difficultiesin getting a 3-2-1 transformation to work. If the

solution does not actually fail, it may appear to be slow or it may appear to

converge to an inaccurate solution. The following techniques may help:

* Improve the estimates of the unknown coordinate values

* Add more pointsin case the minimum data contains an error

» Use an axis aignment to generate initial transformation parameters

* Increase the number of iterations in the solution to between 5 and 10.
(Although more iterations takes time, only the minimum amount of data
IS processed.)

» Set the percentage convergence change to asmaller value. A slowly
converging solution may stop too early otherwise.

Ambiguities in transformation

When minimum data is used to calculate the transformation, more than one
solution is theoretically possible. This could, for example, cause an object
to be transformed into the upside down position. As aresult, the unknown
reference values must be approximately known in order to force the
solution to find the correct position.

The first example shows areference Z plane. Measured points Pa, Ph, Pc
are transformed onto reference points Ra, Rb, Rc. Thereference datais
defined as follows:

e Only Raisfully knownin X,Y ,Z.

* Rbhasonly areference Z value whichisthesame asRa, i.eit liesin the
same Z plane as Ra but its XY values are unknown.

* Rchasonly areference XY position in the plane, i.e. its height above or
below the Z plane is unknown.

Clearly point Pc could also transform to Rc' which is as far below the plane
asRcisaboveit. See example 1.

Y et another alternative is shown in example 2. Here the transformed
triangle can be rotated about line Ra/Rc to move point Pb from reference
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position Rb to Rb'. Both Rb and Rb' have the same Z value so that the
conditions of transformation are still met.

If the approximate XY position of Rb and the approximate height of Rc
were known, this would make it easy to choose which of the possible
positions s the correct one.

These examples are special cases, chosen because they are easy to
visualize. In general, however, several solutions are always possible. In
order to resolve the ambiguities, unknown coordinate el ements must be
approximately known.

Example 1: Two possible positions
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5.7.6 Coordinate systems defined by shape fits

Every standard shape in the Axyz shape fitting routines has a coordinate
system associated with it. It is therefore also possible to view coordinates
in the coordinate system of any shape calculated by Axyz.

Note.

Since the definition of a coordinate systemis effectively a sub-set of the
definition required for a shape, Axyz stores coordinate systems under
shapes although the Internal Data Manager displays them separately.

5.7.7 ECDS "local to object" transformation

86

Axyz classifies object reference information according to its purpose and
handlesit slightly differently. Control points are used specifically to
control orientations Reference files are used to calculate 3D
transformations and provide the reference data for building and inspecting
points.

In contrast, ECDS has a single type of object reference information known
as "control points' These are used for:

» Control of orientation

» 3D transformation

In ECDS only two coordinate systems can exist. The "local” systemis
created by relative orientation and is defined by the local axes of one of the
theodolites. The "object” system is defined by "control™" coordinates on the
measured object. The object system can be created directly in the
orientation process by inclusion of the control coordinates. Alternatively a
local system can first be created. Then aleast-squares, best-fit 3D
transformation can be used to transform coordinates from the local to the
object coordinate system.

To generate trial transformation values, all 3 coordinates of at least 3
points must be approximately known in both systems, even if the minimum
7 fixed elements are to be used.

The following flags can be assigned to the individual control coordinates:
* FIX (fixed)

* UNK (unknown)

* APX (approximate)
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FIX flag - fixed control coordinate

The value of this coordinate is known and should not change. Thisis
achieved internally by treating it as a variable quantity with avery high
weight.

This corresponds to Axyz flag FIXED.

UNK flag - unknown control coordinate

Used for partial "control" points in which not all coordinates are known.
For example a certain control point may only define aZ coordinate. In this
case, X and Y are defined as UNKNOWN.

This correspondsto Axyz flag NOT FIXED.
APX flag - approximate control coordinate

This may be required to ensure athere is aminimum of 9 coordinate values
(full information at 3 points) which the program requiresin order to
estimate the transformation parameters. From the users point of view the
coordinate is unknown but a good estimate of itsvalue is available.
However, once the information has been used to estimate the
transformation parameters, coordinates flagged as APX are subsequently
treated as UKN (unknown).

Thereis no corresponding Axyz flag. If Axyz needs approximate data it
simply assumes than the current coordinate values are reasonabl e estimates
and a specific flag is not required. The Axyz flag WEIGHTED has no
corresponding value in ECDS since ECDS does not allow for variation in
quality of reference values.

ECDS 3:2:1 and 3:2:2 transformation

The ECDS techniques based on the use of minimum control can also be
achieved by providing equivalent minimum control to the
"Transformation" functionin Axyz. See:

"R lon"l on page 8

Alternatively asimilar effect can be achieved using the "Axis Alignment"

function in Axyz. See "Akis alignment" on page 74]
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5.7.8 Transformation parameters
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A transformation provides a new origin point and new axial directions. The
purpose of the transformation is to take coordinates known in one system,
typically the base coordinate system, and display them with respect to the
new origin and axes.

The transformation makes use of the following parameters:

1) Location of the new origin with respect to the current coordinate system
2) 3 rotations from the current system into the new orientation

3) A scale change

The 3 rotations are implemented as a rotation matrix R.

L et new origin coordinates = (xn,yn,zn)

Let scalechange=s

For current coordinates (x,y,z), corresponding transformed coordinates
(xt,yt,zt) are then given by:

Xt X —Xn
yt| =sR[ly—-yn
zt Z—27n

Rotation matrix R

The rotational parameters w, ¢, K, are given about the current X, y and z
axes. Each produces an individual transformation matrix as follows:

1 0 0
Rx(w)=|0 cos(w) sn(w
0 —-sn(w) cos(w)

cos(¢) O -—sin(g)
Ry(p=| 0 1 0

sin(p) O cos(@

cos(k) sn(k) O
Rz(k) =| —sin(k) cos(k) O
0 0 1
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They are combined into asingle matrix R = Rz * Ry * Rx where the
elements of R are given by:

r11 = cos (K) * cos (¢)
r12 = sin (K) * cos (w) + cos (K) * sin (¢) * sin (w)
r13=sin (k) * sin (w) - cos (k) * sin (¢) * cos (w)

r21=-sin (k) * cos (¢)
r22 = cos (K) * cos (w) - sin (k) * sin (¢) * sin (w)
r23 =cos (K) * sin (w) + sin (k) * sin (¢) * cos (w)

r31 =sin (¢)
r32 = - cos(¢) * sin (w)
r33 =cos(¢) * cos (w)

5.8 Types of coordinates

Coordinate systems are normally defined by 3 mutually perpendicular axes
through an origin. The axes are conventionally labelled X,Y,Z in aright
handed sequence athough aternative labels are used in certain industries.
With respect to these coordinate systems a point is usually located by its
distance from the origin along each axis. The resulting triplet of numbers
(x,y,2) isknown as a point's Cartesian coordinates (named after the French
mathematician René Descartes) or rectangular coor dinates.

However thisis not the only way of expressing coordinate values and
alternative ways may be more convenient. For example, when measuring a
cylindrical object such as a storage tank it may be useful to define a point
by its position along the cylinder's axis, the perpendicular distance out
from the axis and angle around the axis from some defined zero direction.

The right handed rectangular system is used by Axyz as the starting point
for conversion to other coordinate types, since the Axyz base systemis of
this type.

5.8.1 Rectangular coordinates

3D rectangular coordinates are defined by 3 mutually perpendicular axes
(each is at right anglesto the others). The axes are often called X, Y and Z
and a set of coordinates is conventionally given in the order (X,Y,Z).
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+Z
A ® P (x,y.2)

Right-handed Cartesian (rectangular) Left-handed Cartesian (rectangular)

Right handed axes follow the right handed convention for the first, second
and third axes.

Left handed axes follow the left handed convention for the first, second
and third axes. When Axyz changes from aright handed to a left-handed
system, the signs of the X coordinates change but Y and Z values remain
the same.

5.8.2 Cylindrical coordinates

90

In Axyz cylindrical coordinates are derived from aright handed
rectangular system. In acylindrical systemthe X and Y values are
expressed in terms of aradial (distance) offset from the Z axisand a
horizontal angle of rotation. The Z coordinate remains the same.

Thisisaconvenient system for measuring cylindrical objects where the
cylinder axis corresponds to the Z axis of the rectangular system. If the
cylinder is standing upright, the Z axis corresponds to a height
measurement, which is the alternative name implied in the diagram. Angles
are then horizontal angles of rotation around this axis.

A set of coordinates is conventionally given in the order (radius, horizontal
angle, height).

In two dimensions only the angle and radial distance of the point from the

origin are required. In this case coordinates are conventionally known as
polar coordinates (but see also Spherical) |
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A P (r,o,h) N P (ro,h)
L o
h h
+Y +Y
00 900
270° o 180°
r a T
180° 270°
+X +X
90° 0°
Cylindrical clockwise Cylindrical counter clockwise

In a clockwise system horizontal angles are measured starting at zero on
the Y axis and increasing towards X which isat 90°. Thisis aclockwise
increase when viewed from above.

In a counterclockwise (anticlockwise) system horizontal angles are
measured starting at zero on the X axis and increasing towards'Y whichis
at 90°. Thisisa counterclockwise increase when viewed from above.

Note

It can be useful to define acylindrical coordinate system where you have
anumber of points which should be approximately the same distance
from a particular axis. The offsets from the axis should then show up as
similar radial coordinate elements.

5.8.3 Spherical coordinates

In Axyz spherical coordinates are derived from aright handed rectangular
system. In a spherical system apoint islocated by a distance and two
angles rather than the 3 coordinate values along the rectangular axes. For
axes |labelled XY Z, and Z regarded as vertical, the point is located by its
distance from the origin, horizontal angle in the XY plane and zenith angle
measured from the Z axis.

A set of coordinates is conventionally given in the order (distance,
horizontal angle, zenith angle).

Coordinatesin this format are directly produced by instruments such as
Total Stations and laser trackers. These measure the distance to a point and
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the corresponding horizontal and vertical angles. Spherical coordinates
may sometimes be confused with polar coordinates which are the two
components (distance, horizontal angle) recorded in the 2D case (see aso
"Cylindrical coordinates’ Jon page 9D).]Thisis because the descriptive term
polar is often applied to these types of instruments.

The naming of the second angle in a spherical system isalso potentially
confusing. It is mathematically known as a zenith angle whose zero
directionisverticaly up. It isnot the angle of elevation or depression with
respect to the XY plane, both of which are also called vertical angles
(positive if elevation, negative if depression). However the encoder on a
polar instrument which measures this value is known as the vertical
encoder or vertical circle and its output is sometimes called the vertical
angle eveniif it isactually a zenith angle, asisthe case with all Leica
Instruments.

I P (dcup) . P (dup)
(] (]
p ¢ p
+Y +Y
\ 0° \ 90°
270° “ 180°
o
180° +X 270° +X
90° 0°
Spherical clockwise Spherical counter clockwise

In a clockwise system horizontal angles are measured starting at zero on
theY axis and increasing towards X which isat 90°. Thisis aclockwise
increase when viewed from above.

In a counterclockwise (anticlockwise) system horizontal angles are
measured starting at zero on the X axis and increasing towards Y whichis
at 90°. Thisisa counterclockwise increase when viewed from above.

Note

It can be useful to define a spherical coordinate system where you have
anumber of points which should be approximately the same distance
from a particular point. These should then show up with similar distance
coordinate elements.
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5.8.4 Theodolite and Total Station readings (spherical coordinates)

Thereisalack of standardization regarding coordinate elements, the way
they are specified and the way they are grouped. Thisisnot simply an
issue for Leica. For example, standard mathematical conventions are
slightly different from those used in surveying and navigation.

Leicastheodolites and Total Stations generate horizontal angles, zenith
angles and distances. A reading from either instrument type will generate a
measurement group which isvery similar to a set of spherical coordinates.
However they may be presented in aslightly different way.

Conventionally, readings from atheodolite are given in the order
(horizontal angle, zenith angle). By extension, readings from a Total
Station simply add the distance to this group, i.e. the readings are given in
the order (horizontal angle, zenith angle, distance).

To keep both types consistent, Axyz adds a dummy zero distance value to
theodolite readings, so that each produces the set (horizontal angle, zenith
angle, 0.0).

The horizontal angle is measured positive clockwise, in the same way as a

bearing in navigation. In industrial metrology the local axes of a theodolite

or Total Station are treated as right handed. They therefore follow the

convention:

e yaxison horizontal zero

» X axison horizontal 90°

o z axispointsverticaly up when the xy plane is horizontal (i.e. when the
instrument is levelled).

The origin of the axesis at the centre of rotation.

Thisisidentical with the definition for a coordinate system defined as
"spherical clockwise" except for the order of coordinate elements.

Instrument reading: (horizontal angle, zenith angle, distance)
Spherical coordinate: (distance, horizontal angle, zenith angle)

In practice, instrument readings are presented by Axyz using agrid in the

style of a spreadsheet. If wished, users can re-arrange the order of the
columns to match the pattern of a spherical coordinate set.
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6. Orientation Module

6.1 Orientation Module in brief

The Orientation Module takes all the current measurements, or a sub-set
edited by the user, and mathematically builds a measurement network of
stations from which further object points can be measured. This network is
located in a common coordinate system known as the base coordinate
system. All object coordinate datais stored in this system although they
can subsequently be viewed and output in any other coordinate system
defined by the user.

The Orientation Module operates in two distinct stages.

1. Initial and approximate estimation of station parameters (location and
tilt), orientation point positions and scale bar |ocations using standard
orientation methods

2. Final and optimized estimation of these values, also known as a bundle
adjustment.

6.1.1 Orientation methods, measurements and points

94

Theinitia estimation of values makes use of orientation measurements
and basic orientation methods such as collimation or ECDS object
orientation. It is up to the user to ensure that there are sufficient orientation
measurements to enabl e the network to be approximately constructed,
although the module will report difficultiesif thisis not the case.

Some orientation measurements are only approximate and not used in the
final optimization stage, the bundle adjustment. Again, therefore, the user
must ensure that there are sufficient properly configured point
measurements to ensure a solution, although a check is made that there are
sufficient accurate measurements to calculate, in principle, the unknown
orientation parameters and any associated point locations.

Sometimes points may be measured purely to ensure that an orientation is
successful or to improve its accuracy. These are not necessarily part of the
measured object and may be called orientation points. However normal
object points may be sufficiently good for orientation purposes. Thereisno
distinction in the database between "orientation" and "normal" points.
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6.1.2 Optimization by bundle adjustment

The bundle adjustment is aleast squares optimization. It takes the
"bundles’ of instrument pointings and makes successive "adjustments’ to
the network parameters until there is a best fit between the mathematical
model of the network and the actual measurements.

6.1.3 Changes as network is updated

The Orientation Module can be used repeatedly as a measurement network
Is extended with further stations and measurements. Every time its results
are accepted the base coordinate system may be re-defined and existing
base coordinates may be modified.

6.2 Building a measurement network

In order to measure an object you need a measurement network. Thisisthe
arrangement of instrument stations from where most of the object points
are measured and located in 3D. In order to obtain meaningful results, the
Instrument stations, object points and any other relevant targets and
ancillary equipment must be located in a common frame of reference or
coordinate system. Thetask here is therefore the mathematical
construction of the measurement network in a single coordinate system.
Thisis known as the base coordinate system and the task is carried out by
the Orientation Module.

6.2.1 Building a network for on-line measurement

The basic stages in measuring an object on line are these:
1) Construct a network. Thisitself is a 2-stage process
» Find approximate initial values for the locations of stations and
ancillary devices and targets
» Optimize this approximate information to obtain an accurate picture
of the network
2) Measure the required object point coordinates on line.

A large object may have to be measured in parts, so the sequence may be
repeated as:

1a) Construct part of the network

1b) Measure part of the object on line

2a) Add another section of network
2b) Measure another part of the object on line
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6.2.2 Single step network and object measurement (off-line analysis)

An dternative to constructing an optimized network from which object
points are measured, a single stage approach is possible. With this
technique you measure all the required object points at the same time as
any measurements needed to construct the network, and then compute
everything simultaneously.

In contrast to the 2-stage approach, all station and point locations are
optimized in one procedure. In the 2-stage approach two completely
separate optimizing procedures are active - one mainly for the stations
(some object points included) and one for individual points measured on
line.

The alternative, single stage approach is often used in photogrammetry and
videogrammetry. It is effectively an off-line calculation of object points.

Example of single stage object measurement

» Placetargetson aradar dish

» Take adozen images (conventional or electronic) from different
locations

* Process the images to obtain camera locations and target coordinatesin
acommon frame of reference

» Do any further off line processing, e.g. fit a paraboloid to the target
points

6.2.3 Single step or 2-stage method in Axyz?
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Axyz users generally require on-line coordinates, so many features of
AXyz accommodate the two stage process. However, the aternative
technique will still work. Y ou could take a single theodolite or Total
Station, move it to different locations, make all possible pointings at each
location and then process all measurements off line.

The single stage processis really equivalent to first stage in the 2-stage
process. To construct a network you must make measurements to some
targets in the object space. All that happens in a single stage process is that
extrapoints, i.e. al the object points, are added into this set of
measurements.
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6.2.4 Orientation methods

When constructing the network Axyz makes use of "network building
blocks". These provide different ways of positioning one station with
respect to the existing stations in the network or directly into the
coordinate system which has been established. These building blocks are
known as orientation methods. They enable the initial and approximate
orientation parameters for each station to be cal cul ated.

A station requires 6 orientation parameters to locate it with respect to
another station or a frame of reference. These are the 3 coordinates of its
position and 3 rotational or tilt parameters. The rotational parameters
express its angular attitude, just as the angles of roll, pitch and yaw tell you
what angle an aircraft has with respect to the ground.

Targets are involved in the orientation procedures and they also require
initial coordinate values in the common coordinate system. They may be
scale bar targets, control points with known coordinates or just additional
orientation targets with unknown coordinates whose sole purposeisto
ensure that the network has a strong geometry and can deliver the required
accuracy. Control points and orientation targets may also be points on the
measured object.

Orientation methods depend on the underlying technique for locating
points which in Axyz can be one of two types:

* Polar measurement

* Triangulation

These concepts are devel oped more fuI ly in the following sub-sections and

2! A tron on page 1@
"(Dptl mi zed orientation: the bundle adjustment"|on page 1p1.]

6.3 Polar measurement

Polar measurement records the angular pointing and distance from the
measuring instrument to the target point. Total Stations and laser trackers
work in this way. Polar measurements are equivalent to spatial coordinates
in a spherical coordinate system and are easily converted into orthogonal
3D values.
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With this technique full 3D measurement is possible from asingle
Instrument. However it is common to require more than one polar
measuring station in order to fully cover all points of interest on an object.
This can be achieved by using several instruments or one instrument
moved to severa locations. Individual stations must therefore be linked
together into a common network in order to obtain object coordinatesin a
single coordinate system.

6.3.1 Diagram: Principle of polar measurement

Target location by polar coordinates

6.3.2 Orientation with polar measurements
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Thislinking or orientation procedure can be achieved using asimple 2D
transformation if stations are levelled.

The example shows a levelled station being oriented into an existing
levelled coordinate system by a 2D transformation. If not all stations are
levelled, or control pointsin atilted system are used to link the station,
then at least 3 existing points must be measured. Thistechniqueis
mathematically identical to a 3D coordinate transformation.

Although this technique can produce good resultsit can still be improved
by optimizing with the bundle adjustment. Optimization will also deal with
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redundant and overdeter mined cases where, for example, more than one
polar measurement is made to a particular point.

Example: Orientation by polar measurements

Orient new polar station by transformation

Existing measurements ; o :
using measurements to existing points

T1 T1 T

Stn 2

ay

T2 Stn 2

6.4 Triangulation

Theodolites, which measure angle only, employ the principle of
triangulation to locate pointsin 3D space. The diagram shows how the
technique takes intersecting rays from at least 2 locations in order to
generate 3D target coordinates.

6.4.1 Diagram: Principle of triangulation

Principle of triangulation
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6.4.2 Diagram: Analysis of triangulation

Nh
(2)
A oN
r hA hB
rB BB
oA aB BA h
b rA rB

. Vertical planes
Horizontal plane

6.4.3 Simple analysis of triangulation
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The diagram showing the principle of triangulation represents a very
simplified form of triangulation in which both instruments are levelled and
measure horizontal angles from the common connecting line between
them.

Evaluation of the triangles gives the following:

Assuming the horizontal base length b between the instruments is known,
the following information is easily derived:

The horizontal triangle is fully defined by the base length b and measured
horizontal angles aA and aB. The horizontal rangesrA and rB can be
calculated and the horizontal position of the target point, Nh, found.

In the left hand vertical triangle rA is now known, as is the measured
vertical angle BA. Thisis sufficient to calculate the target height hA.

In fact the target height can also be computed from the right hand vertical
triangle in asimilar way, assuming that the instrument height difference h
isknown. This gives a second calculation for target height, hB.

This simple case demonstrates redundancy and the need for an optimized
solution. Clearly it is also necessary to know the instrument separation and
the fact that both are levelled. In general, the orientation of one with
respect to the other is required.
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6.4.4 Simple orientation methods in triangulation

Here are some simple techniques which can provide fairly accurate
orientation.

Diagram: Accurate collimation

Existing station measures scale Orient new station by aligning collimation
points and collimation pointing pointings and fitting to scale points
L

Accurate collimation

Collimation means the sighting of one instruments rotation centre from
another, i.e. the base line between them is directly measured. This makes it
particularly simple to line one up with the other.

The diagram shows the procedure with two levelled stations which have
additionally measured a scale bar identified by the targets T1 and T2.

Diagram: Horizontal resection

Orient new triangulation station by

Existing measurements ; 4 o .
horizontal resection onto existing points

o

= T1

................................

R T3 [, ... 0 T3 Stn 2

°T2 g1 T2
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Horizontal resection

Existing stations oriented, for example, by accurate collimation can create
some target pointsin alevelled system. A new levelled station can resect
its location with respect to these targets, which links it into the existing
network.

Accurate orientation methods

Although reasonably accurate, these simple orientation procedures still
benefit from optimization which in any caseisrequired in order to deal
with redundant information.

In some cases, particularly where stations are not levelled, additional
orientation techniques are needed.

6.4.5 Scale requirements in pure triangulation

Since theodolites do not supply distance information, scale must be
introduced in some other way.

Normally correct scale is introduced by sighting the ends of one or more
scale bars or by including orientation points with correctly scaled
coordinates. Known distances between two target points are then either
directly available or can be derived.

Alternatively the inclusion of control points can be used instead of, or in
addition to, scale bars. Control points have known coordinates which
means that they inherently include scale information..

If scaling information is not available the orientation can be calculated at
an assumed scale or model scale, for example by assigning the value "10
cm" to the distance between two instruments. An unscaled network can be
built up until such time as scale information appears, at which point
everything can be re-scaled to the true scale.

6.5 Control points
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Control points are locations with accurately known coordinates. It isvery
common for control points to be object features which have known design
(CAD) or blueprint coordinates.
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Control points are included in orientation methods for two purposes.

» They force the results of the orientation into the coordinate system
defined by the control, for example the CAD coordinate system used to
manufacture the object. Thisis convenient for further data comparison.

» They influence or control the results of an orientation, i.e. they affect the
shape of a measurement network. This can improve accuracy when the
geometry of the measurement network is not ideal.

Control points can have various sources, for example:

» Selected object features such as critical drill holes.

» Specially designed and fixed targets in a reserved measurement area into
which objects are brought for meas.

» Pointson areference frame or object inserted into the measurement area

When used to define a coordinate systemit is not necessary to have full
coordinate information at every control point. For example, a set of drill
holes might only be required to liein a particular XY plane. Only their Z
values would be strictly used to define this aspect of the coordinate system.
It istherefore possible to have partial control points.

The fact that control points influence an orientation can be advantageous
when a measurement configuration, for good reasons, has some
geometrical weakness. (Unless you have a good excuse for a weak setup
you should design a better one!) Adding control pointsto aweak
measurement network will help preserve accuracy in new measured
positions.

Ideally control point coordinates should be known to a higher accuracy
than they can be measured by Axyz.

Since control points have known coordinates they also supply scale
information to a network, although it is not normally good practice to rely
exclusively on control points for this purpose.

When control points influence a network's shape this means that thereis an
excess of control information.
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6.6 Levelling constraints

Theodolites and Total Stations are normally accurately levelled before use.
This makes their primary (standing) axes parallel to the vertical.

Some laser trackers can be referenced to the vertical by attaching a
separate tilt sensor. In this case the standing axisis not set parallel to the
vertical but its deviation from the vertical is accurately measured.

Many laser trackers are operated without atilt sensor and so cannot be
considered levelled. It is also possible to switch off atheodolite'stilt
compensator and operate the instrument in atilted position.

The Orientation Module will take account of all these situations. For
example, a sub-group of levelled stations will have their standing axes
forced to be parallél.

Where instruments have been levelled or referenced to the vertical thiswill
Impose an additional constraint on the network which may simplify the
orientation procedure and improve the accuracy of the measuring network.

6.7 Optimized orientation (bundle adjustment)
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The bundle adjustment brings together all the items discussed so far:
» Polar measurements (horizontal angle, vertical angle, distance)
 Triangulation measurements (horizontal angle, vertical angle,)

» Calibrated scale lengths (distance)

» Control points (coordinate value)

» Levelling constraints

The bundle adjustment must process this diverse range of equations and
constraints to generate an optimized configuration of stations and targets.
This configuration ensures that angular pointings and polar measurements
meet as closely as possible at the corresponding target positions.

Unfortunately, the equations in a bundle adjustment are non-linear. This
means that the optimized parameters which are computed must first be
approximately known. Hence the need for mathematically simpler
orientation techniques in order to "prime" the bundle adjustment with its
starting values.
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Some of these orientation techniques have already been mentioned. They
may, in fact, generate very good starting values. In fact, you might
consider them so good that further optimization is unnecessary. However
they are not truly optimal and in any case other methods may be used
which generate much less accurate starting values. In fact, even arough
manual estimate of relative positions by use of atape measure may be
sufficient to start the optimization.

Once the optimization starts, any approximate measurements used for the
trial orientation will be discarded. It isimportant to ensure that the
remaining measurements are sufficient to compute the optimized resuilt.

6.7.1 The minimum measurements required

The minimum number and distribution of measurements needed for a
successful calculation depend on the particular measurement configuration.
Inal casesonly arelatively small number of measurements are required.
The most difficult situation is also the most general case where two
theodolites have not been accurately levelled and have only made sightings
to common points. In this case a minimum of 5 common points must be
measured in order to calculate the location and tilt of one instrument with
respect to the other.

A mathematical argument can explain how a minimum of five
measurements provide sufficient information to locate one theodolite in the
coordinate system of the first, aswell as finding the positions of the five
unknown points.

Oneinstrument arbitrarily defines the coordinate system. Its coordinates
and rotational parameters are given the value zero. Targets and second
Instrument position are found with respect to this coordinate system.

Unknown quantities Total
Each of the five targets has three unknown positional elements 15
(X,Y,2).

The second instrument has three positional unknowns and 16
three rotational unknowns, e.g. roll, pitch and yaw asin an

aircraft.

Total number of unknown guantities: 21
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Equations Total
Each pointing generates two angle equations (one horizontal, 20
one vertical). There are 10 pointings, 5 from each instrument

The separation between two targets (scale bar) provides an 1
additional distance equation

Total number of equations: 21

With as many equations as unknowns, an analytical solution for the
unknowns can normally be found. Failure cases exist, for example, if al
fivetargets lie on astraight line, but in practice these are easily avoided.
Adding constraints to the situation will generally reduce the minimum
number of measurements required. For example if both theodolites are
levelled, a minimum of 3 common points will provide a solution.

6.7.2 Classification of orientation
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Optimized orientations have a descriptive classification to indicate if
control points were used or not. The following descriptions also emphasize
the optimization methods in use.

Controlled (object) orientation

A controlled orientation makes use of control points which force the
results into the coordinate system of the control and influences (controls)
the shape of the measurement network.

It may be called an object orientation since the control coordinate system
generally has some direct meaning to the object. For example it represents
the coordinate system used in the design and manufacture of the object.

Relative (local) orientation

A relative orientation does not make use of control points and the
coordinate system isinitialy arbitrarily defined by the first station
processed, which is the lowest numbered station.

It may be called alocal orientation because the local axes of a station
define the final coordinate system which is"local" to the network itself.
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Relative orientation with a balanced station network

This option produces avery similar result to a standard relative orientation
but distributes the estimated coordinate errors in a more even-handed way.

The optimization starts with the origin defined by the first (lowest
numbered) station processed. However asit proceeds the origin drifts away
from thisinitial position.

Relative and absolute orientation (Photogrammetry)

Many of the conceptsin Axyz are derived from photogrammetry where the
following terms are common:
» Relative orientation
An orientation of one instrument with respect to another
* Absolute orientation
An orientation with respect to the coordinate system of an object

In photogrammetry, absolute orientation could imply either the use of
control in the orientation processitself or the subsequent transformation of
arelative system onto "control” coordinates. In Axyz control points are
exclusively used in the orientation procedure and the transformation
function isimplemented as a transformation onto reference coordinates.
Thereistherefore a clear separation between these two similar but
different functions. Furthermore, absol ute orientation implies orientation to
the measured object's internal frame of reference but control points for
Axyz could have a source other than the main object of interest, such as
targetsin atest field. For this reason Axyz makes use of the explicit term
orientation to control.

6.8 Base origin and coordinates

The location of the coordinate axes and the values of the associated station
and point coordinates depend on the optimizing technique used by the
bundle adjustment. This defines the base coordinate system for all point
measurements. There may be small or even large changes in this
coordinate system when the orientation is re-cal culated with new or
different measurements, or a new optimizing method.
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6.8.1 Axes on the object (controlled orientation)

If reference coordinates on the object, defined by control points, are
included in the orientation procedure then the origin and axes which define
the control coordinates are used.

Thisisanatural consequence of the fact that the measured control points
must end up with coordinate values very close to their nominal values and
this can only be achieved by forcing the measuring network into the same
coordinate system.

6.8.2 Axes at the lowest numbered station (relative orientation)

In this case control points are not included in the orientation procedures.

Since ameaningful origin and axes are not automatically provided, the
origin and axes of the base system are arbitrarily located at the lowest
numbered station.

6.8.3 Axes near the lowest numbered station

If the option for a balanced station network is chosen, then arelative
orientation is calculated with base axes initially defined by the local axes
of the lowest numbered station.

As the optimization proceeds, the base axes drift away from thisinitial
position.

6.8.4 How the base axes and coordinate values can change
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The location of the base coordinate system, and the coordinate val ues of
any existing points, can change by small or large amounts when the
orientation is re-calcul ated.

Same optimization, new information

If an orientation is repeated with the same optimization technique but new
information, typically another station is added to the network, then the
base system will change. This happens because the optimization must
accommodate different data than in the previous calculation and the results
must be different although the changes should not be large.

To some extent this can be avoided by fixing existing stations at their
previous locations. However, thisis does not then provide afully optimal
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inclusion of anew station. Also, if athe new station has measured existing
points, the coordinates of these points will still change because of the
additional measurements to them.

Change from relative to relative plus balanced orientation

This change will cause the base axes to move from local axes at the lowest
numbered station to some location nearby. Users have reported movements
between 200um and 60mm.

Change between relative and controlled orientation

Thiswill cause avery significant switch of base system axes between the
local axes of the lowest numbered station and the axes defining the
coordinates of the control points.

The shape of the measurement network may also change slightly because
of the influence of the control points.

6.9 Transformation onto reference coordinates

Instead of employing an orientation to control, there is an alternative way
to use known design values to define a system of coordinates. This

requires a 3D transformation. For more information see "Ttansformation |
pnto reference coordinales” pn page 79]

With this method you first complete arelative orientation, i.e. an
orientation which does not include control points. The relative coordinate
system is then transformed onto the coordinate system defined by the
design data using the 3D transformation. This design datais contained in a
referencefile.

Since the design datais not included in the orientation procedure it cannot
Influence the shape of the measurement network. Clearly thisis not the
same effect as the use of design data in the form of control points.

Thistechnique is used to compare the effects of including or not including

control points and may be helpful in tracking down problems associated
with design data.
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6.10 Good and bad geometry
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In triangulation, the geometrical configuration of the network strongly
influences the quality of point locations. Thisis particularly important for
triangul ation techniques. Particular requirements are that orientation
measurements provide a strong network and that points are located with
good intersection angles.

Diagram: Intersection geometry

Effect of intersection angle on intersection error

Intersection geometry

In triangulation, points must be intersected by at least 2 rays. Thiswill not
pick up abad pointing in the plane of the intersecting rays, since the rays
will still successfully intersect. Only an error out of the plane can be
detected in this case.

Multiple pointings (3 or more) are effective in detecting bad pointings and
identifying the specific pointings which arein error. They are most
effective when the rays are not all in the same plane. Placing stations at
different heights will provide this condition.

The intersections themsel ves create minimum error when the intersection
angleiscloseto 90°. The diagram shows how fixed angular tolerances
giveriseto different errors at the intersected points. As the intersection
angle gets narrow, the 3D positional error gets larger.
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Failure cases

Orientation methods require certain minimum conditions and if these are
not met then an orientation will not, of course, be possible. However, even
when the minimum conditions are apparently met, some geometrical
configurations can still produce ambiguous results.

When a measurement network is constructed, angular pointings and polar
measurements should come together very close to the corresponding
targets. In the end, thisis how you know that the network is correct and
can be used for further target location. If you can achieve this condition for
different instrument locations then you have a problem known as afailure
case. Obviously these situations should be avoided, as should a situation
which is close to afailure case.

Example: Connecting Total Stations
Failure case if connecting points on avertical line.

If anew levelled Total Station is added into the network by measuring 3
existing points lying on avertical line, the station will not define a unique
position. The station can lie anywhere on acircle around the vertical line.

Example: Connecting theodolitesin a relative orientation:
Failure case if connecting points all on aline.

If anew instrument is positioned with respect to an existing instrument by
measuring 5 or more common points al lying on a straight line, the station
will not define a unique position. The station can lie anywhere on acircle

around the line of points.
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7. Initial orientation and target location

7.1 Relative orientation methods

A number of relative orientation methods assume that instruments are
levelled or approximately levelled. (Mathematically it is sufficient if their
primary (standing) axes are approximately parallel, which is easily
achieved when the instruments are levelled.)

This simplifies many of the algorithms whose purpose is to obtain
approximate instrument locations and angular attitudes. This does not

mean that measured objects must be levelled or that instruments must be
oriented to gravity in the final bundle adjustment.

7.1.1 Collimation (accurate)

Moo T é T2
S1 >~

o o S2
S1 s2
Situation on site Station 1 defines the coordinate system.
T

™, o4

S2

Measurements at station 1 Align collimation pointings to locate station 2.
Provisional scale.

:T1
Sty | i

S2

Measurements at station 2 Re-set the scale to fit the scale bar length.
Further points by intersection.

This calculation assumes that the instruments are approximately levelled.
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Accurate collimation pointings are sufficiently good to be used in the
optimized orientation.

7.1.2 Collimation (approximate)

Thisis essentially the same technique as accurate collimation except that
the collimation pointings are only made approximately. These
measurements are therefore not used in the optimized orientation.

This calculation assumes that the instruments are approximately levelled.

7.1.3 Collimation to two instruments

A :

- /

o
& S2
S1
st ~—..
O S3
S3
Situation on site Stations 1 and 2 exist in a local system at 1.
S3
S S2
S3
Measurements at stations 1 and 2 Locate S3 by intersection from S1 and S2.

s2
""" 82 /0

S3
Measurements at station 3 Rotate S3 to align the collimation pointings.

Further points by intersection.

This calculation assumes that the instruments are approximately levelled.
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Any collimation measurements which are accurate will be further used in
the optimized orientation.

7.1.4 Collimation with common point

T1 <
S3
O
S2

Situation on site

Measurements at station 2

SZ_;'

T,

S3

Measurements at station 3

S3 .
T

S2

Station S2 and target T1 exist in a local
coordinate system defined by station S1.

o T1

S2

Align collimation pointings between 2 and 3.

S§2

Adjust location of S3 to intersect target T1.
Further points by intersection.

This calculation assumes that the instruments are approximately levelled.

If the collimation measurement is accurate it is included in the optimized

orientation.

The target measurement should be accurate and will be included in the

optimized orientation.
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7.1.5 Horizontal resection

O
Stn 2 oT1
T1o
v Stn 1
T3 ° IS— T3
Y T2 ° 1o
X
Situation on site Existing points (shown in an object system).

Measurements at station 1 Station 1 located by horizontal resection.

= T1
Stn 2
T1
O
3™
...... Stn 2
........... o
°T2

Measurements at station 2 Station 2 located by horizontal resection.

(Further object points by intersection.)

This calculation assumes that the network is approximately levelled by
inclusion of approximately levelled instruments at one or more previously
oriented stations. Any existing target coordinates are therefore located in a
coordinate system referenced to gravity.

The target measurements are assumed to be accurate and are included in
the optimized orientation.
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7.1.6 Orientation of polar measuring instrument

Thistechnique appliesto Total Stations and laser trackers.

Simple orientation with levelled instruments

T1 o = Stn 2
1
.
L
°T2
OStn1

Situation on site

T1

Stn 1
T2

Measurements at station 1

T1

T2 Stn 2

Measurements at station 2

o
L~
A . \\\_
Stn 1 o

T

~
Z

Station 1 defines the coordinate system.

T1
T1

Stn 1

T2 Stn 2

Station 2 provisionally attatched at T2.

T1

¥ Stn 2

.....

.....

Stn 1
T2

Rotation of station 2 to attach at T1.

The diagram shows the common situation of linking one polar station to
another viatwo existing target points. This works when the network is

approximately levelled.

The existing contact points can be measured by any other instrumentsin
the network, or can be control pointsin alevelled reference system. The
only general requirement is that the contact points and station must be

approximately referenced to gravity.
The target measurements are assumed to be accurate and are included in

the optimized orientation.
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Orientation with non-levelled instruments

In this case 3 existing contact points must be measured and the station is
linked into the existing network by the same method as used for a 3D

transformation.

7.1.7 ECDS "local" orientation

This technique corresponds to the ECDS method of "local orientation”. It
Is arelative orientation method which can be used inits original ECDS
format. However some modifications have been made which can make the

method more flexible.

Simple local orientation

A
2] RRR——
S1
.................. 6
S2
S3

Situation on site

O
S1 X

Measurements at station 1

S1

S2

Measurements at station 2

x

liilllllllll/

Measurements at station 3

S1'
S2
=
S1 X

S2 aligned with X pointing parallel to X axis.

X

s3 X

S2 shifted to fit polar measurement to S1.
S3 fitted by same procedure as for S2.
Further points by intersection.

All stations are assumed to be approximately levelled.
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One "key" station (station 1) defines the origin and local axes and
measures the local X axis.

Further stations measure the X direction and the approximate polar
location of the key station, i.e. by angular pointing (h,v) and manual
estimation of distance (d).

None of the axial pointings or polar estimations are accurate and so none
of these measurements are used in the optimized orientation.

Modifications to local orientation

It is not necessary for the polar measurements always to refer back to the
key station. Any previously oriented station can be used.

Further stations need not be levelled. However in this case they must

identify two of the local axes (X,Y or X,Z or Y,Z), not just one. This
provides enough information to calculate the approximate tilt.
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7.2 Controlled orientation methods

7.2.1 Orientation to control from a relative orientation

This technique assumes that some of the relative orientation methods have
first created an oriented network. This complete network is then oriented to
the control points by a 3D transformation.

7.2.2 ECDS "object" orientation

Simple object orientation

T1
T1 i Z
Yl} A
X T1 v
Y X
\ﬂ
PLAN ELEVATION
Situation on site Control point in object system
T1
T2
z
Yl} A T1
Y X X T1 Y
“uy, o Y \E
S1
S1
S1 X
Ef————— . PLAN ELEVATION
Site orientation measurements S1 aligned with X pointing parallel to X axis.
Y pointing not yet aligned.
T2 Polar location of T1 from S1 not yet adjusted.
T1
..... Y I TN
., A K S1
I 7 T YT
S1 X
Y o PLAN ELEVATION
Rotate S1 to align Y pointing with Y axis.
Detail of measurements Shift S1 to match polar location of T1.

No assumption is made about stations being levelled. They may or may not
be levelled. The basic assumption is that the coordinate system of the
control points may be tilted with respect to the local coordinate system of
the station.
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Stations are therefore approximately oriented to the object's control points
by two measurement components.

Firstly a station approximately measures the directions of two of the object
axes (X,Y or X,Z or Y,Z). This enables it to be given the correct angular
tilt with respect to the object.

Secondly a station locates a control point on the object by approximate
polar location, i.e. by angular pointing (h,v) and manual estimation of
distance (d). This enables the station to be given the approximately correct
position with respect to the object.

None of the axial pointings or polar estimations are accurate and so none
of these measurements are used in the optimized orientation.

Modifications to object orientation

If astation'slocal z axisis parallel to the object's Z axis, only one object
axis need be measured, X or Y. This situation occurs when the control
points defining the object exist in alevelled system and the theodolite at
the station is levelled.

Positioning a station by polar location can be done using any existing point
which has object coordinates. The point need not be a control point.
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8. Optimized orientation: the bundle adjustment

8.1 Bundle adjustment in brief

A bundle adjustment is the name given to a general least squares analysis
package which takes the bundles of pointings from theodolites Total
Stations or cameras to identified targets and processes them to create an
optimal set of target coordinates which is a best fit to the angular and
distance measurements made.

The adjustment simultaneously provides best estimates of the instrument or
camera orientation parameters. These 6 parameters specify an instrument's
3D position and angular attitude (e.g. roll, pitch and yaw asin an aircraft).

Theodolite systems generally use the method to find orientation
parameters. Further target coordinates are then found by intersection,
which requires these parameters.

Photogrammetric systems often use the method to find the 3D coordinates
of all targeted points on the object. In addition, a photogrammetric bundle
adjustment often models the internal geometry of the camera, which
frequently improves measurement quality. Thisis known as self-
calibration because it does not require any external reference information
as would be the case with conventional calibration techniques.

8.2 Mathematical details in brief

The equations used by a bundle adjustment are non-linear. In practical
terms this meansthat it is not possible to compute instrument and target
locations in asingle computing step. In one step it is only possible to
Improve on an estimate of these positions by making suitable adjustments
to the estimates. A technique of iteration is therefore required which is
simply the process of repeating the cal culation of improvements until no
further improvement can be made.

Clearly the whole iteration sequence must be somehow initiated and other
approximate methods are required which generate initial values or trial
values of al the elements being computed. These approximate methods
can include manual estimation of values, the use of design information
from blueprints or CAD models or measurement technigues such as space
resection.
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To improve measurement quality and determine potential sources of error,
It iscommon to use more measurements that the minimum which are
theoretically necessary to generate the required data. \When an excess of
information is available, the solution is known as overdetermined. Not
surprisingly, too little information results in an underdeter mined set of
equations which cannot be solved. Overdetermined data sets can find faults
such as a mis-pointed theodolite and improve measurement quality by
helping to "average out" the effects of random error.

Finally it isinteresting to note that a bundle adjustment exhibits a
distinctive structure in its mathematical solution which is particularly
noticeable when applied to photogrammetry. Here there would typically be
many more target points than camera locations. When the cameraltarget
measurements are sorted according to target name rather than camera
location (which is how they are first generated) then the matrices used to
process the data contain large sections with zero values. Further re-
organization of these matrices is then possible and this enables the solution
to be compressed into a much smaller storage area on the computer.
Despite the large amounts of storage which modern computers offer,
compression algorithms are still very much in evidence and this feature can
still be usefully employed, even if only to provide afast solution for
orientation parameters.

8.3 Bundle adjustment (and least squares)
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The relative positions of theodolites can be found by direct methods such
as the collimation technique. Very often however some approximate
knowledge of the relative positions of targets and instrumentsis required
for a particular method to work. Thisinitial estimate is found by some
simple procedure based, for example, on approximate pointings as
specified by the ECDS method of relative orientation. The standard
mathematical technique of iteration then takes theinitial estimate and
continually improves it until no further improvement is possible.

The mechanism used for improving estimates is the method of least-
squares. Measurements can never be exactly correct, which isan
unavoidable fact of life. Systematic sources of error caused, for example,
when the line of sight is not exactly perpendicular to the transit (trunnion)
axis, can be identified and largely eliminated by software compensation.
However small random effects, such as a short-term temperature change
which causes a small refraction error in a pointing, cannot be dealt with in
thisway. Fortunately we can reduce the effects of random errors by
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averaging repeated measurements or using more information than is
strictly needed.

The method of |east squares creates a mathematical model of a situation
and derives equivalent exact mathematical measurements from it. These
values are compared with the actual measurements and the model altered
in succeeding iterations until a best-fit between modelled measurements
and actual measurements is obtained. The decision on the best-fit is
reached by examining the sum of the squares of the differences and
altering the model until this sumisaminimum. The model is then assumed
to be the best description of the actual measurement situation. Typically
the model will be defined directly in terms of the coordinates and
rotational parameters needed for an orientation solution.

What then is the bundle adjustment? Simply the name given to the genera
least squares analysis package which, in this case, takes the bundles of
pointings from each theodolite and processes them to create a set of
coordinates which is abest fit to the angular and distance measurements
made.

Although one objective of the bundle adjustment is to make proper use of
excess measurements it will also function if only an absolute minimum of
datais provided. Furthermore, although it may often be associated with
non-linear solutions which requireinitial estimatesit can also provide
optimal results for ssmpler procedures such as orientation by collimation.
(Although collimation may provide adirect answer it can still be further
optimized. Indeed it must be further optimized if more than the minimum
of measurements are made.)

In fact, the bundle adjustment can deal with many different measurement
configurations and produce an optimal least squares result for each. In this
respect it may make use of its own internal parameters which can be set to
force certain conditions. For example, it is obvious that if optimized
coordinates of orientation targets can be generated in the setup phase, a
few critical object points could be thrown into the adjustment as well.
Some of these object positions may be very accurately known, so accurate
in fact that the user may wish to keep them at their design values rather
than generating a model which may give them dlightly different values.
Thisis not a problem for the bundle adjustment which can, with the correct
parameter settings, provide the user with a more appropriate model.
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Positions held at their design coordinates are known as control points.
They provide away of forcing measurementsinto a particular coordinate
system or even controlling the quality of atriangulation configuration if
the situation on-site makes it difficult to optimize the measurement
geometry.

8.4 Principal features of Axyz bundle adjustment

8.4.1 General

M aximum number of stations = 99

Stations can be occupied by theodolites, Total Stations or laser trackers.
Number of targetsis unlimited.

Number of scale barsis unlimited.

Optionally choose between a balanced station network (free net
adjustment) or 7 arbitrarily fixed parameters (origin located at |owest
numbered station).

8.4.2 Measurements in general

Mixed polar and angular measurements are permitted.

Unlimited distance and angle measurements at any one station.
Reciprocal instrument pointings permitted (collimation measurements
between theodolites and Total Stations)

Direct adjustment of angle and distance measurements, i.e. N0 conversion
to other formats.

Scale bar lengths included in the adjustment as measured distances.

8.4.3 Points located by tracker
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Only pointings to stationary targets are used.

M easurements made to moving reflector positions are excluded.

Note

Fixed points can be located indirectly by the circle and sphere methods.
These are not included in the adjustment. There are no measurements
associated with the target circle and sphere centres.
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8.4.4 Hidden point devices

M easurements to offset targets on hidden point devices (device points) are
not included in the adjustment.

Derived hidden points are also not included in the adjustment. There are no
measurements associated with these points.

8.4.5 Scale

Measured scale bars may optionally be removed from the adjustment. If
removed, the measurements to the scale bar targets are also removed, i.e.
the scale bar targets are not treated as ordinary target pointsin this case.

Scale can be provided by:

* Inclusion of scale bar measurements

* Inclusion of distance measurements from stations to targets
* Inclusion of control points (targets with known coordinates)

If scaleis not included a solution can still be calculated by assigning a
default separation of 10 cm between the first two processed stations.

8.4.6 Weighting of measurements

All measurements have an individual weighting but this cannot be
individually adjusted. Weights depend on default standard deviation values
defined for all horizontal angles, al vertical angles and all distances at a
particular measuring station. Variations can only be made for individual
stations.

Multiple station/target pointings, including pointingsin two faces, are
always averaged or reduced to a single value. The bundle adjustment
therefore only sees one weighted representative pointing between a station
and atarget.

A single representative measurement derived from multiple pointings has
the same weight as a single pointing.

8.4.7 Weighting of targets

Target coordinates can be treated as known values by weighting.
Weighting is achieved by assigning suitable standard deviations to the
coordinates. These weighted coordinates are normally called control
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coordinates. Typically weighting is high so that the corresponding
coordinate values effectively remain fixed in the solution.

Control coordinates can be fully weighted or partially weighted and the
weightings can be individually set and adjusted. Fully weighted means all
three X,Y,Z values are weighted. Partially weighted means one or more
individual coordinate valuesistreated as unknown and not weighted.

8.4.8 Fixing stations

Station parameters can optionally be held fixed. This treats the parameters
as known values by weighting with avery small variance.

This enables new stations to be added to a network without changing the
parameters of existing stations. It also enables the adjustment to be used as
asingle point solution for locating further target points by fixing existing
station parameters.

8.4.9 Referencing to gravity

Thereis no requirement for any instrument to be levelled. However, a
network can be referenced to gravity in a number of ways.

» Use control points with coordinates in alevelled coordinate system
» Precisely level one or more theodolites or Total Stations

» Make tilt sensor measurements at one or more laser trackers

Theodolites and Total Stations are referenced to gravity by making their
standing axes exactly vertical (within practical tolerances).

Trackers are levelled by measuring the amount of residual tilt away from
the vertical using aLeicaNIVEL tilt sensor.

Levelled instruments can be optionally treated as non-levelled.

8.4.10 Theodolite modelling

126

Theodolites and Total Stations cannot be manufactured according to
design. For example the tel escope axis may not be exactly perpendicular to
the transit axis. The bundle adjustment offers an option to calculate a
theodolite model, also called theodolite indexing.
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Modelling does not apply to individual instruments but to individual
stations. Each station can be independently modelled but there is no
common model if the same instrument is used at several stations.

8.5 Operation of Axyz control points

Control points have already been introduced. See "Can.mLpoims”_lon page

Briefly, control points have the following features:

» They force the orientation results into the coordinate system of the
control

» Excess control data influences the shape of a network and can therefore
"control” weak network geometry to improve coordinate accuracy

» They can supply scale to atriangulation network

Typicaly all 3 coordinate elements of a control point are known but
partially known control points are permitted. To define a coordinate system
when scale is independently measured, control points must provide at least
6 coordinate elements. For example:

* One point supplies all 3 elements (reference X,Y,Z values)

* One point supplies 2 elements (reference X,Y values)

* One point supplies 1 element (reference Z value)

If control also defines scale, 7 coordinate €l ements are the minimum.

Normally at least 3 fully known control points, supplying 9 coordinate
elements, are available. Thisis already an excess of control or over-
determined situation which will influence the network shape. Since control
can influence network shape the control coordinates must be consistent to
a high accuracy, where this accuracy is better than Axyz can deliver. If
thisis not the case, the control will distort and degrade the inherently
better results which Axyz can provide.

Control points are implemented by treating them as another type of
measurement with a high weight. Use of weights allows them to "float"
dlightly from their nominal positions. Thisis a practical approach whichis
physically justified since they must themselves be measured by some other
device such asa CMM. However it does mean that a bundle adjustment
will compute small residuals for the coordinates. The technique used in
Axyz does not permit control pointsto be absolutely fixed but by
assigning them very small standard deviations, i.e. very high weights, they
can for practical purposes be considered fixed.
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Axyz does not alter control values but users should be aware that statistics
involving residuals can indicate problems with control data.

Users have the option to check control points by temporarily treating them
as normal points, thereby removing their "controlling” influence from the
bundle adjustment.

8.5.1 Use of weight flags

To create control coordinates which are effectively fixed, known with a
small degree of uncertainty, or unknown, Axyz uses weight flags. These
can be defined and edited in the Data Manager.

FIXED

This flag assigns a high weight to the coordinate. Its modelled value
should change very little, producing avery small residual which for
practical purposesis zero.

Internal value = 10°° (10" for variances).

NOT FIXED

Thisflag assigns avery low weight. Its value is effectively unknown and
large changes in the modelled value are possible.

WEIGHTED

This flag assigns a specific weight to the coordinate. It allows for small
differences in the quality of control coordinates.

8.5.2 Operation of ECDS control with bundle adjustment

128

ECDS control points are used both to control the ECDS bundle adjustment
and to act as reference values for 3D transformations.

Asin Axyz, ECDS aso permits the use of partia control points and
operates with weight flags.

ECDS weight flags

The ECDS concept does not allow for individual weights of control points.
In effect the control values are either known and not allowed to change, or
they are unknown. All uncertainties in coordinate values are assumed to be
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associated with the measurements. Thereis therefore no ECDS flag
corresponding to WEIGHTED in Axyz.

The actual ECDSflags are:

FIX (fixed)
The coordinate is given avery high weight and the modelled value changes
very little from this. Effectively zero residuals are produced.

UNK (unknown)
The coordinate is assumed to be unknown and therefore has zero weight.

APX (approximate)

A coordinate flagged as approximate is also unknown but has been
provided with a reasonable estimate of actual value. Thisis useful for
calculating approximations, but otherwise the coordinate is treated as
unknown.

8.6 Levelling constraints

o

code .. run .. rec
MTM/STM

Instruments need not be levelled in order to make successful and accurate
measurements. Video cameras are good examples of instruments which are
not designed to be levelled. Many laser trackers have only a simple bubble
level and cannot be precisely levelled.

Theodolites and Total Stations are designed to be precisely levelled
although it may not always be convenient to do this. For example, on a
floating oil rig under construction you might choose to operate a Total
Station with the compensator switched OFF.

Mathematically any instrument which is not precisely levelled must be
treated by the bundle adjustment as non-levelled in order to preserve
accuracy. However in practice most instruments will always be
approximately levelled because they are designed to be used in an upright
attitude. For initial orientation approximationsit is sufficiently accurate to
treat these as levelled, so there is no contradiction in treating instruments
aslevelled in theinitial orientation phase and as non-levelled in the final
optimization.

As an option users can also temporarily remove the constraint to keep an
instrument levelled in the bundle adjustment. This might be done to track
down a source of error.
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There are distinct advantages to levelling.

* When instruments are levelled you have an automatic check and
correction of small tilts which might develop during measurement.

» Levelling also forces an additional constraint which can improve
measurement quality.

If levelled stations are in use, the bundle adjustment recognizes several
Cases.

8.6.1 Relative orientation (no control points) with levelled theodolites

Here instruments are held levelled by fixing the wand ¢ rotations of
instruments at zero using high weights. Weighting allows small residual
tilts to devel op, which corresponds to the actual situation.

8.6.2 Orientation to levelled control points with levelled theodolites

The X and Y values of the control points are on a horizontal plane and the
Z values represent heights. The Z axis of the control system is therefore
vertical and parallel to the local z axes of any levelled instrument.

In this case a minimum of 2 control pointsis permitted. The user must
explicitly indicate that the Z axis of the control system points vertically up
by selecting this option in the Orientation Module. Thisidentification must
be made by the user since the system has no reliable way of determining
thisfact. Even the use of only 2 control points, which might indicate the
fact, could be an error by the operator whose control system is actually
tilted with respect to the vertical and who has forgotten to measure athird
control point.

Instruments are again held levelled by fixing their wand ¢ rotations at zero
using high weights.

8.6.3 Orientation to non-levelled control points with levelled theodolites

130

Here the Z axis of the control coordinate systemis not vertical. Y ou cannot
therefore force wand ¢ rotations of local instrument axes to zero as this
makes an instrument's vertical axis parallel to the Z axis of the control
system when it should be parallel to the direction of gravity.

In this case the levelled constraint isimplemented by forcing all levelled
Instruments in the network to have their primary (standing or vertical) axes
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parallel. Thisis done by adding two rotational parameters to the solution
which effectively represent the direction of gravity with respect to the
control system. The parameters are Q and @ representing rotations about
the X and Y axes of the control system. They therefore represent the tilt of
the control system with respect to gravity. The wand ¢ values of every
levelled instrument should be equal to Q and ® respectively and any small
difference simply represents a small levelling error.

What if the object moves?

Axyz can only keep paralel the axes of a single sub-group of theodolites.
This works when an object does not move during measurement and the
instruments are moved around it.

However if the instruments are levelled but fixed in position and an object
with control pointsis moved instead, for example by mounting it on a
turntable, then more than one group of parallel axesis created.

To correctly process this situation you would need to have an additional
pair of Q and @ rotational parameters for each sub-group. Thisis not
currently possible. To resolve this problem treat one sub-group as levelled
and remove the levelled constraint from all other instruments.

8.6.4 Orienting laser trackers to gravity

One or more laser trackersin a network can be "levelled" by mounting a
NIVEL tilt sensor and adjusting the instrument so that the NIVEL iswithin
its operating range for all pointings. Precise levelling by setting the
standing axis vertical is not required since the residual tilt offset is
measured.

The instrument is then levelled in the Orientation Module by fixing the w
and ¢ rotations to values corresponding to the residual tilts. If non-levelled
control is used then the additional Q and & rotational parameters for the
tilted network are superimposed on these.
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8.7 Networks with and without scale

The bundle adjustment will function without any scale information.
Normally scale information is provided in several ways.

* Measuring at |east one scale bar

Making at |east one polar measurement with a Total Station or tracker
Including at least 2 control pointsin alevelled coordinate system
Including at least 3 control pointsin anon-levelled coordinate system
A combination of the above

If scale measurements have not been made awarning is given. However
the analysis continues by automatically setting the distance between the
first two stations in the network to be equal to 10 cm. This prevents the
solution from failing because of a missing mechanical degree of freedom.
By choosing an impossibly short separation between the instruments the
resulting coordinates are much too small to be realistic. This serves as an
additional reminder to the user that scale information was not provided.

Missing scale information is likely to occur when a network contains
theodolites only, since trackers and Total Stations are probably employed
precisely because they also supply distance information. The situation
would then arise if the operators forgot to measure a scale bar.

If possible the scale should be measured and the bundle adjustment
repeated. This may not always be possible. For example, each end of a
long scale bar might only be visible from different parts of alarge network.
If the theodolites have been moved the additional measurements cannot be
made from the original stations.

8.8 Balanced station v. free net adjustment

8.8.1 In brief: the balanced station network

132

The Bundle Adjustment has an option to select a balanced station network.
This has similarities with afree net adjustment and is designed to remove
an inconsistency in the quality analysis which results when an arbitrary
datum is specified. When the datum is arbitrary the coordinates of the
origin are assigned zero error. Since errors are relative this does not affect
the quality analysis of derived elements such as the distance between two
points, it only affects the errors estimated for coordinates. The balanced
network distributes these in a more even-handed way.
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If the option is not chosen the adjustment will set an arbitrary datumin one

of two ways:

1. Thefirst station used to build the network will define the origin and
axes of arelative coordinate system. Thisis a standard relative
orientation procedure.

2. If control points are used, the network will be located in the coordinate
system of the control. Thisis an orientation to control.

A relative orientation will produce a network of the same shape as the
bal anced network but the first station will define the base system origin
and be assigned zero error.

If orientation to control is used, thiswill override any selection of a
balanced network. If you do not want this to happen you must indicate that
any measured control points are to be treated as normal unknown points.

Note

An orientation to control will produce a network of adlightly different
shape than arelative orientation, if the control specifies more than the
minimum 6 or 7 elements.

8.8.2 What is a free net adjustment?

It is necessary to fix a minimum number of parametersin order to achieve
a solution for the optimized network. In simple terms you need to force
some location to be the origin, i.e. you must define a datum and the task is
sometimes called solving the datum problem. If thisis not done successive
iterations will keep adding small changes to station and target coordinates
which will cause the whole network to drift continuously and the
coordinates will never converge to a stable solution.

If control points are used the problem is automatically solved. The network
Is attached to the control points which are fixed in space so the drift is not
possible. Note that Axyz will only accept control if thereis at |east the
minimum necessary to tie the network down and stop the drift. For
example, including just one control point would not work since the whole
network could still "spin" around this fixed point.

In the general case where the instruments have not been levelled and no
control points have been measured, you actually need to specify 6 elements
which must remain fixed. These are 3 coordinates and 3 rotational

elements which, in a conventional solution, are defined to have specific
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values at one particular station. Normally the first station in a network is
assigned 3 zero rotational values and the location (0,0,0) i.e. the first
station defines the origin and axes of arelative coordinate system. Strictly
speaking a 7th. element must be specified which is scale, but distance
measurements for scaling purposes are normally made. See " Nétworks |
jvith and without scal€] on page 132.]

This situation is known as a solution with minimum constraints. If further
constraints are added, such as the condition that at least one station is
levelled, fewer elements need to be arbitrarily specified.

The quality analysis problem

In the minimally constrained solution, any station can be the origin, not
just the first one processed. No matter which is chosen the procedure still
cal culates the same shape for the network even though the actual spatial
locations are different.

The analysis also provides quality information in the form of variance
estimates for station parameters and coordinates of orientation targets. This
Is useful information which is also required in subsequent procedures such
as locating additional target points by the single point solution.

The problem isthat a statistical evaluation of coordinate errors depends on
the choice of origin. Statistically the origin is assigned zero error and all
other stations and points have errors with respect to this. If you change the
origin then these numbers change. This does not affect error estimates of
derived geometric elements, such as distances between points. Although
the numbers at either end of the line may change, their combined effect on
the length is the same.

However since much of the user's work relates directly to coordinates it
would be a convenience to have some form of analysis which estimates
coordinate errors independently of the chosen datum. Thereisan
alternative mathematical approach called the free net adjustment which lets
you do this.
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Simple free net mathematics

The equations which define the network and relate the unknown
parameters to the known measurements are processed by matrix analysis.
The equations can be reduced to the following format:

NXx =t

x isavector or list of the unknown elements such as all the station and
orientation target coordinates in the network.

t incorporates the known measurement data

N is known as the normal matrix and contains numbers relating to the
current shape of the network.

If thiswas simple algebrayou would dividet by N to get x. For example, if
apples cost 10 Eurodollars each and you spend 50 Eurodollars, how many
apples did you buy? There are an unknown x apples so:

10 x = 50 therefore x =50/10, i.e. 5 apples.

In matrix algebra you cannot ssmply divide by N which is an array of
numbers, not asingle value. Instead you calculate its inverse, written N™.

x =N?tt

Mostly it is a standard procedure to calculate the inverse of a square matrix
such as N. When you multiply the original matrix by its inverse the result
Isaunit matrix, which has a similar function to number "1" in normal
algebra.

Unfortunately, if the datum is not fixed in a bundle adjustment you cannot
directly invert the normal matrix. If you attempt this you cause adivision
by zero at some point.

As an alternative to fixing the datum you can use a generalized form of the
inverse which avoids the division by zero. This involves imposing another
condition, in an analogous way to fixing a station. This condition states
that the trace of the inverted matrix (N™*) must be aminimum. Thetraceis
the sum of the elements on the diagonal.

This rather abstract condition has a practical physical effect. It holds the
centre of gravity of al the coordinates (stations + targets) fixed at the
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initial value during the process of iteration towards an optimal solution. In
other words, in each iteration the solution moves the stations and targets to
more optimal locations, but in such away that their centre of gravity does
not change. The solution cannot therefore continually drift and it will
converge to afinal optimized arrangement.

Although this form of solution is described as "free" something else has
actually been fixed, in this case a centre of gravity. However, with this
technique the final shape of the network and object pointsis the same as
before but the quality estimates are assigned in a more even-handed way.
No one station or point is given preferential treatment by being assigned
zero error.

This effect on the quality analysis might be suspected from the
mathematical condition of a minimum trace. When the weighting scheme
is based on standard deviations, the inverse of the normal equations (N is
also the covariance matrix of the parameters which you are calculating.
The diagonal elements of this matrix are the variances of the parameters
and the square root of each diagonal element is the estimated standard
deviation of the corresponding parameter. The condition of minimum trace
simply means that the free net adjustment arranges matters so that the sum
of the station and target variances is as low as possible. If you compare the
results of afixed and free net adjustment you will see that the error
estimates have generally lower figures in the latter case.

In afree net adjustment the centre of gravity will depend on the chosen
starting values and this may influence the actual statistical values by a
small amount.

The description above is somewhat ssimplified. It is additionally necessary
to prevent the system from "spinning" continuously so the method also
holds the average rotation elements of all the stations fixed at their initial
values.

Finally, you may want to know where the origin of the final coordinate
systemislocated. In a conventional solution the origin islocated at one of
the instruments. In the free net adjustment it isvery likely that one
instrument initially starts out at the position (0,0,0), i.e. it initially defines
the origin. However because it is the centre of gravity which is held fixed,
the instrument initially at this location will move away during subsequent
iterations. In the final network there will be no instrument located exactly
at the origin although one may be closeto it.
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8.8.3 Balanced station network

In Axyz abalanced station network has been implemented instead of a
free net adjustment in order to accommodate some differences in concept.

A free net adjustment istypically used by a photogrammetrist whose
camera stations and object points are often all processed together at the
same time. When instruments such as theodolites and video cameras are
used it is very common to first create a measurement network and then to
add more points. The majority of object points are typically not processed
in the Axyz bundle adjustment and the balanced station network therefore
concentrates on the stations.

When theodolites and Total Stations are used they are normally levelled
and the balanced station network also incorporates this additional
constraint.

In practice the balanced station network adopts the philosophy of the free
net adjustment by ensuring that no preferenceis given to any individual
station. It achieves this effect by taking the practical consequence of afree
net adjustment and directly applying it. This means that it normally fixes
the centre of gravity of the initial coordinates of al stations as well asthe
average value of theinitial rotational parameters of the stations.

The method has the following features:

Scale

* |f any distance measurements are made these will define an absolute
scale for the network.

* |f no distance measurements are made a pseudo scale is introduced by
fixing the distance between the first two instrumentsto 10 cm

Since scale is always included by one of the above methods only a

maximum of 6 further elements must be fixed in the network.

No constraints

If there are no levelled instruments and no measured control points then:

» The centre of gravity of theinitial station positionsis held fixed

» The average value of theinitial w, ¢ and K rotations for each station is
held fixed
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Levelled stations

If the only constraint is that one or more stations is levelled and control
points have not been measured, then the direction of gravity must define
the Z axis of the final coordinate system. Thismeansthat all wand ¢
rotations are fixed at zero and only K rotations (bearings) remain free. In
this case:

» The centre of gravity of theinitial station positionsis held fixed

» Theaverageinitia k value of every station is held fixed

Existence of measured control points

If the acceptable minimum number of control points has been measured
then the control system defines the final coordinate system. Theresult is
identical to anormal orientation to control.

A balanced station network results in a relative coordinate system except,
therefore, where control points override thisto create a controlled
coordinate system.

8.8.4 How much does the origin drift?

Users have reported that compared to a standard relative orientation with
base origin and axes defined by the local axes of a station, the final
location of the base axes might move from this as little as 200um or as
much as 2.5" (over 60mm).

8.8.5 Why choose a balanced station network?

138

A balanced station network resultsin aless biased view of the variance
estimates of coordinates. In fact, it tends to produce smaller values for the
variances, i.e. smaller values for the estimated standard errors. In contrast,
an unconstrained relative orientation produces larger relative errors, but
these are based on the fact that the station defining the origin has no error
at all!

Both methods produce the same quality estimates of derived features such
as lengths between points, radii, etc. compared to an unconstrained relative
orientation. Note, however, that quality estimates will be different if
levelling constraints can influence the relative orientation.
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Usually the balanced would be chosen to see the effect of removing excess
control information so that the network depends purely on the quality of
the instrument and scale measurements.

To avoid the presence of control points from overriding the option for a
bal anced station network, control points must be treated as normal points.
Thisis an additional option available to the user.

8.9 Bad measurements: Blunder detection

Blunders are genuine mistakes in measurement which will distort results
and should be removed from the analysis process.

8.9.1 In brief: blunder detection

A simple form of blunder detection isimplemented which detects asingle
bad pointing.

At the end of a bundle adjustment the algorithm cal cul ates the pointing
error of each normal or scale bar point used in the solution. If the largest
error exceeds the tolerance value set in the "Warnings' section of the
instrument module, the pointing is flagged as a blunder.

There is no automatic removal of blunders. Instead it is up to the user to
respond to a blunder, for example by repeating the orientation without the
offending measurement. Remember that there may be multiple blunders
present which remain undetected and that a least squares procedure cannot
guarantee that a bad residual means a bad measurement.

8.9.2 Blunder detection in Axyz

A blunder is atotally incorrect measurement or mistake such as a sighting
to awrong target or electronic corruption of data. In the Axyz bundle
adjustment a very simple procedure is implemented to warn of blunders.

Firstly, pointings are assigned atolerance level, see:
« STM/MTM Setup menu/Theodolite Warnings
Coordinate tol. (distance) OR Coordinate tol. (angle)
e LTM Setup menu/Tracker Warnings
Error tolerance for coordinate (distance)

When the bundle adjustment is compl ete the points are intersected to
analyse the pointing error. Depending on specification by the instrument
module, angle or distance offsets are eval uated.
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The largest offset which exceeds the specified tolerance is reported as a
blunder and the following message displayed:

"Possible blunder on point [wp]/[id]"

It is up to the user to respond to the flagged value, for example by
eliminating the associated pointing or the target point itself from the
solution and then repeating the computation. A bad residual might identify
abad target and not necessarily a bad pointing. If there were only two
pointings into atarget it may be the other one whichisin error, although if
either pointing were rejected it would no longer be possible to locate the
target anyway. Users should remember that |east squaresis not an infallible
method of detecting blunders and occasionally it is discovered that the true
problem lies somewhere else. Some experimentation may be required and
an adjustment may have to be run several times with different eliminations
each timein order to track down the error.

8.10 Normal and alternate rotational parameters

140

AXxyz uses three standard rotation parameters to define an instrument's
angular attitude in space. Unfortunately their standard order of application
(Q * @ *K) cannot be used to cover all casesin a bundle adjustment. If ®
Isamultiple of 72 then an infinite number of different combinations of Q
and K is possible in order to get the same final result. Since the adjustment
works by making small changes to each parameter in every iteration, it
would never converge to a solution in this case. Each changeto Q or K
would be compensated by a corresponding change in the other parameter
and the solution would chase itself in circles.

The situation can be avoided by using the same 3 rotation parameters but
applied in adifferent order (® * Q * K). This case, of course, failswhen Q
iIsamultiple of /2 for exactly the same reason as the standard sequence
fails. Together, however, both patterns cover all cases. (3 rotational
parameters have quite different numerical values when they are used in
different sequences to define a particular rotation matrix.)

The adjustment examines the starting values of the rotational parameters
for each instrument and if ® iswithin £178 of a multiple of 172 then the
alternate sequence is used to define the associated equations instead of the
standard sequence.

When the bundle adjustment finishes it always stores the final rotational
parameters in the standard sequence. If the alternate sequence has been
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used for calculation the full rotation matrix isfirst created and then the
standard sequence derived from it. In the case that ® isa multiple of W2
there is again the problem than an infinite number of combinations of Q
and K are possible. However in this case you can arbitrarily set Q = zero
and thereby derive a particular value for K, since any one of the infinite
number of combinations produces the same result. The problem that
existed in the bundle adjustment does not exist here because the final
rotation matrix is known and a single, on-off choice can be made.

8.11 Summary of error analysis in bundle adjustment

8.11.1 Target residuals

For each target, the pointings into the target generate the following data on
residuals:

 Individual EDM residuals, if relevant

* Individual angleresiduals

» Maximum angle residual (reported as maximum angle pointing error)

» Maximum pointing error in distance units

8.11.2 Control point residuals

Individual x, y, z residuals in base coordinate system of any control
coordinates, if relevant.

8.11.3 Network statistics

* Individual scale bar residuals
e Maximum angle residual in network

» Blunder detection:
Pointing with largest error exceeding 3 times set tolerance

8.11.4 RMS values

If RMS values have been requested:

* RMSof full offset distances using perpendicular or spatial offsets,
depending on whether measurements are directions or polar. Known as
total RMS value.

 RMSaxial values of full offset residuals. Each residual is expressedin
its axial components in the base coordinate system. The RMSis
calculated for each axia set, i.e. RMSx, RMSy, RMSz

* RMS of scale bar residuals
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8.11.5 Variance factor
Always cal cul ated:

Individual variance factors for each point in the network

« Thevariance factor for network, 6,°.

8.11.6 Analytical quality estimates (Error propagation)

Input

Preliminary variance factor o> = 1.0

Standard deviations of angles

Estimates by user. Defined and edited in station setup.
Standard deviations of EDM measurements

Estimates by user. Defined and edited in station setup.
Standard deviations of scale bar lengths

Estimates by user. Defined in DM.

M easurements are assumed to be uncorrelated.

Output

For each station a 3x3 covariance matrix of location and a 3x3
covariance matrix of rotation.

No covariances recorded between stations

No covariances recorded between a station's location parameters and its
rotation parameters

3x3 covariance matrix for each target

No covariances recorded between targets

The covariance matrices are calculated using the preliminary variance
factor oy’ .

8.11.7 Further use of analytical quality estimates
The analytical quality estimates are further used as follows:

142

Station covariance datais used in the single point solution
Target covariance data is used in shape fits
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9. Locating points by the single point solution

9.1 Introduction to single point solution

When the relative positions of theodolites in atriangulation network are
known, i.e. after orientation, target coordinates can be found by the
intersection of pointings from all theodolite positions which sight the
target. Since pointings do not generally intersect at asingle 3D location,
and may not truly intersect at all, aleast squares solution is used to find a
single optimal location for the target which best fits the pointings.

z1

z2 y1 z2
y2 X2 y2 X2
x1
x1
Perfect triangulation Triangulation in practice

Targets can also be located from asingle Total Station by polar location.
Where several Total Stations are involved in acomplex network, and a
target is located from more than one Total Station, least squares
optimization is again employed to find a single optimal target location.

o
z1 N
o )
y1 ©
y1 z2
1 y2 x2

Simple polar location Multiple polar location

AXxyz uses a single method to process both angular pointings only and
angles combined with distances in order to locate pointsin 3D space. This
technique is known as the single point solution. If measurements involve
angles only it is equivalent to an optimized intersection. If the
measurements come from a single Total Station it creates coordinates
without residuals, equivalent to a polar location.
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9.1.1 Measurements used in Single Point Solution

The following measurements are used:

* Normal measurements

» Stationary target measurement by the tracker

» Measurements to device points on hidden point devices

The following features have no associated measurement and are not
therefore processed:

» Fixed points located by the tracker using circle or sphere methods
» Calculated hidden points

9.2 Computation in brief

The single point solution uses the same equations as the bundle
adjustment. However, since the station parameters (position and angular
orientation of particular instruments) have aready been computed by a
previous bundle adjustment, they are no longer unknown values. Only the
target position is a true unknown.

The bundle adjustment permits both stations and targets to be either known
or unknown. The choice in any particular case is decided by the weights
assigned to the station parameters or target locations. Very accurately
known targets, i.e. control points, can be given very high weights so that
their values are fixed in the solution. The produces a controlled

orientation. Conversely, stations themselves can be fixed by assigning high
weightsto their parameters. Thisis sometimes done in the bundle
adjustment itself, when the operator wants to calculate the parameters for a
new station in the network but also wants existing stations to keep exactly
the same parameters as they currently have.

The same mechanism is used in the single point solution to fix the station
parameters. The only real source of uncertainty originatesin the pointings
and produces the measurement residuals.

9.2.1 Summary of steps in solution

144

The instrument orientation parameters (position and rotation) are known
from the bundle adjustment.

Approximate target coordinates are calculated as for the bundle
adjustment.
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Optimized target coordinates are based on the same co-linearity equations
used in the bundle adjustment.

Instrument parameters are held fixed by assigning each of them avery
small variance value of 1/10%. A small variance generates a high weight.

The individual pointings are weighted according to the preliminary
estimates of standard error for horizontal angles, vertical angles and
distances.

The least squares solution minimizes the following sum:
(weighted residuals of pointing)? + (weighted residuals of inst. params)®

Since the instrument parameters are effectively fixed, their residuals are
effectively zero, so the minimized value is effectively:
(weighted residuals of pointing)?

9.3 A close-up of the action

oD

w

Tot. Stn. 1
X Theod. 2
Y

Single point solution with pointing residuals

The diagram outlines the elements involved in locating a target using

measurements from a Total Station and atheodolite, but full details are

only provided at the Total Station. The example has been deliberately

chosen to indicate that both angle and distance measurements are

processed. Briefly, in the diagram:

» Black heavy linesindicate what you start with in terms of known data
and measurements.

» Dark grey finelines show what is modelled.

» Light grey indicates the difference between known and modelled data,
I.e. theresiduals.
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The black instrument positions are produced by the bundle adjustment in
the base coordinate system indicated by the reference axes XY Z. Local
Instrument axes are indicated by uvw.

The measured values at the Total Station are horizontal angle H, zenith
angle Zn (the vertical circle reading), and distance D. There are
corresponding angle measurements at the theodolite (not explicitly shown).

When the optimized target location is found, the difference between
measured and modelled pointing produces the standard pointing residuals
indicated by dH, dZn, &D.

The best fit minimizes a sum based on the squares of these residuals from
each instrument involved in locating the target. These are not summed
directly since they must be weighted to allow for mixed angle and distance
values and potentially different measurement qualities. It isthe
appropriately weighted sum which the least squares solution minimizes.

9.4 Quality analysis of single point solution

146

There are two aspects to the quality analysis.

1. Any particular calculation produces gaps between the pointings (except
for asingle polar measurement). These are described by the residuals.

2. Assuming that the pointings typically have a particular standard error,
the standard error in the target coordinates can be derived purely
analytically using the technique of error propagation.

The analytical procedure is necessary because there are not generally
enough pointings to generate reliable statistical estimates from the
residuals themselves. Most userslike to see the residuals in some form to
find out how well they "hit the target”, particularly since a bad residual
may well indicate a mispointing. However a good estimate of the variance
or standard error in the target's position can only be found by propagating
good estimates of the quality of the measurements. The measurement
quality is something the user has already defined and is based on

accumul ated experience and results.
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9.5 Offset residuals and pointing error

The residuals are a measure of the lack of intersection of a particular
solution, in contrast to a purely analytical error propagation.

As an alternative to the residuals of pointing, i.e. the measurement
residuals directly produced by the single point solution, offset residuals
can also be calculated for the optimized target location.

w \

Tot. Stn. 1
X
Theod. 2
Y

Single point solution with offset residuals

Two dlightly different types of offset residual are produced, asillustrated
by &v and dp.

ov appliesto full polar measurements and is the spatial (vector) offset
between the optimal target position and the position calculated from the
station using the actual measurements.

op applies to theodolite pointings and is the perpendicular offset from the
optimal target position to the actual theodolite pointing from the station.

Each residual subtends a corresponding spatial angle at the instrument, as
indicated by the light grey triangle.

9.5.1 Pointing error (linear and angular)

Offset residuals are evaluated to produce a pointing error for the single
point solution. Thiserror is displayed numerically and graphically in an
MTM measurement window.

The pointing error is a single measure of how multiple raysinto asingle
target fail to meet exactly at the optimized target location. The valueis
relevant to multiple pointings but not to single polar measurements. The
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laser tracker module, which currently only supports a single connected
Instrument, does not therefore show this value in its measurement windows
(Axyz ver. 1.2).

The pointing error is given as either alinear or angular value.

From the optimized point location, the perpendicul ar offsets to angle
pointings or the vector offsets to polar pointings are calculated. The largest
of these offsetsis the linear pointing error.

For each perpendicular and vector offset thereis a spatial angle subtended
at the corresponding instrument. The |largest of these anglesis the angular
pointing error.

9.6 Summary of error analysis in single point solution

9.6.1 Pointing error

One of the following is shown:
 Pointing error in angular units (maximum spatial angle residual)
» Pointing error in linear units (maximum linear offset)

9.6.2 Target residuals (off line)

The off-line Single Point Solution shows the following
 Individual angle residuals
* Individual EDM residuals, if relevant

9.6.3 RMS values

If requested:

* RMSaxial values of full offset residuals. Each residual is expressed in
its axial components in the base coordinate system. The RMSis
calculated for each axia set, i.e. RMSx, RMSy, RM Sz.

» Total RMSvaue. Thisisthe RMS value of the lengths of the full offset
residuals

RMS values of angle and EDM residuals are not calculated and therefore
not available.

9.6.4 Variance factor

If requested
« The calculated variance factor 6,°.
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Note

There are often not many pointings into a target and the minimum of
two would not be unusual. The statistical information is therefore
limited in such cases and a value of the variance factor which is very
different from 1.0 may not have much meaning.

9.6.5 Analytical quality estimates (error propagation)

Input

* Preliminary variance factor = 1.0

» Standard deviations of angles
Estimated by user. Defined and edited in station setup.
« Variances for station parameters = 1/10° (effectively fixes the values)

Output
» 3x3 covariance matrix for target, stored in job file

The covariance matrix is calculated using the preliminary variance factor
2
0o =10

The square root of the diagonal elements of this matrix are the estimated

standard deviations of the individual coordinates in the base system. These
are displayed in the measurement window.
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10. Shapes
10.1 Introduction

This section deals with the creation of standard shapes by form fitting to
measured 3D points. Axyz stores coordinate systems as shapes but these
are separately discussed under qoordl nates and coordinaie systems™|on
page 55. | n this section a "shape" applies to standard geometric forms such
as circles, cylinders and planes.

For further analyses involving points and shapes, such as the intersection
of planes or calculation of perpendiculars to the surfaces of shapes, see
also:

 "[ntersecting shapes™ dn page 179 ]

« "Bisectors' jon page 188 |
* "Perpendiculars'ion page M
+ "Paralds’on page 402 ]

o IALaLuathg_pamLsJ on page 2
"Creating points’ bn page 209 |

10.2 Creating shapes

150

Shapes are created in several ways by:
» Formfitting

* Intersection of existing shapes

» Geometric constructions

In form fitting a shape isfitted to a set of points using aleast-squares
technique. Points have 3 sourcesin this case:

* Measured

» Calculated

» Shapeorigins

Most points are measured. Calculated points may be derived from the
intersection of shapes, for example the intersection of aline with a plane.
A calculated point may also be a shape origin, such as the centre of a
circle, which has been separately stored as a point. However, by directly
naming a shape in alist of pointsto be fitted, the shape origin isindirectly
implied.
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Shapes created by form fitting may be directly intersected to create
additional shapes. For example, intersection of two planesto create aline.

Points, lines and planes may also be used to construct additional shapes.

These constructional features are:

» Perpendiculars from points to shapes and between shapes which create
new lines

» Parallelswhich create lines and planes parallel to existing lines and
planes

 Bisectors between points and shape components

10.3 Form fitting

10.3.1 Form fitting in brief

The Axyz shape fitting package includes routines to generate the
following 7 standard shapes from a suitable set of measured points.

e Line(3D)
* Plane

e Sphere

e Circle(3D)
e Cylinder
* Cone

» Paraboloid

The standard shapes are created using aleast squares procedure to find the
best fitting shape for each set of points.

10.3.2 Form fitting mechanism

The best fit equations work in terms of coordinate offsets between the
point to which the surface is fitted and the corresponding modelled point
on the shape's surface. The result minimizes the weighted sum of squares
of these offsets.

With this technique the software can either treat all fitted points equally
(unit weighting) or can take into account variations in measurement quality
between points and/or allow for variable quality in different directions at
an individual point.
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Generally speaking, triangulation and polar methods generate point data
whose quality variesin different directions and therefore it may be useful
to take account of this. Alternatively unit weighting is a common technique
used by other software packages and is sometimes convenient to use
regardless of any variation in point

quality.

) Perpendicular \

e

IFltted point A1 \
Modelled point “ ‘/dz

. \
Li I

1) Fitting in progress

2) Final fit, unit weighting 3) Final fit, weight by s.d.

The diagram shows the situation in a simple 2D case and the following
comments are readily extended to the 3D case. For each fitted point thereis
a corresponding modelled point lying on the surface of the fitted shape.
The least squares analysis evaluates the residual s of each fitted point r, and
ry in the direction of the base system axes.

If the fitted points are treated equally and given unit weights, then for N
measured points, the software minimizes the quantity:

(rlE +rl%) + (122 + 12,9 + ... (N2 + rN?)
Thisisequivalent to minimizing:

d1? + d2° + ... dN?
This quantity is clearly a minimum when the offsets are aligned to the local
perpendicular, hence this procedure effectively minimizes the sum of
squared perpendicular residuals.
Alternatively the fitting procedure can take account of avariation in
quality of the fitted points. This technique uses the covariance matrix,
which also defines the standard deviation (s.d.) of coordinates at a point, to

create suitable weights. (Any correlations between points are ignored.)

The diagramillustrates this with a situation in which points are much less
accurately defined in the X direction than inthe Y direction. The ellipses
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indicate this variable quality. In this case the results of the best fit will tend
to produce much larger X residualsthan Y residuals. This makes better use
of the best values but no longer produces a result which minimizes the sum
of squared perpendicular residuals.

10.4 Shape parameters

10.4.1 Shape parameters in brief

All standard shapes are defined by the parameters of alocal origin, a set of
3 local reference axes and possibly one other parameter of form. If 3 local
axes are more than the minimum necessary, the excess axes are generated
by default. Most 3D shapes require at least one main axiswhich is
designated the local z axis.

Shape Origin Local z axis Form parameter
Line Any pointonline  Alongtheline None
Plane Any point on plane Normal to plane None
Sphere Centre Z axis of base Radius
system
Circle Centre Normal to plane Radius
of circle

Cylinder  Any point onaxis Along the axis Radius
Cone Apex Axisof symmetry  Apex angle
Paraboloid Vertex Axisof symmetry  Focal distance

The parameters of the axes can be specified in two ways

» Unit vector:
Components of local z axis unit vector in the currently active
coordinate system.

* Rotation angles:
Omega, phi, kappa rotation angles of the rotation matrix for the local
axes with respect to the currently active coordinate system.

MATHU.DOC 31/1/00 153



Mathematics for Users Axyz ver. 1.4

10.4.2 Shape parameters in detalil

154

All shapes are defined with alocal frame of reference (local origin and
local axes) and, in most cases, one other parameter. For example, a 3D
circlehasalocal origin at its centre, local axes defined by its orientation in
space and aradius.

The parameters of the local reference frame are not always unique. For
example, the local origin of aline can be any point along the line and one
is chosen for convenience, usualy close to the first measured point.

L ocal axes are also not necessarily unique. Each shape has afull set of 3
axes but some of these can be set arbitrarily. For instance, aline requires
only one axis, the direction of the line, to defineits orientation in 3D space
but two other orthogonal axes are generated perpendicular to thisline and
through the selected local origin. There are an infinite number of pairs of
axes lying in the plane normal to the line’s direction which could be
selected. In the case of aline the additional axes depend on the current
orientation of the active coordinate system and for other shapes the first
measured point is typically used to define another local reference axis.

Of the 3 local reference axes, one is aways considered the main axisand is
designated asthelocal z axis. Thelocal z axisin adl casesis:
* Line(3D) - the direction of theline

* Plane - the normal to the plane

» Sphere - arbitrary, depends on Z axis of base system
» Circle(3D) - thenormal to the plane of the circle

* Cylinder - the direction of the cylinder axis

» Cone - the axis of rotational symmetry

» Paraboloid - theaxis of rotational symmetry

When displaying shape parameters the user can choose between

unit vector components (direction cosines) of the z axisin the current
coordinate system or angle parameters defining the rotation matrix
between the local coordinate system and the current coordinate system. In
each case there are 3 values. Angle parameters are standard omega, phi and
kappa rotations.

Since every shape has alocal frame of reference associated with it, these
reference frames can be used as alternative coordinate systems. For
example, all measured data on a large engine block could be transformed
into the coordinate system defined by one particular cylinder bore.
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10.4.3 Inside and outside

It is convenient to identify the positive side (outside) and negative side
(inside) of a shape's surface. For example, when point offsets are
calculated a positive offset will imply a point on the outside and vice versa.
It is also important for identifying the direction of a corrective offset dueto
reflector dimensions and attached targets.

Plane, circle
The positive side is the side of the positive local z axis.

Sphere
A point on the positive side is further from the centre than the radius.
From the positive side the surface looks convex.

Cylinder

The negative side is on the same side as the axis.

From the negative side the surface looks concave. From the positive side it
looks convex.

Cone

The negative side is on the same side as the axis.

From the negative side the surface looks concave. From the positive side it
looks convex.

Paraboloid

The negative side is on the same side as the focus.

From the negative side the surface looks concave. From the positive side it
looks convex.

10.5 Setup points for form fitting

Since the least squares analysisis non-linear in every case (even for aline
in space!), the shape must be approximately defined before a best fit can be
calculated. The shape parameters may either be manually estimated or
setup points can be used. Setup points represent minimum information and
in some cases a simplified definition of the shape to be fitted. Much
simpler algorithms, involving direct mathematical solutions, can be applied
to these setup pointsin order to generate the approximate parameter

values.
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Setup points can be specified in two ways.

1. Thefirst points on the selected list of points to be fitted will be used by
default.

2. The user can specify exactly which pointsin the list of points to be fitted
are to be used.

In either case, the setup points may have to conform to a certain geometry.
For example, the cylinder fitting routine requires 3 setup points which
should lie approximately on a circular section of the cylinder. The
parameters of thiscircle are then easily calculated and used as approximate
values for the parameters of the cylinder.

The number of setup points may be less than the minimum number of
points required for the actual shape fit.

Shape Minimum | Setup | Geometry of setup points

points | points

Line (3D) 2 2 | Two points, idealy with awide
separation along the line.

Plane 3 3 | Three pointsforming atriangle (i.e.
not collinear) and ideally widely
separated.

Sphere 4 4 |4 pointsnot al onacircleand ideally
widely separated.

Circle (3D) 3 3 | Three points on an arc of the circle and
ideally widely separated.

Cylinder 5 3 | Threepointson an arc of acircular
section of the cylinder and ideally
widely separated.

Cone 6 6 | Three pointson one arc of acircular
section of the cone and ideally widely
separated.

Another three points on an arc of a
different circular section of the cone
and ideally widely separated.

Paraboloid 6 5 | Three pointson an arc of acircular
section of the paraboloid and ideally
widely separated.

A 4th. and 5th. point at different
positions along the axis and not in the
same plane as the circular section.
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The diagrams for the individual shape fits (see later) indicate the setup
points and their geometric arrangement.

Note

As explained in " Shape parameters" lon page 153, ihe parameters
defining a shape are not unique. Different setup points will normally
produce closely similar shapes but some of the parameters describing
them may be very different. Users can see this effect by switching the
view of parameters between unit vector and rotation angles. Apart from
a possible change of sign, unit vector components of the local z axis
should remain the same when setup points are altered. By comparison,
rotation angles may show a change only in the rotation about the z axis
but equally well may show changesin all 3 rotational elements,
particularly if the order of the setup points changes between clockwise
and anticlockwise.

10.6 Manually estimating and fixing shape parameters

The Axyz shape fitting routines give you the option to manually estimate
parameters and optionally fix them by assigning high weights to the
estimates. A typical use for fixing parametersisto display residual offsets
from a design shape rather than generating a best fitting shape. For
example, the user can force acircle's radiusto beits design value rather
than computing the best fit value. Another use isin cases where an origin
Is not unique and you may want to force it to be at a particular location.

The parameters are classified into groups:
 Origin coordinates (3)

* Rotation angles (3)

e Size or form parameter (1)

When estimating parametersit is not necessary to estimate all 7 items but
If you estimate any parameter within a group the others within the group
must al so be estimated.

Estimated positional and shape parameters relate to the coordinate system
active at the time. It isimportant to remember this since the values change
depending on which coordinate system is currently in use.

The following diagram summarizes the effects in the case of a 2D linefit.
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<7 P1

Initial origin at P1 Black best fitting line Black best fitting line with
Initial direction to P2 with origin fixed at P1 direction fixed at initial value

Black line is best fit

Notes

In every case the direction of thelocal x axisisarbitrary. This
orientation is defined by the k (kappa) rotational parameter whichisa
rotation about the local z axis. The k value can be fixed at very different
values and the routines will still work.

If parameters are fixed at certain values these must be very close to the
values which would be calculated if they were not fixed. Fixing avalue
should be simply away of preventing the algorithm from letting the
value drift dightly. If the fixed value istoo far away bad results will be
obtained, i.e. theresiduals will be large.

10.7 Steps in the fitting procedure
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Approximate shape parameters are obtained either from setup points or are
entered by hand.

Internally the measured data is in the base coordinate system where
calculations are actually made. Approximate parameter data entered by
hand is transformed from the currently active system into the base system
before use. This transformation procedure also converts any weighted
parameters to an equivalent weight in the base system.

In every casethe local z axisisthe main shape axis. For example, when
fitting acylinder to 5 or more points the cylinder axisisthe local z axis.
Thisz axisiscritical to the fitting procedure.

It isamathematical convenience if the local z axis of the shape to be fitted
iIsamost parallel to the Z axis of the base system. Since thisis not
generally the case the datais "pre-rotated” so that theinitial local z axisis
parallel to the base Z axis.
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The best fit analysisis then actually applied to this pre-rotated version of
the data and when it is complete the pre-rotation is reversed. A 2D
example in the case of aline fit outlines the method.

A\ ° —)
o o
X
Reverse
Pre-rotate Pre-rotation
[ ] [
[ ] L
A H
A n
® o
o [ = o
— — —-
Change Corrective shift Apply corrections
initial and rotation to and change of
origin make Z-axis origin In reverse

best fitting line direction

Steps in a best fit procedure

In the top right the first two measured points have been chosen as the setup
points. They create an approximate line with local origin at P1 and local z
axis positive towards P2. The points are then pre-rotated to make the local
z axis parallel to the Z axis of the base system. At this point the best fit
procedure can be started.
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The steps in the best fit are indicated by (A), (B) and (C).

A) Shift the local origin onto the base origin.

B) Apply small shifts and rotations by an iterative procedure until the Z
axisisthe best fitting line to the data.

C) Reversethe total shift and rotation computed in stage (B) and the origin
shift made in stage (A). Include a copy of the Z axis so that the best fitting
line moves with the data.

Finally the pre-rotation is reversed to bring the data and the best fitting line
back into the base system.

10.8 Which method of weighting?

When fitting shapes to measured points, it can be assumed either that the
X,y and z coordinates of the points have the same measurement quality
(unit weighting) or that the quality depends on their calculated variances
(weighting by variance). Since different parameters are minimized, results
are not the same in both cases, i.e the fitted shape parameters will depend
on the selected weighting method.

Where measurements are better than the shape, and imperfections in the
object are the main source of deviation, then unit weighting is probably
best.

Where a very accurate shape is measured and measurement errors are the
main source of deviations, then weighting by variance is probably best.

The following sections explore these comments in more detail.

10.8.1 Diagram: Measurements better than shape
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10.8.2 Measurements better than shape

|deally measurements are so good that they detect the imperfect edge or
surface on an object to which a perfect shape should be fitted. In this case
the principal deviations from the shape are due to the imperfectionsin the
object, not the measurement, and it would make little difference if unit
weights or weighting by variance were used.

Hereit is simpler to apply unit weighting to the measured coordinates and
thereby minimize the perpendicular offsets of the measured positions from
the fitted shape.

It may be that the imperfect edge or surface shows systematic effects. For
example, afitted plane may show abulge on one side. This may indicate
some damage which the user is looking for or that another shape, such asa
sphere, would make a better fit. Either way the user has a pointer to the
problem.

10.8.3 Diagram: Shape better than measurements
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10.8.4 Shape better than measurements

Hereit is the measurements which are the main cause of deviations from
the fitted shape's surface. In this case it may make more sense to maximize
use of the best measurements, i.e. take variable measurement quality into
account and use weighting by variance.

The diagram shows a simplified situation in which a laser tracker measures
4 points on acircle. Interferometric distance measurements are much more
accurate than the angular measurements so that the region of measurement
uncertainty ison aline perpendicular to the true pointing. True pointings
are shown by grey lines, uncertainty regions by short black bars and the
measured locations by black circles. (The error bars get longer in
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proportion to distance from the tracker, sinceit is the assumed constant
angle tolerance which determines their length.)

P1 and P2 are aimost on line with the tracker and the centre of the circle.
Their separation depends almost exclusively on the high quality distance
measurement and effectively provides avery good determination of the
circle's diameter.

Weighting by variance should therefore produce an accurate diameter.
Small residuals would then be expected at P1 and P2 since all points on the
corresponding bars lie close to the circle. Significant residuals would be
expected at P3 and P4.

In the example, P3 and P4 lie outside the fitted circle. If unit weights are
used in this situation then the fitted circle could expand. This would reduce
residuals at P3 and P4 and increase them at P1 and P2. This may be an
acceptable result if residuals are then generally smaller and the diameter is
not of prime importance.

If weighting by variance gives avery similar result to unit weighting, then
measurement quality does not significantly vary. Thisisan ideal situation
which means that measurement quality has been optimized throughout the
measurement space. It may therefore be worthwhile, if conditions permit,
to create a measurement network which largely achieves this condition.

10.9 Summary of error analysis for shapes

10.9.1 Offset residuals

162

Offsets are displayed asindividual coordinate residualsin the shape's
coordinate system, as well as the length of the equivalent 3D offset vector.

The offsets represent the difference between afitted point and its
corresponding modelled point on the surface of the shape. If unit
weighting has been selected, the fitted point is perpendicularly from the
modelled point on the surface.

Points fitted to 3D circles have their residual's expressed as coordinate
offsets but instead of an additional total offset, two other components are
used instead:

» Radial, in the plane of the circle

» Perpendicular to the plane of the circle
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Note

Y ou expect residuals to have small values. If the displayed coordinate
typeis cylindrical or spherical avery small residual offset may well
show large values for the angular components of the offset. These
components simply indicate the direction of the offset and say nothing
about the physical size. Directions can have any value between 0° and
360°.

10.9.2 RMS values

Shown only if unit weighting has been selected. The RM S value of the
vector length of the residualsis calcul ated.

10.9.3 Variance factor

Shown only if weighting is by covariance matrices.
If the redundancy is zero in this case, the displayed variance factor is zero .

10.9.4 Analytical quality estimates of shape parameters

Input

Depending on chosen option:

Either 3x3 covariance matrices for points, calculated from bundle
adjustment

Or unit weights

Output

If weighting by variance:

Error estimates of shape parameters are calculated by standard error
propagation using avalue of 1.0 for the variance factor (i.e. the preliminary
value).

If unit weighting used:

Error estimates of shape parameters are calculated by standard error
propagation using the calculated value of the variance factor. If thereis
zero redundancy, then a calculation is made using an assumed preliminary
variance factor of 1. (The same procedure as used for error propagation
when weighting by variance.) However, this means 1m?, which further
means that you are propagating point errors with an assumed standard
deviation of 1m. See "Hrror propagation with unit weighting" Jon page 5. |
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Note

When fitting a shape there are two sources of error:

 Errors due to measurements

» Errors dueto an imperfectly shaped object

Error propagation can only assume errors in the measurements although
the final residuals are due to both sources of error and both will
influence the final shape parameters.

10.10 Line (3D)

10.10.1 Geometrical conditions
Minimum 2 points.

The 2 setup points should be well separated in order to ensure a reasonable
estimation of line direction.

10.10.2 Initial coordinate system and parameters
P2

Setup points P1,P2

First setup point, P1, defines the local origin.

Direction from P1 to second setup point P2 defines positive direction of
local z axis.

Local x,y axes are arbitrary and depend on the X,Y axes of base system
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10.10.3 Manual definition of parameters

The user can manually estimate:
1. The position of the origin in coordinates of the currently active system

2. The direction of the line by defining w, ¢ rotations from the currently

active system

If you want to fix rotations to force the line into a particular direction, this
will currently only function for definitions made in the base system.

By fixing certain values of wand ¢ with high weights (low standard
deviations) the line can be forced to conform to standard geometrical

configurations.

1 |wnot fixed Line forced perpendicular to x axis of
$=0 base system
(Lineisparallel to yz plane of base
system)
2|lw=0 Line forced per pendicular toy axis of
¢ not fixed base system
(Lineisparallel to xz plane of base
system)
3 |[EITHER OR Line forced per pendicular to z axis of
wnot fixed w=7172 |basesystem
b =12 ¢ not (Lineisparallel to xy plane of base
fixed system)
410=0 Line forced parallel to x axis of base
¢ =172 system
S |w= 172 Line forced parallel toy axis of base
¢ =0 system
6|w=0 Line forced parallel to z axis of base
¢ =0 system
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10.11 Plane

10.11.1 Geometrical conditions

Minimum 3 points.
The 3 setup points must define atriangle and not lie close to a straight line.

10.11.2 Initial coordinate system and parameters

z
A

Setup points P1, P2, P3
First setup point, P1, defines the origin.

Direction from P1 to second setup point P2 defines positive direction of
local x axis.

Thelocal xy plane contains P1, P2, P3
Local y axisis perpendicular to x and positive from P1 towards P3

Local z axisis computed to create a right-handed set

10.11.3 Manual definition of parameters

The user can manually estimate:
1. The position of the origin in coordinates of the currently active system
2. W, ¢, K rotations from the currently active system

If you want to fix rotations to force the plane into a particular direction,
thiswill currently only function for definitions made in the base system.
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By fixing certain values of wand ¢ with high weights (low standard
deviations) the plane can be forced to conform to standard geometrical
configurations.

1 |wnot fixed Plane forced parallel to x axis of base
(I) =0 system
K not fixed

2|lw=0 Plane forced parallél to y axis of base
¢ not fixed System
K not fixed

3 [EITHER OR Plane forced parallel to z axis of base
wnot fixed w=172 |[system
¢ =172 ¢ not
K not fixed  fixed

K not fixed

410=0 Plane forced per pendicular to x axis of
d =172 base system
K not fixed

S |w=12 Plane forced per pendicular toy axis of
$=0 base system
K not fixed

6|w=0 Plane forced per pendicular to z axis of
$»=0 base system
K not fixed
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10.12 Circle (3D)

10.12.1 Geometrical conditions

Minimum 3 points.
Method not suitable for short arcs (subtended angles less than, say, 10°).

10.12.2 Initial coordinate system and parameters
Az

Setup points P1, P2, P3

The 3 setup points should be well separated in order to ensure a reasonable
estimation of the circle parameters. The algorithm uses the first 3 pointsin
the list of pointsto be fitted.

A radius and centre point are first derived from the setup points.

The direction from the centre to the first setup point P1 defines the positive
direction of thelocal x axis.

The local xy plane contains the 3 setup points.

Thelocal y axisis perpendicular to x and positive from the centre towards
P2.

Thelocal z axis creates a right-handed set with the local x and y axes.

10.12.3 Solution for best fit

For acirclefit in 3D the data points are simultaneously fitted to two
surfaces:

1. A best fitting plane

2. A best fitting circle in the plane
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The least squares solution actually minimizes:
(sum of squared perpendicular offsets from plane)
+ (sum of sgquared perpendicular offsets from circle)

10.12.4 Manual definition of parameters

The user can manually estimate:

1. Radius of circle

2. The position of the origin in coordinates of the currently active system
3. w, 9, K rotations from the currently active system

If you want to fix rotations to force the plane of the circle into a particular
direction, thiswill currently only function for definitions made in the base
System.

By fixing certain values of wand ¢ with high weights (low standard
deviations) the plane of the circle can be forced to conform to standard
geometrical configurations.

1 |wnot fixed Circleforced parallel to x axis of base
$=0 system
K not fixed

2|w=0 Circleforced parallel to y axis of base
¢ not fixed system
K not fixed

3 [EITHER OR Circleforced parallel to z axis of base
wnotfixed w=172 |[system
¢ =102 ¢ not
K not fixed  fixed

K not fixed

410=0 Circle forced perpendicular to x axis of
b =172 base system
K not fixed

Slw=12 Circleforced perpendicular toy axis of
$=0 base system
K not fixed

6|lw=0 Circleforced perpendicular to z axis of
$»=0 base system
K not fixed
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10.13 Sphere

10.13.1 Geometrical conditions

Minimum 4 points, not all on acircle.
Method not suitable for small surface patches. Tests show that if the points

subtend an arc less than 15° the solution will diverge or produce incorrect
results.

10.13.2 Initial coordinate system and parameters

Setup points P1, P2, P3, P4

The setup points are used to calcul ate the centre and radius by a direct
linear method.

Local axes are arbitrary and are set parallel to base axes X,Y,Z

10.13.3 Manual definition of parameters

The user can manually estimate and optionally fix
1. Radius of sphere
2. The position of the centre in coordinates of the currently active system

Axyz currently does not offer the option to specify the directions of the
local axes.
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10.14 Cylinder

10.14.1 Geometrical conditions
Minimum 5 points.

10.14.2 Initial coordinate system and parameters

',4 z

Setup points P1, P2, P3

The 3 setup points should be well separated and lie on a circular section of
the cylinder.

A radius and centre point are first derived from the setup points. The circle
centreisthe local origin.

The cylinder axis passes through the centre and is perpendicular to the
plane through the setup points.

The position of P1 along the cylinder axis defines the spatial position of
the origin.

The radius of the circle defines the cylinder radius.

The direction from the origin to P1, perpendicular to the cylinder axis,
defines the positive direction of the local x axis.
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Thelocal y axisisin the plane of the circle and positive towards P2.

The positive local z axisis along the cylinder axis and forms aright-
handed set with the local x and y axes.

10.14.3 Manual definition of parameters

172

The user can manually estimate:
1. Radius of cylinder
2. The position of the origin in coordinates of the currently active system
3. w, ¢, K rotations from the currently active system

If you want to fix rotations to force the axis into a particular direction, this
will currently only function for definitions made in the base system.

By fixing certain values of wand ¢ with high weights (low standard
deviations) the axis of the cylinder can be forced to conform to standard
geometrical configurations.

1 |wnot fixed Axisforced perpendicular to x axis of
$=0 base system
K not fixed (Axisis parallel to yz plane of base

system)

2|lw=0 Axisforced perpendicular toy axis of
¢ not fixed base system
K not fixed (Axisis parallel to xz plane of base

system)

3 [EITHER OR Axisforced perpendicular to z axis of
wnot fixed w=T1/2 |basesystem
d =12 ¢ not (Axisis parallel to xy plane of base
k not fixed  fixed system)

K not fixed

41w=0 Axisforced parallel to x axis of base
¢ =102 system
K not fixed

S5 |lw=1m2 Axisforced parallel toy axis of base
b=0 system
K not fixed

6|lw=0 Axisforced parallel to z axis of base
b=0 system
K not fixed
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10.15 Cone

10.15.1 Geometrical conditions

Minimum 6 points.
Method is not suitable for apex angles close to 0° or 180°.
Points should be well distributed around the axis.

10.15.2 Initial coordinate system and parameters
4 V4

P2

Setup points P1, P2, P3, P4, P5, P6

Thefirst 3 setup points P1, P2, P3 should be well separated and lie close to
acircular section of the cone.

The second 3 setup points P4, P5, P6 should be well separated and lie
close to adifferent circular section of the cone.

Centre points and radii arefirst derived for the two circles.

The direction of the local z axis defines the axis of the cone and is positive
from the small circle to the large circle.

Note 1.
When calculating the vector of the z axis, one of two methods is chosen.
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* |f the separation of the circlesisless than the small radiusr, the vector
perpendicular to the plane of the large coneis used.

* |f the separation of the circlesis greater than the large radius R, the
vector joining the two centresis used.

The apex of the cone definesthe local origin.

The direction from the first circle centre to P1, perpendicular to the cone
axis, defines the positive direction of the local x axis.

Thelocal y axis forms aright-handed set with the local x and z axes.

The differencein circle radii and the separation of circle centres enables
tan (A/2) to be calculated, from which the apex angle A can be derived.

Note 2.

The fitting procedure uses atemporary origin at the first circle centre but
the apex of the cone, when determined, defines the origin of the cone. The
location of the apex is easily found from the half angle A/2 and the centre
and radius of either circle.

10.15.3 Manual definition of parameters

The user can manually estimate:

1. Slope angle (apex half angle) of cone

2. The position of the origin in coordinates of the currently active system
3. w, ¢, K rotations from the currently active system

If you want to fix rotations to force the axis into a particular direction, this
will currently only function for definitions made in the base system.
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By fixing certain values of wand ¢ with high weights (low standard
deviations) the axis of the cone can be forced to conform to standard
geometrical configurations.

1 |wnot fixed Axisforced perpendicular to x axis of
$=0 base system
K not fixed (Axisis parallé to yz plane of base

system)

2|lw=0 Axisforced perpendicular toy axis of
¢ not fixed base system
K not fixed (Axisis parallel to xz plane of base

system)

3 [EITHER OR Axisforced perpendicular to z axis of
wnot fixed w=T172 |basesystem
b =102 ¢ not (Axisis parallel to xy plane of base
K not fixed  fixed system)

K not fixed

410=0 Axisforced parallel to x axis of base
K not fixed

S |w=12 Axisforced parallel toy axis of base
¢ =0 Wstern
K not fixed

6|w=0 Axisforced parallel to z axis of base
(I) =0 Wstern
K not fixed
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10.16 Paraboloid

10.16.1 Geometrical conditions

Minimum 6 points.

10.16.2 Initial coordinate system and parameters

176

4 z

P2

Setup points P1, P2, P3, P4, P5

Thefirst 3 setup points P1, P2, P3 should be well separated and lie close to
acircular section of the paraboloid. A circle with corresponding centreis
calculated for these points.

The axis of the paraboloid passes through the circle centreand is
perpendicular to the plane of the circle.

A fourth point close to the vertex would be sufficient to create the
approximate paraboloid. However on a physical object such as a parabolic
radar dish, the vertex may not be readily accessible or even physically
defined. Two additional points off the vertex are therefore used.

Points P4 and P5 should be at different axial heights and not in the same
plane as P1, P2, P3. They are used to calculate the focus, focal point and
vertex.

The vertex isthe local origin.

The local z axis lies along the axis of the paraboloid. Its positive direction
is from the origin towards the circle centre.
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The direction from the origin, perpendicular to the axis of the paraboloid
and towards P1, defines the positive direction of the local x axis.

Thelocal y axis forms aright-handed set with the local x and z axes.

10.16.3 Manual definition of parameters

The user can manually estimate:
1. Focal length, F, of paraboloid
2. The position of the origin in coordinates of the currently active system
3. w, ¢, K rotations from the currently active system

If you want to fix rotations to force the axis into a particular direction, this
will currently only function for definitions made in the base system.

By fixing certain values of wand ¢ with high weights (low standard
deviations) the axis of the paraboloid can be forced to conform to standard
geometrical configurations.

1 |wnot fixed Axisforced perpendicular to x axis of
$=0 base system
K not fixed (Axisis parallel to yz plane of base

system)

2|w=0 Axisforced perpendicular toy axis of
¢ not fixed base system
K not fixed (Axisis parallel to xz plane of base

system)

3 [EITHER OR Axisforced perpendicular to z axis of
wnot fixed w=T12 |basesystem
d =12 ¢ not (Axisis parallél to xy plane of base
k not fixed  fixed system)

K not fixed

41w=0 Axisforced parallel to x axis of base
¢ =102 system
K not fixed

S5|lw=1m2 Axisforced parallel toy axis of base
$=0 system
K not fixed

6|lw=0 Axisforced parallel to z axis of base
b=0 system
K not fixed
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10.17 Vector

The main z axis associated with each of the standard shapes may be
separately stored as a vector, which is stored internally as a further type of
shape.

A vector may only be created by first creating one of the standard shapes
by aform fitting routine. Shapes created by other means do not allow the
user to create a vector.

Unlike the standard shapes a vector only records a single direction using
unit vector components (direction cosines). An origin and local reference
axes are not stored with the vector data so a vector cannot define a
coordinate system.
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11. Intersecting shapes

11.1 Introduction to intersections

‘ﬁe‘ Intersecting elements can be calculated for the following combinations:
Y\, com * Shapeaxis - shape axis (line - line)

Analyse/
Intersection

(z axes of any shape or coordinate system)

Shape axis - surface (line - surface)

(z axis of any shape with line, plane, circle, sphere, cylinder, cone,
paraboloid. Results are points)

Surface - surface

(Plane intersected with plane, circle, sphere, cylinder)

Tolerances on the intersection of lines and parallelism of lines and planes
can be defined in the CDM "Warnings' menu. These are used to produce

warning messages and may prevent calculation of aresult if exceeded by

defined amounts.

11.2 Intersect: axis - axis (line - line)

8

Intersection offset

O

The diagram shows lines 1 and 2 with origins at O, and O,. The feet of the
perpendicular between the lines are at P; and P, and the intersection point
M is midway between them.
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11.2.1 Results

Normal
I ntersection point M
| ntersection offset

Parallel lines (within angle tolerance)
Perpendicular connection starts by default at origin O;.

L ack of intersection

Ideally lines or axes intersect at a single point. In practice, they never
Intersect exactly and there will always be a small gap between their closest
points. The intersection point is chosen midway between these two points
and the intersection offset is half their separation.

The intersection offset (half the line separation) is compared with the
tolerance value to produce the following results:
» Offset less than tolerance value:

Result calculated, no message
» Offset 1x - 2x tolerance:

Result calculated, warning message "I ntersection tolerance exceeded"
» Offset > 2x tolerance:

Result not calculated, warning message " Tolerance exceeded"

If the lines are far apart and you still require aresult, consider using the
"Bisector" function. See "Hisector: Shape axis - shape axis' bn page 1

11.3 Intersect: axis - surface (line - surface)

11.3.1 Intersect: axis - PLANE (LINE - PLANE)

180
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Results

Normal
I ntersection point

Line parallel to plane (within angle tolerance)
Warning message, no result.

Note
If the lineisnot paralel to the plane but forms a small angle with it, the
intersection point may be very distant and have large coordinate values.

11.3.2 Intersect: axis - CIRCLE (LINE - CIRCLE)

Asfor any shape axis - PLANE
The plane of the 3D circleis used

11.3.3 Intersect: axis - SPHERE (LINE - SPHERE)

Results

Normal
Two intersection points
Offset distance D

Axistangential to sphere
One contact point, offset distance D = R

Axisoutside sphere
No result
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11.3.4 Intersect: axis - CYLINDER (LINE - CYLINDER)

ISCTLNCY.WMF

Results

Normal
Two intersection points

Axistangential to cylinder
One contact point

Axisoutside cylinder
No result

Axison surface of cylinder (parallel to cylinder axis)
No result
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11.3.5 Intersect: axis - CONE (LINE - CONE)

Intersection on both Intersection on one
sides of cone pair side of cone pair
Results

Normal

Two intersection points

Axistangential to surface of cone
One contact point

Axis on surface of cone (generating line of cone)
No result.

Axisthrough apex of cone
One contact point identical with apex

AXxisoutside cone
No result

Note

The equation of a cone appliesto either side of the apex and the
Intersection points may not therefore lie on one side only.
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11.3.6 Intersect: axis - PARABOLOID (LINE - PARABOLOID)

Results

Normal
Two intersection points

Axistangential to surface of paraboloid
One contact point

Axisthrough vertex of paraboloid
One contact point identical with vertex

Axisoutside paraboloid
No result
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11.4 Intersect: surface - surface

11.4.1 Intersect: PLANE - PLANE

Plane 2

Plane 1

Z is positive
into the page

z is positive
out of the page

Intersection angle

Results

Normal

Line of intersection

I ntersection angle between normal vectors (acute or obtuse, depending on
directions)

Planes parallel within angle tolerance
Warning message, no result.

Parameter s of intersection line

The origin of theintersection lineis at P, midway between the feet of the
perpendiculars P1 and P2 from the plane origins to the intersection line.

MATHU.DOC 31/1/00 185



Mathematics for Users Axyz ver. 1.4

Thelocal z axisis along the line of intersection. To determine its positive
direction, look along the line of intersection. Imagine the normal vector of
the first selected plane rotated through the intersection angle towards the

normal vector of the second selected plane. If the rotation is clockwise the
positive direction is away from you and if anticlockwise it istowards you.

Local x,y axes are derived from X,Y axesin base system. X,Y,Z axes of
base system are rotated about X and Y to point the Z axis along the

bisecting line. Rotated X,Y axes of base system then represent the local x,y
axes of theline,

11.4.2 Intersect: PLANE - CIRCLE

Results

Normal
Two points of intersection

Plane tangential to circle
Tangent point

Plane outsidecircle
No result

186 MATHU.DOC 31/1/00



Axyz ver. 1.4 Mathematics for Users

11.4.3 Intersect: PLANE - SPHERE

Results

Normal
Circle of intersection
Radius of circle

Plane tangential to sphere
Tangent point

Plane outside sphere
No result

Orientation parameters of circle

Thelocal originis at the centre.

Thelocal x,y,z axes are parallel to thelocal x,y,z axes of the intersecting
plane.
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12. Bisectors

\/%\P:é Bisecting elements are centre points, centre lines or centre planes and can
‘é -om becalculated for the following combinations:
fravee’ « Point - point

Point - shape axis (line)

(z axis of any standard shape or coordinate system, result is a point)
Point - plane

(result is a point)

Shape axis - shape axis (line - line)

(z axes of any standard shape or coordinate system, result isaline)
Shape axis - plane (line - plane)

(z axis of any standard shape or coordinate system, result isaline)
Plane - plane

(resultisaplane)

Some of these calculations generate points. See also section 16 Ceating |

Tolerances on the intersection of lines and parallelism of lines and planes
can be defined in the CDM "Warnings' menu. These are used to produce
warning messages and may prevent calculation of aresult if exceeded by

defined amounts.

12.1 Bisector: Point - point
This generates the following:

188

A point mid way between the two given points.
The distance from the mid point to either end point.
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12.2 Bisector: Point - shape axis (line)

8

The bisector between an offset point P, and aline with origin at O,. The
line can be the shape axis or z axis of any standard shape or coordinate
system.

Results

A point M which is midway between the offset point P; and the foot of the
perpendicular P, from this point to the line.

The distance d between M and the offset point (or foot of perpendicular).

12.3 Bisector: Point — plane

Result

A point which is midway between the offset point P and the foot of the
perpendicular from this point to the plane.
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The distance d between the mid point and the offset point (or foot of
perpendicular).

12.4 Bisector: Shape axis - shape axis

190

Distance offset

a) Bisector of axes: simple case b) Bisector of axes: general case

This function creates the bisecting line between two lines or axes which
may be the z axes of any standard shape or coordinate system.

Result

Each line or axisis defined by an origin point and a unit direction vector.
The bisecting line has a unit direction vector whose direction is the
average of the unit direction vectors of the two lines.

In asimple case both defining lines intersect at a single point M whichis
conveniently taken as the origin point for the bisecting line. The bisecting
line makes equal angles with the defining lines and liesin the plane
defined by the lines.

In practice the defining lines do not intersect. The origin point of the
bisecting line is then the midpoint of the connecting perpendicular between
them.

Parametersof line

Originat M
Local z axis defined by positive direction of bisecting line (unit vector U,
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Local x,y axes are derived from X,Y axesin base system. X,Y,Z axes of
base system are rotated about X and Y to point the Z axis along the
bisecting line. Rotated X,Y axes of base system then represent the local X,y
axes of theline.

12.5 Bisector: Shape axis - plane

o

O

This function creates the bisecting line between aplane and aline or z axis
of any standard shape or coordinate system.

Result

Normal

The chosen axis will intersect the plane at an oblique angle. The
intersecting axis will have a projected component in the surface of the
plane. The new line has its origin at the point of intersection P of line and
plane surface and its direction is the bisecting vector between the specified
line and its projected component in the specified plane.

Axisparallel or near paralle to plane (within tolerance)

In this case the origin of the new bisecting line is the mid point P of the
perpendicular of the origin O, of the selected line from the surface of the
selected plane. The direction of the new lineis calculated as in the normal
case.

Axis perpendicular to plane
No result.

Parameter s of bisecting line

Originat P
Local z axis along positive direction of the bisecting line
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Local x,y axes are derived from the local x,y axes of the plane. Local x,y,z
axes of plane are rotated about x and y to point the local z axis along the
bisecting line. Rotated X,y axes of plane then represent the local X,y axes of
theline.

12.6 Bisector: Plane - plane

192

Plane 1

Plane 2

Bisecting
plane 3

Result

Normal

The planes intersect in aline. The new plane passes through thisline. The
new origin isthe mid point of the feet of the perpendiculars Py, P, from the
origins Z,, Z, of the selected planes to the line of intersection. The axis of
the new plane is directed along the bisecting vector between the axes of the
two specified planes.

Parallel planes
No result.

Parameter s of bisecting plane
Origin at P, mid-way between P; and P..
Local z axisis Z; which is never more than 45° away from Z;.

Local x,y axes are derived from X,Y axesin base system. X,Y,Z axes of
base system are rotated about X and Y to point the Z axis along the
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bisecting line. Rotated X,Y axes of base system then represent the local X,y
axes of theline,

MATHU.DOC 31/1/00 193



Mathematics for Users Axyz ver. 1.4

13. Perpendiculars

24
1\
E\ CDM

Analyse/
Perpendicular

The calculations between the following combinations result in aline and
the length of the perpendicular between the elements.

 Point - shape axis (line)

(Point to z axis of any standard shape or coordinate system)

» Shape axis - Shape axis (Line - line)

(z axes of any standard shape or coordinate system)

 Point - shape surface
(From point to line, plane, sphere, cylinder, cone, paraboloid, but not
circle)

Tolerances on the intersection of lines and parallelism of lines and planes
can be defined in the CDM "Warnings' menu. These are used to produce
warning messages and may prevent calculation of aresult if exceeded by

defined amounts.

13.1 Perpendicular: Point - shape axis (line)

194

8

P2

U
P

This function creates a perpendicular line from a point to aline which may
be the z axis of any standard shape or coordinate system.

Results

Normal
Offset distance d, LINE of perpendicular

MATHU.DOC 31/1/00



Axyz ver. 1.4 Mathematics for Users

Point lieson axis

No result.

Parameter s of perpendicular line

The origin is the offset point P,

Thelocal z axis points from P; towards the shape axis (U,).

Local x,y axes are derived from X,Y axesin base system. X,Y,Z axes of
base system are rotated about X and Y to point the Z axis along the

perpendicular line. Rotated X,Y axes of base system then represent the
local x,y axes of theline.

13.2 Perpendicular: Point - shape surface

13.2.1 Perpendicular: Point — plane

Results

Normal
Line calculated from offset point towards surface of plane.
The offset point isthe origin of the line.

Offset point lieson plane
No perpendicular is calculated in this case.

Parameters of perpendicular line

Originis at the offset point.
Local z axisis positive from the offset point towards the plane.
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Local x,y axes are derived from X,Y axesin base system. X,Y,Z axes of
base system are rotated about X and Y to point the Z axis along the
perpendicular line. Rotated X,Y axes of base system then represent the
local x,y axes of theline.

13.2.2 Perpendicular: Point - sphere

196

U4
P4

The perpendicular connects the centre of the sphere to the offset point.

Results

Normal
If the point lies outside the sphere, the line is positive towards the centre.
If the point liesinside the sphere, the line is positive away from the centre.

Offset point isat centre of sphere
No perpendicular is calculated in this case. (Infinite number of
possibilities.)

Offset point lies on surface of sphere
The perpendicular is aso calculated in this case.
Thelineis positive away from the centre.

Parameter s of perpendicular line
The origin is the offset point.
Thelocal z axisis positive as indicated above.

Local x,y axes are derived from X,Y axesin base system. X,Y,Z axes of
base system are rotated about X and Y to point the Z axis along the
perpendicular line. Rotated X,Y axes of base system then represent the
local x,y axes of theline.
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13.2.3 Perpendicular: Point - cylinder

C =

N

N
N

The calculated perpendicular is aline through the offset point and
perpendicular to the cylinder axis.

Results

Normal
If the point lies outside the cylinder, the line is positive towards the axis.
If the point lies inside the cylinder, the line is positive away from the axis.

Offset point ison axis of cylinder
No perpendicular is calculated in this case. (Infinite number of
possibilities.)

Offset point lies on surface of cylinder
No perpendicular is calculated in this case.

Parameter s of perpendicular line
The origin is the offset point.
Thelocal z axisis positive as indicated above.

Local x,y axes are derived from X,Y axesin base system. X,Y,Z axes of
base system are rotated about X and Y to point the Z axis along the
perpendicular line. Rotated X,Y axes of base system then represent the
local x,y axes of theline.
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13.2.4 Perpendicular: Point - cone

Results

Normal

Thelineis positive from the offset point towards the surface of the cone.
If the offset point isinside the cone, the nearest part of the surfaceis
chosen.

Offset point ison axis of cone
No perpendicular is calculated in this case. (Infinite number of
possibilities.)

Offset point lies on surface of cone
No perpendicular is calculated in this case.

Parameters of perpendicular line
The origin is the offset point.
Thelocal z axisis positive as indicated above.

Local x,y axes are derived from X,Y axesin base system. X,Y,Z axes of
base system are rotated about X and Y to point the Z axis along the
perpendicular line. Rotated X,Y axes of base system then represent the
local x,y axes of theline.
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13.2.5 Perpendicular: Point - paraboloid

focus
[

Results

Normal

Thelineis positive from the offset point towards the surface of the
paraboloid.

If the offset point isinside the paraboloid, the nearest part of the surfaceis
chosen.

Offset point ison axis of paraboloid
There are an infinite number of possibilitiesin this case. Oneis chosen
such that the perpendicular line liesin the local zy plane of the paraboloid.

Offset point lies on surface of paraboloid
No perpendicular is calculated in this case.

Parameters of perpendicular line
The origin is the offset point.
Thelocal z axisis positive as indicated above.

Local x,y axes are derived from X,Y axesin base system. X,Y,Z axes of
base system are rotated about X and Y to point the Z axis along the
perpendicular line. Rotated X,Y axes of base system then represent the
local x,y axes of theline.
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13.3 Perpendicular: Shape axis - shape axis (line - line)

200

|

O,

Length of

. oF
perpendicular

Perpendicular
between parallel lines

Oy

This function creates a perpendicular line between two lines which may be
the z axis of any standard shape or coordinate system.

Results

Normal
Offset distance, LINE of perpendicular

Normal parametersof perpendicular line

The diagram shows lines 1 and 2 with origins at O, and O,. The feet of the
perpendicular between the lines are at P; and P, and the intersection point
M is midway between them.

The origin of the perpendicular lineisat P;
Local z axisis positive from P; to P».

Local x,y axes are derived from X,Y axesin base system. X,Y,Z axes of
base system are rotated about X and Y to point the Z axis along the
perpendicular line. Rotated X,Y axes of base system then represent the
local x,y axes of theline.

AXxesintersect at a point
No result.
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Parallel lines

If lines1 and 2 are parallel there are an infinite number of perpendicular
lines between them. By default a perpendicular line is then chosen with
origin at O, and direction vector towards line 2.

Parameters of perpendicular line between two parallel lines
Originisat Oy, the origin of thefirst line.
Local z axisis positive from line 1 towards line 2.

Local x,y axes are derived from X,Y axesin base system. X,Y,Z axes of
base system are rotated about X and Y to point the Z axis along the
perpendicular line. Rotated X,Y axes of base system then represent the
local x,y axes of theline.
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14. Parallels

=0 These calculations create one of the following:
‘%ﬁ com * A linethrough a specified point which is parallel to the z axis of any
Analyse shape or coordinate system
* A plane through a specified point which is parallel to another plane or
circle
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15. Evaluating points

15.1 Introduction
This section deals with dimensions involving groups of points and vectors.

15.2 Two point analysis

\/w‘é The two point analysis provides full information on the vector between
‘%‘ com two specified points. Thisinvolves:

;‘;ﬁty%”wc’  The distance between the points
» The components of the unit vector between the points

15.3 Distances between elements

\/‘,’P’l§ Computed distances are calculated along perpendicular connections
V{j\fe oom Detween the following elements.
pralysel  Point - Point
» Point - shape axis
(z axis of any standard shape or coordinate system)
 Point - shape surface
(plane, sphere, cylinder, cone, paraboloid, not circle)
» Shape axis - shape axis
(z axes of any standard shape or coordinate system)
* Plane- plane
» Shape axis- plane
(z axis of any standard shape or coordinate system)

Note

These functions cal cul ate distances based on the length of perpendicular
lines. Axyz also provides separate functions to calculate perpendicular
lines. See "Pérpendiculars’]on page 104. Jf there are two equivalent
functions, the full perpendicular computation will generate the same
value as the distance computation, as well as the definition of the
perpendicular line.
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15.3.1 Distance: Point - Point

This calculation uses the standard formulafor the distance between two
points in space:

vecl=(Xq,Y1,2p) vee2 = (X;,Y5,25)

dist = (X1 = X,)? +(Yy ~Yo)? +(Zy ~Z,)?

15.3.2 Distance: Point - shape axis (line)

Line or
axis

e

o

Result
The distance is the perpendicular offset of the point from the line or axis.
15.3.3 Distance: Point - shape surface

Distance: Point - plane
V4
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Result

The distance is the perpendicular offset of the point from the plane.

The positive direction of the local z axisis above the plane.

The distance is positive if the point lies above the plane and negativeif it
lies below the plane.

Distance: Point - sphere

+ dist
Result
The distance is the perpendicular offset of the point from the surface of the
sphere.

The distance is positive if the point lies outside the sphere and negative if
it liesinside the sphere.

When a point liesinside the sphere the shortest perpendicular distance to
the surface is calculated.

Distance: Point - cylinder

C 1 a

Result

The distance is the perpendicular offset of the point from the surface of the
cylinder.

The distanceis positive if the point lies outside the cylinder and negative if
it liesinside the cylinder (on the same side as the axis).

MATHU.DOC 31/1/00 205



Mathematics for Users Axyz ver. 1.4

206

When a point liesinside the cylinder the shortest perpendicular distance to
the surface is calcul ated.

Distance: Point - cone
axis

- dist

+ dist

Result

The distance is the perpendicular offset of the point from the surface of the
cone.

The distance is positive if the point lies outside the cone and negative if it
lies inside the cone (on the same side as the axis).

When a point liesinside the cone the shortest perpendicular distance to the
surfaceis calculated.

Distance: Point - paraboloid
- dist

-+dist

Result

The distance is the perpendicular offset of the point from the surface of the
paraboloid.

The distance is negative if the point lies on the same side of the paraboloid
as the focus (inside the paraboloid) and positive if it lies on the other side
(outside the paraboloid).

MATHU.DOC 31/1/00



Axyz ver. 1.4 Mathematics for Users

15.3.4 Shape axis - shape axis (line - line)

'l

02
U4
Length of
perpendicular
O

Result
The distance between 2 axes or lines is the length of the perpendicular line
between them.

15.3.5 Plane - plane

|

Separation of parallel planes

Separation of planes which are not parallel

MATHU.DOC 31/1/00 207



Mathematics for Users Axyz ver. 1.4

Strictly speaking the separation of two planesis only meaningful when
they are parallel. Otherwise they intersect and their separation depends on
where the separation is measured.

In practice two nominally parallel planeswill be measured with a slight
angle between them and this angle must first be checked to seeif itis
within the currently set tolerance for parallelism. The angle between the
normal vectorsis the angle checked.

If this angle is within the tolerance the separation of the planesis
calculated as the perpendicular distance of the origin of the first plane from
the surface of the second plane.

15.3.6 Shape axis - plane (line - plane)

208

U4

O

Line parallel to plane

Line not parallel to plane

Asin the separation of two planes, the separation of an axis (line) and
plane is only meaningful when they are paralel. (A lineis parallel to a
planeif it is at right angles to the normal vector to the plane.)

Again acheck is madeto seeif the line and plane are parallel within the
currently set tolerance for parallelism.

If this angle is within the tolerance the separation is calculated as the
perpendicular distance of the origin point on the line from the surface of
the plane.
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16. Creating points

16.1 Division of lines

&
ol
t\/ CDM

Analyze/
Divideline

This function creates a set of equally spaced points along a line defined by
two existing points. The number of new pointsis specified and the spacing
method can be chosen in one of two ways:

1. The new points are equally spaced between the two existing points
2. The new points are equally spaced along the line at a defined interval

Any points or shape origins can be used to define the line. If only one point
Is requested between the end points the result isamid point. In this case

the same result Tﬁg using the bisecting function for "point - point".
See section 1

16.1.1 Examples: Division of line

100 units
25 units
@) ® ® ® @)
Start 1 2 3 End

Equally spaced between start and end points

+ 40 units R

@ o ® O
Start 1 2 End 3
Spaced at equal positive intervals

- 15 units

4—

@) O

3 2 1 Start End

Spaced at equal negative intervals

The diagram shows an example of a start and end point separated by 100
units. A number of new equally spaced points (3 in the example) can be
defined in two different ways:

1. Between the start and end points so that they are separated by 25 unitsin
the example.
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2. At equal intervals along the line from start point to end point. The
example shows 3 points with a positive interval of 40 unitsand a
negative interval of 10 units.
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18. External cross references.

RMS error (start of section)
Bundle adjustment in brief
Coord. systs. (start of section)
Shapes (start of section)
Types of coordinate system
Orientation module (start of section)
Distances between elements (main heading)
Levelling constraints
Blunder detection
Balanced stn. v. free net
10.4.1, p.143 ] [Shape parametersin brief |
s.l%Eb.l 50 Shapes|Start of section
1 : . ,

I art of
section

s. 7?{73,!575 Axis alignment |
s7.b1 Initial orientation and target location| Start of section

55|LSTPSE [Transformation parameters |
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