
# Automated Repeatability Module (ARM) Release Notes

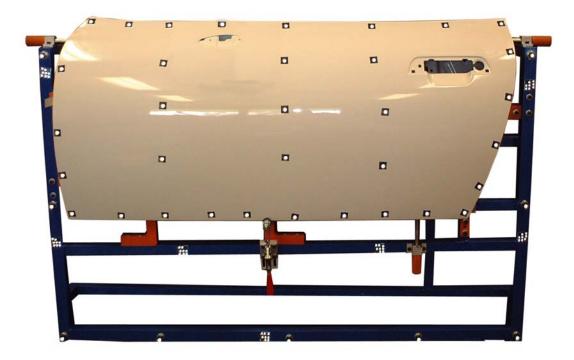


September 2002

# Automated Repeatability Module (ARM) Release Notes

| ntroduction                           | 4  |
|---------------------------------------|----|
| mplementation                         | 4  |
| Step 1: Object Targeting              | 5  |
| Step 2: Baseline Measurement          | 6  |
| Step 3: Setting the Track Points      | 7  |
| Step 4: Create a Template Project     |    |
| Step 5: Repeatability Data Collection | 10 |
| Step 6: Repeatability Reduction       | 10 |
| Step 7: Repeatability Results         | 12 |
| Step 8: Repeatability Output Files    | 14 |
| Step 9: Additional Functions          | 16 |
| Appendix                              | 18 |

## Introduction

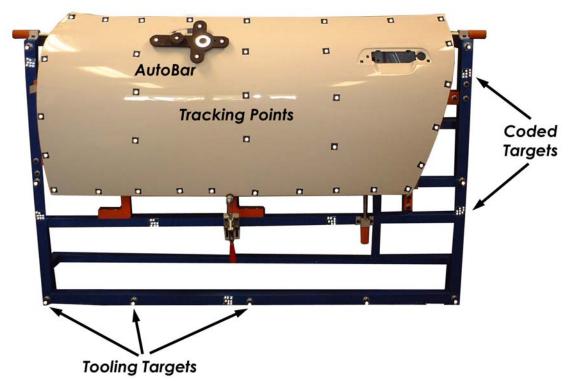

The following document describes the new Automated Repeatability Module (ARM) available in the latest V-STARS release. (Version 4.3) For more information on the new features found in V-STARS Version 4.3 please refer to the V-STARS 4.3 Release Notes.

ARM is a fast, easy and automated way to complete Repeatability Studies. ARM will do the following:

- Automatically split the images from each trial into separate jobs.
- Scan, measure, and reduce each trial to produce a 3D file.
- Transform the file against the selected Baseline file.
- Organize the output from each trial into a series of summary Excel spreadsheets.

### Implementation

To simplify the explanation of how ARM works and is used, a mock measurement was conducted. The mock measurement is a repeatability study concerned with the loading and unloading of a door into a holding fixture. The fixture and door used are shown below.




The measurement consisted of one baseline measurement and 11 measurements (trials) where the door was removed and then replaced.

### Step 1: Object Targeting

The following targeting was used.

- Tooling targets on the fixture to transform data into car coordinate system.
- Coded targets to automate the measurement.
- Points on the door that need to be tracked.
- AutoBar for initial coordinate system.
- Scale bars to scale the measurement.



Note that in this case no Coded Targets were placed on the door itself. This is because the door will be moved in and out of the fixture and we would like our Codes to be fixed. In some cases it will be impossible to avoid placing codes on the object. In these instances the Coded Targets should be treated as approximates ("APPROX"). We will talk more about this later.

#### **Step 2: Baseline Measurement**

ŧ.

- Shoot the object as you would normally. Take care to ensure that every point has a good selection of rays to it.
- Rename the "TARGET" points on the object to something that will easily signify that it is a tracking point. In this example we used the word "TRACK". Rename the tooling points to their designated tooling name (TB1, TB2, etc.)
- Align the object using the tooling points into the object coordinate system.

|         | TUCK RUT | V TUREUE | 1021000  | citor 1 | 0.000 | 0,000 | 01000 |                 |
|---------|----------|----------|----------|---------|-------|-------|-------|-----------------|
| SM5     | -524,300 | 299,943  | -423,670 | 0.011   | 0.005 | 0.006 | 0.000 |                 |
| BM6     | -523.374 | 130.725  | -626.541 | 0.011   | 0.005 | 0.006 | 0.000 |                 |
| BM7     | -275.243 | 705.069  | 477.930  |         | 0.006 | 0.007 | 0.000 |                 |
| 🗢 BMB   | -20.202  | 482.919  | 660.097  |         | 0.006 | 0.008 | 0.000 |                 |
| 🔁 BM9   | -23.178  | -303.778 | -260 545 | 0.007   | 0.005 | 0.006 | 0.000 |                 |
| BM10    | -278.704 | -80.358  | -448.441 | 0.009   | 0.005 | 0.005 | 0.000 |                 |
| BM11    | -524.724 | 522.460  | -160,967 | 0.011   |       | 0.006 | 0.000 | Alignment and   |
| CODE166 | -647.246 | 1150,412 | 92.282   | 0.039   | 0.015 | 0,011 | 0.000 | -               |
| CODE167 | -679,255 | 354.015  | -808.677 | 0.027   |       | 0,011 | 0.000 | fixed points.   |
| CODE168 | -574.415 | 940.383  | 282.999  |         |       | 0.008 | 0.000 |                 |
| CODE169 | -579.423 | 158,984  | -645.961 | 0.012   | 0.005 | 0.006 | 0.000 |                 |
| CODE170 | -375.647 | 196.916  | -243.037 |         | 0.005 | 0.005 | 0.000 |                 |
| CODE171 | -371.021 |          | 149.154  | 0,014   | 0.006 | 8.007 | 0.000 |                 |
| CODE172 | -537,292 | 470.844  | -199,644 | 0.012   | 0.006 | 0.006 | 0.000 |                 |
| CODE173 | -349,126 | 747,110  | 444.018  | 0.018   | 0.007 | 0.008 | 0.000 |                 |
| CODE174 | -84,584  | 517.700  | 633.097  | 8.014   | 0.008 | 0.009 | 0.000 |                 |
| CODE175 | -360.959 | -30.862  | -490.083 | 0.011   | 0.005 | 0.006 | 0.000 |                 |
| CODE176 | -66,624  | -286.558 | -272.810 | 0.009   | 0.006 | 0.007 | 0.000 |                 |
| TRACK1  | -36,198  | -324.658 | -104.403 | 0.013   | 0.008 | 0.008 | 0.000 |                 |
| TRACK2  | -33.577  | -248.767 | -35.744  | 0.009   | 0.006 | 0.006 | 0.000 |                 |
| TRACK3  | -31,932  | -177,579 | 40.970   | 0.009   | 0.006 | 0.007 | 0.000 |                 |
| TRACK4  | -30.870  | -89.612  | 143.857  | 0.010   | 0.007 | 0.007 | 0.000 |                 |
| TRACK5  | -31.351  | 16.802   | 262.326  | 0.010   | 0.007 | 0.007 | 0.000 |                 |
| TRACK6  | -33,494  | 156.126  | 426,832  | 0.012   | 0.007 | 0.007 | 0.000 |                 |
| TRACK7  | -36.829  | 272.150  | 573.771  | 0.012   | 0.007 | 0.008 | 0.000 |                 |
| TRACK8  | -40.282  | 358,628  | 689,999  | 0.013   | 0.007 | 0.009 | 0.000 |                 |
| TRACK9  | -29,444  | -241.386 | -241.621 | 0,007   | 0.005 | 0.006 | 0,000 |                 |
| TRACK10 | -19.592  | -81.810  | -42.159  | 0.007   | 0.005 | 0.006 | 0.000 | Points that     |
| TRACK11 | -18,116  | 104.534  | 184.944  | 0.008   | 0.005 | 0.006 | 0.000 | will be tracked |
| TRACK12 | -20.859  | 241.392  | 352.668  | 0.010   | 0.006 | 0.007 | 0.000 | will be iracked |
| TRACK13 | -26.040  | 438.121  | 631.247  | 0.012   | 0.007 | 0.008 | 0.000 |                 |
| TRACK14 | -56,756  | -5.985   | -103.847 | 0.007   | 0.005 | 0.005 | 0.000 |                 |
| TRACK15 | -60,160  | 190.861  | 113,978  | 0.007   | 0.005 | 0.005 | 0.000 |                 |

### **Step 3: Setting the Track Points**

- Rename the current bundle file to something that easily identifies it as the Baseline file. In this example we used "Master File.3D".
- View the points listing and select all the points that will be tracked.
- Click on the "Sigma X" tab and select the "U" icon. The word "UNKNOWN" should appear in the text box.

|           | F | Α | (TU |
|-----------|---|---|-----|
| +   x   = | 4 | v | 172 |

 Press the "=" icon to accept the change.



|                      |          | PI C            | 10                 | t "C    | の間    |        |       | U   '    | <b>4</b> ] 14 字 写                            | • ОК                 | 111                | 10              | t       | 2 記   |       |       |
|----------------------|----------|-----------------|--------------------|---------|-------|--------|-------|----------|----------------------------------------------|----------------------|--------------------|-----------------|---------|-------|-------|-------|
|                      | _        |                 | _                  | _       |       |        |       | pri      |                                              |                      |                    |                 |         |       |       |       |
| Point Label          | X        | Y               |                    | Signa X |       |        |       | cription | Point Label                                  | ×                    | Y                  |                 | Signa X |       |       |       |
| AUTOBAR4<br>AUTOBAR5 | 0.092    | 50.607<br>0.096 | 114.019 57.101     | 0.008   | 0.005 | 0.006  | 0.000 |          | AUTOBAR4                                     | 0.092                | 50.607             | 114.019         | 0.008   | 0.005 | 0.006 | 0.000 |
| BMI                  | -604.270 | 308.236         | -833 709           | 0.012   | 0.006 | 0.000  | 0.000 |          | AUTOBAR5                                     | 12.724               | 0.096              | 57.101          | 0.008   | 0.005 | 0.006 | 0.000 |
| 6842                 | -589.255 | 1170.456        | 74.444             | 0.012   | 0.009 | 0.0007 | 0.000 |          | I DP41                                       | -604.270             | 300.236            | -833.709        | 0.012   | 0.006 | 0.008 | 0.000 |
| Q (P1)               | -518.576 | 913.256         | 303.178            | 0.013   | 0.007 | 0.007  | 0.000 |          | C EM2                                        | -589.255             | 1170.456           | 74.444          | 0.013   | 0.009 | 0.007 | 0.000 |
| Q 5014               | -522.261 | 743.282         | 102.606            | 0.011   | 0.006 | 0.006  | 0.000 | #S       | EP43                                         | -518.576             | 913.256<br>743.282 | 303.178         | 0.013   | 0.007 | 0.007 | 0.000 |
| 0 6915               | -524.300 | 299.943         | -423.670           | 0.011   | 0.005 | 0.006  | 0.000 |          | Q 1014                                       | -522.261<br>-524.300 | 299.943            | 102.606         | 0.011   | 0.005 | 0.006 | 0.000 |
| Q 1016               | -523.374 | 130.725         | -626.541           | 0.011   | 0.005 | 0.006  | 0.000 |          | C 5745                                       | -523.374             | 130.725            | +626.541        | 0.011   | 0.005 | 0.006 | 0.000 |
| C E017               | -275.243 | 705.069         | 477.938            | 0.010   | 0.006 | 0.007  | 0.000 |          | Q [[M2                                       | -275.243             | 705.069            | 477,930         | 0.010   | 0.006 | 0.007 | 0.000 |
| Q 5113               | -20.202  | 462.919         | 660.097            | 0.010   | 0.006 | 0.008  | 0.000 |          | C 1010                                       | -20.202              | 402.919            | 660.097         | 0.010   | 0.006 | 0.000 | 0.000 |
| 6643                 | -23.178  | -303.778        | -260.545           | 0.007   | 0.005 | 0.006  | 0.000 |          | C EMO                                        | -23.178              | -303.778           | -260.545        | 0.007   | 0.005 | 0.006 | 0.000 |
| SM10                 | -278.704 | -80.358         | -448.441           | 0.009   | 0.005 | 0.005  | 0.000 |          | O 67410                                      | -278.704             | -80.358            | -648,641        | 0.009   | 0.005 | 0.005 | 0.000 |
| EP111                | -524.724 | 522.460         | -160.967           | 0.011   | 0.005 | 0.006  | 0.000 |          | 4 DP111                                      | -524.724             | 522.460            | -160.967        | 0.011   | 0.005 | 0.006 | 0.000 |
| CODE166              | -647.246 | 1150.412        | 92.282             | 0.039   | 0.015 | 0.011  | 0.000 |          | CODE166                                      | -647.246             | 1150.412           | 92.282          | 0.039   | 0.015 | 0.011 | 0.000 |
| CODE167              | -679.255 | 354.015         | -808.677           | 0.027   | 0.010 | 0.011  | 0.000 |          | CODE167                                      | -679.255             | 354.015            | -808.677        | 0.027   | 0.010 | 0.011 | 0.000 |
| CODE168              | -574.415 | 940.383         | 282.999            | 0.017   | 0.008 | 0.008  | 0.000 |          | CODE160                                      | -574.415             | 940.383            | 282.999         | 0.017   | 0.008 | 0.000 | 0.000 |
| CODE169              | -579.423 | 150.904         | -645.961           | 0.012   | 0.005 | 0.006  | 0.000 |          | CODE169                                      | -579.423             | 158.984            | -645.961        | 0.012   | 0.005 | 0.006 | 0.000 |
| CODE170              | -375.647 | 196.916         | -243.037           | 0.010   | 0.005 | 0.005  | 0.000 |          | CODE170                                      | -375.647             | 196.916            | -243.037        | 0.010   | 0.005 | 0.005 | 0.000 |
| CODE171              | -371.021 | 523.015         | 149.154            | 0.014   | 0.006 | 0.007  | 0.000 |          | CODE171                                      | -371.021             | 523.015            | 149.154         | 0.014   | 0.006 | 0.007 | 0.000 |
| CODE172              | -537.292 | 470.044         | -199.644 444.018   | 0.012   | 0.006 | 0.006  | 0.000 |          | CODE172                                      | -537.292             | 470.844            | -199.644        | 0.012   | 0.006 | 0.005 | 0.000 |
| CODE173              | -349.126 | 517,700         | 994.018<br>633.097 | 0.018   | 0.007 | 0.008  | 0.000 |          | CODE173                                      | -349.126             | 747.110            | 444.018         | 0.018   | 0.007 | 0.008 | 0.000 |
| CODE174              | -360.959 | -30.862         | -490.083           | 0.014   | 0.005 | 0.009  | 0.000 |          | CODE174                                      | -04.504              | \$17.700           | 633.097         | 0.014   | 0.008 | 0.009 | 0.000 |
| CODE175              | -360.959 | -30.062         | -272.810           | 0.009   | 0.005 | 0.005  | 0.000 |          | CODE175                                      | -360.959             | -30.062            | -490.000        | 0.011   | 0.005 | 0.006 | 0.000 |
| TRACKI               | -36,198  | -200.550        | -104.403           | 0.013   | 0.008 | 0.008  | 0.000 |          | CODE176                                      | -66.624              | -286.558           | -272.810        | 0.009   | 0.006 | 0.007 | 0.000 |
| TRACK2               | -33.577  | -240.767        | -35.744            | 0.009   | 0.006 | 0.000  | 0.000 |          |                                              | -36.198              | -324.658           | -104.403        | UNK     | 0.008 | 0.008 | 0.000 |
| TRACK3               | -31.932  | -177.579        | 40.970             | 0.009   | 0.006 | 0.007  | 0.000 |          | TRACK2<br>TRACK3                             | -33.577              | -240.767           | -35.744 40.920  | UNK     | 0.006 | 0.005 | 0.000 |
| TRACK4               | -30,870  | -89.612         | 143.857            | 0.010   | 0.007 | 0.007  | 0.000 |          | TRACK4                                       | -30.870              | -89.612            | 143.857         | UPAK    | 0.007 | 0.007 | 0.000 |
| TRACKS               | -31.351  | 16.002          | 262.326            | 0.010   | 0.007 | 0.007  | 0.000 |          | TRACKS                                       | -31.351              | 16.002             | 262.326         | UNK     | 0.007 | 0.007 | 0.000 |
| TRACK6               | -33.494  | 156.126         | 426.832            | 0.012   | 0.007 | 0.007  | 0.000 |          | TRACKS                                       | -33,494              | 156.126            | 426,832         | UNK     | 0.007 | 0.007 | 0.000 |
| TRACK7               | -36.829  | 272.150         | 573.771            | 0.012   | 0.007 | 0.008  | 0.000 |          | TRACK7                                       | -36.829              | 272.150            | 573,771         | LP#     | 0.007 | 0.008 | 0.000 |
| TRACKD               | -40.282  | 350.620         | 609.999            | 0.013   | 0.007 | 0.009  | 0.000 |          | TRACK0                                       | -40.202              | 350.620            | 609.999         | UNK     | 0.007 | 0.009 | 0.000 |
| TRACK9               | -29.444  | -241.386        | -241.621           | 0.007   | 0.005 | 0.006  | 0.000 |          | TRACK9                                       | -29.444              | -241.386           | -241.621        | UNK     | 0.005 | 0.006 | 0.000 |
| TRACK10              | -19.592  | -81.810         | -42.159            | 0.007   | 0.005 | 0.006  | 0.000 |          | TRACK10                                      | -19.592              | -81.810            | -42.159         | URK     | 0.005 | 0.006 | 0.000 |
| TRACK11              | -10.116  | 104.534         | 104.944            | 0,000   | 0.005 | 0.006  | 0.000 |          | TRACK11                                      | -10.116              | 104.534            | 104.944         | UNK     | 0.005 | 0.006 | 0.000 |
| TRACK12              | -20.859  | 241.392         | 352.668            | 0.010   | 0.006 | 0.007  | 0.000 |          | TRACK12                                      | -20.859              | 241.392            | 352.668         | UNK     | 0.006 | 0.007 | 0.000 |
| TRACK13              | -26.040  | 438.121         | 631.247            | 0.012   | 0.007 | 0.008  | 0.000 |          | TRACK13                                      | -26.040              | 438.121            | 631.247         | UNK     | 0.007 | 0.008 | 0.000 |
| TRACK14              | -56.756  | -5.905          | -103.047           | 0.007   | 0.005 | 0.005  | 0.000 |          | TRACK14                                      | -56.756              | -5.905             | -103.847        | UNK     | 0.005 | 0.005 | 0.000 |
| TRACK15              | -60.160  | 190.861         | 113.978            | 0.007   | 0.005 | 0.005  | 0.000 |          | TRACKIS                                      | -60.160              | 190.061            | 113.970         | UNK     | 0.005 | 0.005 | 0.000 |
| TRACK16<br>TRACK17   | -68.069  | 347.910         | 296.046            | 0.008   | 0.005 | 0.006  | 0.000 |          | TRACK16                                      | -68.069              | 347.910            | 296.046         | UNK     | 0.005 | 0.005 | 0.000 |
| TRACK17<br>TRACK18   | -61.366  | -141.355        | -337.703           | 0.010   | 0.005 | 0.007  | 0.000 |          | TRACK17<br>TRACK18                           | -61.366<br>-102.241  | 514.998            | 551.658         | UNK     | 0.006 | 0.007 | 0.000 |
| TRACK19              | -139.300 | 60.143          | -174.158           | 0.007   | 0.005 | 0.005  | 0.000 |          | <ul> <li>TRACKIE</li> <li>TRACKIE</li> </ul> | -102.241             | -141.355<br>68.143 | -337.703        | UNK     | 0.005 | 0.005 | 0.000 |
| TRACK19              | -134.043 | 260.661         | -1/4.198           | 0.008   | 0.005 | 0.005  | 0.000 |          | <ul> <li>TRACK19</li> <li>TRACK20</li> </ul> | -139.300             | 68.143             | -174.158 56.090 | UNK     | 0.005 | 0.005 | 0.000 |
| TRACK21              | -155.712 | 423.046         | 227.869            | 0.009   | 0.005 | 0.005  | 0.000 |          | TRACK21                                      | -155.712             | 423.046            | 227.069         | UNK     | 0.005 | 0.005 | 0.000 |
| TRACK22              | -129.598 | 568.089         | 467.940            | 0.011   | 0.006 | 0.007  | 0.000 |          | TRACK22                                      | -129,598             | 568.089            | 467.940         | UNK     | 0.006 | 0.007 | 0.000 |
| TRACK23              | -178,500 | -77.167         | -304.076           | 0.008   | 0.005 | 0.005  | 0.000 |          | O TRACK23                                    | -178.500             | -77.167            | -384.876        | UNK     | 0.005 | 0.005 | 0.000 |
| TRACK24              | -263.021 | -20.240         | -418.484           | 0.009   | 0.005 | 0.006  | 0.000 |          | TRACK24                                      | -263.021             | -20.240            | -410.404        | UNK     | 0.005 | 0.006 | 0.000 |
| TRACK25              | -261.723 | 66.730          | -323.862           | 0.009   | 0.005 | 0.005  | 0.000 |          | TRACK25                                      | -261.723             | 66.730             | -323.062        | UNK     | 0.005 | 0.005 | 0.000 |
| TRACK26              | -256.409 | 140.257         | -238.353           | 0.008   | 0.005 | 0.005  | 0.000 |          | TRACK26                                      | -256.489             | 140.257            | -238.353        | UNK     | 0.005 | 0.005 | 0.000 |
| TRACK27              | -252.029 | 215.448         | -149.001           | 0.009   | 0.005 | 0.005  | 0.000 |          | TRACK27                                      | -252.029             | 215.440            | -149.001        | UR#(    | 0.005 | 0.005 | 0.000 |
| TRACK20              | -251.240 | 273.009         | -01.093            | 0.009   | 0.005 | 0.006  | 0.000 |          | TRACK20                                      | -251.240             | 273.009            | -01.090         | UNK     | 0.005 | 0.006 | 0.000 |
| TRACK29              | -256.185 | 352.570         | 6.404              | 0.010   | 0.005 | 0.006  | 0.000 |          | TRACK29                                      | 256.185              | 352.570            | 6.404           | UNK     | 0.005 | 0.006 | 0.000 |
| TRACK30              | -254.576 | 429.319         | 101.602            | 0.010   | 0.005 | 0.006  | 0.000 |          | TRACK30                                      | -254.576             | 429.319            | 101.602         | UR#(    | 0.005 | 0.006 | 0.000 |
| TRACK31              | -253.022 | 492.795         | 101.742            | 0.010   | 0.005 | 0.006  | 0.000 |          | TRACK31                                      | -253.822             | 492.795            | 101.742         | UNK     | 0.005 | 0.005 | 0.000 |
| TRACK32              | -256.395 | 558.710         | 263.074            | 0.010   | 0.005 | 0.006  | 0.000 |          | TRACK82                                      | -256.395             | 558.710            | 263.074         | UNK     | 0.005 | 0.006 | 0.000 |
| TRACK33              | -259.200 | 617.991         | 338.038            | 0.012   | 0.006 | 0.007  | 0.000 |          | TRACK33                                      | -259.200             | 617.991            | 338.038         | UNK     | 0.006 | 0.007 | 0.000 |
| TRACK34              | -206.352 | 603.570         | 392.130            | 0.011   | 0.006 | 0.007  | 0.000 |          | TRACK04                                      | -206.352             | 603.570            | 392.130         | UNK     | 0.006 | 0.007 | 0.000 |

• Repeat this process for the "Sigma Y" and "Sigma Z" columns.

• Select the points that are stable and that are going to be used as "FIXED" points. Set their sigma X, Y, and Z values as "FIXED" using the same procedure.

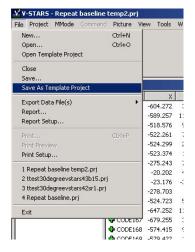
| 194 | ► + º+            | • ок               | 101                  | #p<br>17 07          | t 📲              | 0                  |                  |        |
|-----|-------------------|--------------------|----------------------|----------------------|------------------|--------------------|------------------|--------|
| ~   | K I I             |                    | P P C                |                      | ····   [0   /    | - <b>M</b> J       |                  | _      |
| _   | eiet Label        | v                  | Y                    | 7                    | Ciamo V          | Ciamo V            | Ciamo 7          | Offset |
|     | oint Label        | X 0.092            | 50.607               | Z<br>114.019         | Sigma X<br>0.008 | Sigma Y<br>0.005   | Sigma Z<br>0.006 | 0.000  |
|     | AUTOBARS          | 12.724             | 0.096                | 57.101               | 0.008            | 0.005              | 0.006            | 0.000  |
|     | BM1               | -604.270           | 388,236              | -833.709             | FIXED            | FIXED              | FIXED            | 0.000  |
|     | BM2               | -589.255           | 1170.456             | 74.444               | FIXED            | FIXED              | FIXED            | 0.000  |
| 4   | BM3               | -518.576           | 913.256              | 303.178              | FIXED            | FIXED              | FIXED            | 0.000  |
|     | BM4               | -522.261           | 743.282              | 102.606              | FIXED            | FIXED              | FIXED            | 0.000  |
| 4   | BM5               | -524.300           | 299.943              | -423.670             | FIXED            | FIXED              | FIXED            | 0.000  |
| 4   | BM6               | -523.374           | 130.725              | -626.541             | FIXED            | FIXED              | FIXED            | 0.000  |
| 4   | BM7               | -275.243           | 705.069              | 477.938              | FIXED            | FIXED              | FIXED            | 0.000  |
| 4   | BM8               | -20.202            | 482.919              | 660.097              | FIXED            | FIXED              | FIXED            | 0.000  |
|     | BM9               | -23.178            | -303.778             | -260.545             | FIXED            | FIXED              | FIXED            | 0.000  |
|     | BM10              | -278.704           | -80.358              | -448.441             | FIXED            | FIXED              | FIXED            | 0.000  |
|     | BM11              | -524.724           | 522.460              | -160.967             | FIXED            | FIXED              | FIXED            | 0.000  |
|     | CODE166           | -647.246           | 1150.412             | 92.282               | FIXED            | FIXED              | FIXED            | 0.000  |
|     | CODE167           | -679.255           | 354.015              | -808.677             | FIXED            | FIXED              | FIXED            | 0.000  |
|     | CODE168           | -574.415           | 940.383              | 282.999              | FIXED            | FIXED              | FIXED            | 0.000  |
|     | CODE169           | -579.423           | 158.984              | -645.961             | FIXED            | FIXED              | FIXED            | 0.000  |
|     | CODE170           | -375.647           | 196.916              | -243.037             | FIXED            | FIXED              | FIXED            | 0.000  |
|     | CODE171           | -371.021           | 523.015              | 149.154              | FIXED            | FIXED              | FIXED            | 0.000  |
|     | CODE172           | -537.292           | 470.844              | -199.644             | FIXED            | FIXED              | FIXED            | 0.000  |
|     | CODE173           | -349.126           | 747.110              | 444.018              | FIXED            | FIXED              | FIXED            | 0.000  |
|     | CODE174           | -84.584            | 517.700              | 633.097              | FIXED            | FIXED              | FIXED            | 0.000  |
|     | CODE175           | -360.959           | -30.862              | -490.083             | FIXED            | FIXED              | FIXED<br>FIXED   | 0.000  |
|     | CODE176<br>TRACK1 | -66.624<br>-36.198 | -286.558<br>-324.658 | -272.810<br>-104.403 | UNKNOWN          | FIXED<br>UNKNOWN   | UNKNOWN          | 0.000  |
|     | TRACKI<br>TRACK2  |                    |                      |                      | UNKNOWN          |                    | UNKNOWN          | 0.000  |
|     | TRACK2            | -33.577<br>-31.932 | -248.767<br>-177.579 | -35.744<br>40.970    | UNKNOWN          | UNKNOWN<br>UNKNOWN | UNKNOWN          | 0.000  |
|     | TRACKS            | -30.870            | -89.612              | 143.857              | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACKT            | -31.351            | 16.802               | 262.326              | LINKNOWN         | UNKNOWN            | LINKNOWN         | 0.000  |
|     | TRACK6            | -33.494            | 156.126              | 426.832              | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK7            | -36.829            | 272.150              | 573.771              | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK8            | -40.282            | 358.628              | 689.999              | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK9            | -29.444            | -241.386             | -241.621             | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK10           | -19.592            | -81.810              | -42.159              | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK11           | -18.116            | 104.534              | 184.944              | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK12           | -20.859            | 241.392              | 352.668              | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
| 4   | TRACK13           | -26.040            | 438.121              | 631.247              | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
| 4   | TRACK14           | -56.756            | -5.985               | -103.847             | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
| 4   | TRACK15           | -60.160            | 190.861              | 113.978              | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
| 4   | TRACK16           | -68.069            | 347.910              | 296.046              | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK17           | -61.366            | 514.998              | 551.658              | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK18           | -102.241           | -141.355             | -337.703             | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
| 4   | TRACK19           | -139.300           | 68.143               | -174.158             | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK20           | -134.843           | 260.661              | 56.090               | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK21           | -155.712           | 423.046              | 227.869              | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK22           | -129.598           | 568.089              | 467.940              | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK23           | -178.500           | -77.167              | -384.876             | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK24           | -263.021           | -20.240              | -418.484             | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK25           | -261.723           | 66.730               | -323.862             | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK26           | -256.489           | 140.257              | -238.353             | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK27           | -252.029           | 215.448              | -149.001             | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK28           | -251.248           | 273.009              | -81.893              | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK29           | -256.185           | 352.570              | 6.404                | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK30           | -254.576           | 429.319              | 101.602              | UNKNOWN          |                    | UNKNOWN          | 0.000  |
|     | TRACK31           | -253.822           | 492.795              | 181.742              | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK32           | -256.395           | 558.710              | 263.074              | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |
|     | TRACK33           | -259.200           | 617.991              | 338.038              | UNKNOWN          |                    |                  | 0.000  |
|     | TRACK34           | -206.352           | 603.570              | 392.130              | UNKNOWN          | UNKNOWN            | UNKNOWN          | 0.000  |

If there are Coded Targets on the object, make the sigmas of these points "APPROX". These point will not be used to compute the final transformation. They will only be used as approximate values and then discarded for the final calculation.

• Delete any other points in the file that are not needed (AutoBar, Scale, etc.).

• Right click on the points icon in the "Master File.3d" and select "Move to Design".




• Once you have done this, delete any 3D files you don't need.

#### **Step 4: Create a Template Project**

The last step before commencing the Repeatability Study is to save the project as a Template Project.

- Select the "Save as Template Project" option from the "File" menu. This will save the current project and all the files into the template directory.
- Select or enter a name and press "Save" to create the template. Note that previous
   Template Projects can be over-written if you select them from the list.

| Y 1mm pm                             |            |     |  |
|--------------------------------------|------------|-----|--|
| Basic Frame Picture                  | s          |     |  |
| 2 D1X<br>2 D                         | 12         |     |  |
| Demo Frame Repea<br>FRAME INITIAL ME |            | FNT |  |
| FRAME REPEAT M                       |            |     |  |
| north wall                           |            |     |  |
| Probe Kit SNXXX Ca                   | alibration |     |  |
| Repeat project                       |            |     |  |
|                                      |            |     |  |
| ve Current Project As                |            |     |  |
|                                      |            |     |  |
| epeat baseline                       |            |     |  |



You are now ready to complete the Repeatability Study.

#### **Step 5: Repeatability Data Collection**

In the example we are using we removed and replaced the door a total of 11 times.



After each time the door was removed and replaced we collected a total of six images. The number of images you collect will depend on the complexity of the object. It is not essential to collect the same number of images for each cycle, but we recommend it, as it will help you achieve results with similar accuracy estimates for each Bundle.

**Note**: There is no need to roll the camera in the cycles as the calibrated camera from the baseline measurement will be used.

The images can be stored in the one Job folder or in Multiple Jobs. If you store all the images in the same JOB folder, V-STARS will separate the images into their individual cycles using the image time stamp. In this case it is important that the images you collect for a cycle are not separated by too much time. For example, if you need to stop halfway through a measurement cycle to change a battery we recommend deleting the images taken for that cycle and starting afresh. The time interval V-STARS uses to separate JOBS can be changed in the Repeatability Setup dialog. The general rule of thumb we recommend is to separate cycles by about 60 seconds or more.

#### **Step 6: Repeatability Reduction**

- Launch V-STARS and select "Open Template Project" from the File menu. Select the Repeatability Project you created and select an appropriate name.
- Right click on the pictures icon and set the image path to the job that contains the Repeatability images.

• Go to "Project – Repeatability Study" and select "Setup". Enter an appropriate time interval and Cp Spec number. (Refer to the Appendix for more information on Cp and Cpk)

|                  | STARS                          | - Repeat           | baseline t  | emp2.pr           | rj     |         |                |      |
|------------------|--------------------------------|--------------------|-------------|-------------------|--------|---------|----------------|------|
| Eile             | Project                        | Mode               | ⊆ommand     | Picture           | ⊻iew   | Tools   | <u>W</u> indow | Help |
| 6                |                                | nced Edit          |             |                   |        |         |                |      |
|                  | States.                        | Measure            |             |                   |        |         |                |      |
| <b>t</b>         | Globa<br>Upda                  | al Point Edi<br>be |             |                   | -      |         |                |      |
| k                | Resto                          |                    | 17          | 00                |        |         |                |      |
| V                |                                |                    |             |                   | -      |         |                |      |
| _¥*<br>_¥*<br>⊕… | <u>I</u> mpor<br><u>B</u> undl |                    |             |                   |        |         |                |      |
| +                | 77,00,000                      | gulate             |             |                   |        |         |                |      |
|                  | - <u>1</u> 96203               | Match              |             |                   |        |         |                |      |
| Ē                | Proje                          | 2+0+0-5000 per     | ÷.          |                   |        |         |                |      |
|                  | Repe                           | atability S        | tudy 🔸      | Run               |        |         |                |      |
|                  | Label                          | Setup              |             |                   |        |         |                |      |
| 1                | S <u>e</u> tup                 | 5                  | _           | Symmary           |        |         |                | -    |
|                  |                                |                    |             | Split Jobs        |        | on Time | e Stamp        |      |
|                  |                                |                    |             | Merge Jo          | DS     |         |                | -    |
|                  |                                |                    |             | Select <u>B</u> a |        |         |                |      |
|                  |                                |                    |             | <u>R</u> eset Ba  | seline |         |                | -    |
|                  |                                |                    |             | <u>S</u> etup     |        |         |                |      |
|                  |                                |                    | Т           |                   |        |         |                | 12   |
|                  |                                |                    |             |                   |        |         |                |      |
| n                | anast                          | abilitu            | Study 9     | Telana.           |        |         |                | x    |
| R                | epeac                          | ability            | Scuuy       | secup             |        |         | -              |      |
|                  | _                              |                    |             |                   | _      |         |                |      |
|                  | Epoch                          | Interva            | l: 60       |                   |        | seco    | onds           |      |
|                  |                                |                    |             |                   |        |         |                |      |
|                  | Co Soe                         | ec (+/-):          | 0.5         |                   |        | millin  | neters         |      |
|                  | ch oh                          |                    | 1 - · · · · |                   |        |         | ICCOIS.        |      |
|                  |                                |                    |             |                   |        |         |                |      |
|                  |                                |                    |             |                   |        |         |                |      |
|                  |                                |                    |             |                   |        |         |                |      |
|                  | 3                              |                    |             |                   | -      |         | 1              |      |
|                  | 2                              |                    | IK          |                   | Car    | ncel    | -              |      |
|                  | 1                              |                    |             |                   |        |         | - 58           |      |

• Once you have set up the interval and Cp Spec value select "Run" from the "Repeatability Study" menu.

The first thing V-STARS will do is split the images into their individual cycle. If you have any reason to suspect that the jobs won't be split correctly select the "Split Jobs Based on Time Stamp" option and verify that there are the correct number of cycles.

| t   📲   🔎 🕮     k + 박 ◆                                                                                                                                                                                                                                                                                                                                                                       | OK 10 1 0 0  |                | M   U   🛰     |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|---------------|----------------|
| Repeat baseline temp2.prj                                                                                                                                                                                                                                                                                                                                                                     |              |                |               |                |
| Repeat baseline temp2     Gameras     Figure Pictures                                                                                                                                                                                                                                                                                                                                         |              |                |               |                |
| 30b1 Frame001.pic           30b1 Frame002.pic           30b1 Frame003.pic           30b1 Frame003.pic           30b1 Frame005.pic           30b1 Frame006.pic           30b1 Frame006.pic           30b1 Frame007.pic           30b2 Frame007.pic           30b2 Frame006.pic           30b2 Frame006.pic                                                                                     | Frame029.pic | Frame030.pic X | Franco3Lpic X | Frane032.pic   |
| 30b2 Frame010.pic           30b2 Frame011.pic           30b2 Frame012.pic           30b3 Frame013.pic           30b3 Frame014.pic           30b3 Frame015.pic           30b3 Frame015.pic           30b3 Frame016.pic           30b3 Frame017.pic           30b3 Frame017.pic           30b3 Frame017.pic           30b3 Frame017.pic           30b3 Frame017.pic           30b3 Frame017.pic | Frame035.pic | Frame034.pic   | Franc035 pic  | Frame035.pic 🗶 |
| 3064 Frame020.pic           3064 Frame021.pic           3054 Frame022.pic           3054 Frame023.pic           3054 Frame023.pic           3055 Frame025.pic           3055 Frame026.pic           3055 Frame027.pic           3055 Frame027.pic           3055 Frame026.pic           3055 Frame027.pic           3055 Frame027.pic           3055 Frame028.pic                             | Frame037.pic | Frame038.pic   | Frame039.pic  | Frane040.pic   |
| 3005 Frame030.pic     3065 Frame033.pic     3066 Frame033.pic     3066 Frame033.pic     3066 Frame033.pic     3066 Frame033.pic     3066 Frame035.pic     3066 Frame036.pic     3066 Frame036.pic     3067 Frame036.pic     3067 Frame038.pic     3067 Frame039.pic     3067 Frame039.pic                                                                                                     | Frame041.pic | Frame042.pic   | Frame043.pic  | Frane044.pic   |

Once the images have been split V-STARS will measure each of them and then run a series of individual bundles.

#### **Step 7: Repeatability Results**

Once the Repeatability reduction process has been completed a number of new 3D files will be created in the project.

There will be a new Repeat file for each of the cycles. These are named *Repeat1.3D*, *Repeat2.3D* etc. Each of these files has been aligned to the Master Baseline file that was selected. Click on the individual 3D files and select "Alignment" "Residuals – Standard" to view the results of the transformation.

The individual bundle summary can also be viewed by selecting it from the Bundle Summary (*Project – Bundle – Summary*).

| Repeat1              | OK         |
|----------------------|------------|
| Repeat10<br>Repeat11 | 1 deste de |
| Repeat2              | Cancel     |
| Repeat3              |            |
| Repeat4              |            |
| Repeat5              |            |
| Repeat6              |            |
| Repeat7              |            |
| Repeat8              |            |
| Repeat9              |            |
|                      |            |
|                      |            |
|                      |            |

ARM will also create an average file. The "average.3D" file is, as the name suggests, an average of all the points for all the epochs. It has also been aligned to the Master File.

The results of the repeatability can be viewed in the *Repeatability Summary Dialog*. The summary will tell you the number of adjustable points, number of epochs (cycles), standard deviations of the point coordinates, min and max point coordinate values, range as well as the Cp and Cpk tolerance value results. (Refer to the Appendix for more information on Cp and Cpk)

| dev Min         | Max   | Range | Cp    | Cpk         | 1        |       |   |
|-----------------|-------|-------|-------|-------------|----------|-------|---|
|                 |       | Y     | z     |             | •<br>~~! | SZ    |   |
| Label<br>TRACK1 | X     |       |       | SX<br>0.002 | SY       | 0.001 | - |
| TRACK1          | 0.585 | 0.637 | 0.950 |             | 0.002    |       |   |
|                 | 0.503 |       | 0.952 | 0.002       |          | 0.002 |   |
|                 | 0.428 | 0.633 | 0.959 | 0.002       | 0.002    | 0.002 |   |
|                 | 0.342 | 0.622 | 0.967 | 0.002       | 0.002    | 0.002 | _ |
| TRACK5          | 0.246 | 0.613 | 0.975 | 0.002       | 0.002    | 0.002 |   |
| TRACK6          | 0.114 | 0.620 | 0.989 | 0.002       | 0.002    | 0.001 |   |
| TRACK7          | 0.080 | 0.628 | 0.998 | 0.002       | 0.002    | 0.001 |   |
| 🗣 TRACK8        | 0.138 | 0.631 | 1.006 | 0.002       | 0.002    | 0.001 |   |
| TRACK9          | 0.521 | 0.657 | 0.946 | 0.002       | 0.001    | 0.001 |   |
| TRACK10         | 0.355 | 0.627 | 0.960 | 0.002       | 0.001    | 0.001 |   |
| TRACK11         | 0.168 | 0.620 | 0.970 | 0.002       | 0.001    | 0.001 |   |
| TRACK12         | 0.051 | 0.619 | 0.985 | 0.002       | 0.001    | 0.001 | - |

#### Step 8: Repeatability Output Files.

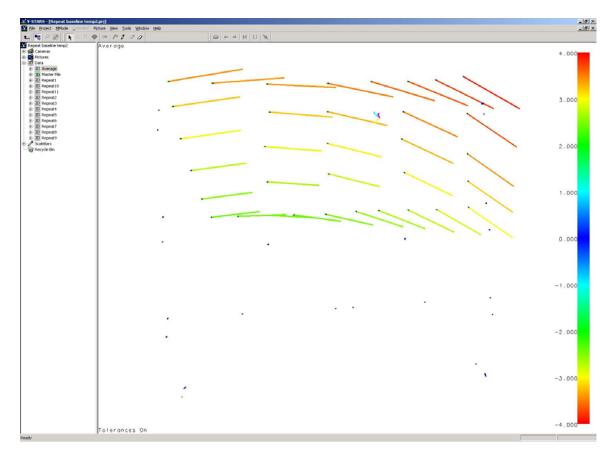
V-STARS will create three output files at the end of the Repeatability reduction. These are called "Average.cvs", "Repeat.cvs" and "Report.cvs". These are compatible with Microsoft Excel.

The "Average.cvs" file contains the RMS of the deviations for each of the points in the X, Y, Z, and Total direction. It also contains the number of observations for each point.

|     | Mi           | icros    | oft Excel - F              | RSI panel m                 | easuremen         | t 2002-09-1                 | 7.xls [Read        | l-Only]  |      |        |
|-----|--------------|----------|----------------------------|-----------------------------|-------------------|-----------------------------|--------------------|----------|------|--------|
| E   | <u>-</u> ile | Edit     | <u>V</u> iew <u>I</u> nsei | rt F <u>o</u> rmat <u>1</u> | ools <u>D</u> ata | <u>W</u> indow <u>H</u> elp | o Acro <u>b</u> at |          |      |        |
| [   | 3            | <b>2</b> | 8 8 3                      | K 💞 🐰 [                     | à 🛍 🝼             | <b>N</b> + CI               | - 🍓 Σ              | f× Ž↓ Ž↓ | 11 🛐 | 🚯 100° |
| 1   | Ā            | 7        |                            |                             |                   |                             | -                  |          |      |        |
| 1.4 |              | H16      | i <b>-</b>                 | =                           |                   |                             |                    |          |      |        |
|     | 94000        | THE      |                            |                             |                   |                             |                    |          |      |        |
|     | Re           | I A      | verage.csv                 |                             |                   |                             |                    |          |      |        |
| Ш   | -            |          | A                          | В                           | С                 | D                           | E                  | F        | G    | Н      |
| Ш   | H            | 1        | Label                      | RMS X                       | RMS Y             | RMS Z                       | Total              | Obs      |      | 1      |
|     | F.           | 2        | BM1                        | 0.035021                    | 0.019516          | 0.047315                    | 0.062017           | 11       |      |        |
|     |              | 3        | BM2                        | 0.041163                    | 0.040214          | 0.03401                     | 0.066844           | 11       |      |        |
|     |              | 4        | BM3                        | 0.026641                    | 0.022028          | 0.033678                    | 0.048262           | 11       |      |        |
|     | Hi           | 5        | BM4                        | 0.032658                    | 0.014718          | 0.019048                    | 0.040571           | 11       |      |        |
|     | H            | 6        | BM5                        | 0.038622                    | 0.010143          | 0.024994                    | 0.047109           | 11       |      |        |
|     |              | 7        | BM6                        | 0.042812                    | 0.015381          | 0.028784                    | 0.053832           | 11       |      | 1      |
|     | E            | 8        | BM7                        | 0.029564                    | 0.016481          | 0.030762                    | 0.045738           | 11       |      |        |
|     |              | 9        | BM8                        | 0.054676                    | 0.019395          | 0.031618                    | 0.066071           | 11       |      |        |
|     | H            | 10       | BM9                        | 0.026342                    | 0.026174          | 0.032891                    | 0.049607           | 11       |      |        |
|     | Fil          | 11       | BM10                       | 0.066819                    | 0.030838          | 0.02761                     | 0.078601           | 11       |      |        |
|     | Fil          | 12       | BM11                       | 0.037279                    | 0.012542          | 0.015934                    | 0.042437           | 11       |      |        |
|     |              | 13       | CODE167                    | 0.566607                    | 0.093188          | 0.095634                    | 0.582129           | 8        |      |        |
|     | H            | 14       | CODE168                    | 0.045317                    | 0.027583          | 0.029854                    | 0.060875           | 11       |      |        |

The "*Repeat.cvs*" file contains information about each tracking point organized by each cycle. It also contains the results of the Cp and Cpk tolerance tests.

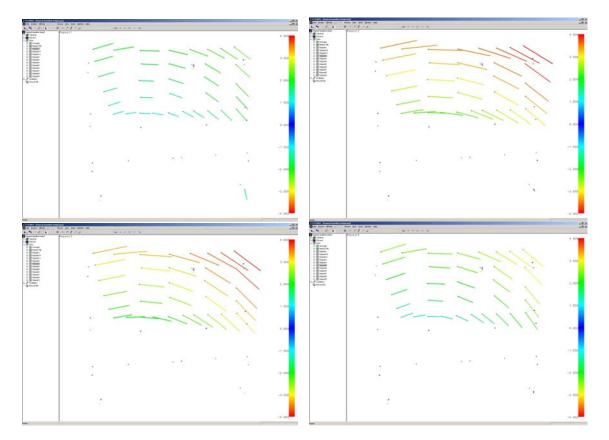
| Micr  | rosoft Excel - RSI         | panel meas                    | urement 20                 | Ю2-09-17.ж                | ls [Read-O       | nly]   |          |          |              |       |       |    |   |
|-------|----------------------------|-------------------------------|----------------------------|---------------------------|------------------|--------|----------|----------|--------------|-------|-------|----|---|
| ile E | <u>i</u> dit ⊻iew Insert I | F <u>o</u> rmat <u>T</u> ools | ; <u>D</u> ata <u>W</u> in | dow <u>H</u> elp <i>i</i> | Acro <u>b</u> at |        |          |          |              |       |       |    |   |
| ) 🖬   | F 🖬 🎒 🖪 🗳                  | ۶ 🔏 🖻                         | 🛍 🝼 🔺                      | • €2 +                    | 🍓 Σ f*           |        | 1 🛐 🚯    | 100% 👻 ( | ?) 🗸 🖌 Arial |       |       | BI |   |
| 0 12  | 2                          |                               |                            |                           |                  |        |          |          | 14           |       |       |    | - |
|       | ≝<br>B2 <b>▼</b>           | = -36.1                       | 98                         |                           |                  |        |          |          |              |       |       |    |   |
|       |                            | 30.1.                         | 50                         |                           |                  |        |          |          |              |       |       |    |   |
| R     | epeat.csv                  |                               |                            |                           |                  |        |          |          |              |       |       |    |   |
|       | A                          | В                             | С                          | D                         | E                | F      | G        | Н        | L L          | J     | K     | L  |   |
|       |                            | Х                             | γ                          | Z                         | DX               | DY     | DZ       | DTotal   | SX           | SY    | SZ    |    |   |
|       | Baseline                   | -36.198                       | -324.615                   | -104.432                  |                  |        |          |          | 3            |       | ;     |    |   |
|       | Epoch1                     | -36.469                       | -324.957                   | -106.802                  | -0.271           | -0.342 |          |          | 0.032        | 0.024 | 0.018 |    | _ |
|       | Epoch2                     | -36.69                        | -325.52                    | -108.313                  | -0.492           | -0.905 |          | 4.015    |              | 0.02  | 0.014 |    |   |
|       | Epoch3                     | -36.68                        | -325.182                   | -108.301                  | -0.482           |        |          | 3.94     | 0.027        | 0.02  | 0.013 |    |   |
|       | Epoch4                     | -36.653                       | -324.93                    | -107.445                  | -0.455           | -0.315 |          |          | 0.028        | 0.02  | 0.014 |    |   |
|       | Epoch5                     | -35.063                       | -326.509                   | -109.454                  | 1.135            | -1.894 |          |          |              | 0.02  | 0.013 |    |   |
|       | Epoch6                     | -36.444                       | -324.845                   | -106.954                  | -0.246           | -0.23  |          |          | 0.025        | 0.019 |       |    |   |
|       | Epoch7                     | -35.388                       | -326.31                    | -109.376                  |                  | -1.695 |          |          | 0.027        | 0.02  | 0.014 |    |   |
|       | Epoch8                     | -36.774                       | -325.104                   | -108.206                  | -0.576           | -0.49  |          |          | 0.027        | 0.022 | 0.015 |    |   |
| 11    | Epoch9                     | -35.924                       | -326.102                   | -109.045                  | 0.274            | -1.487 | -4.613   | 4.854    | 0.024        | 0.018 | 0.013 |    |   |
| 12    | Epoch10                    | -35.942                       | -326.157                   | -109.019                  | 0.256            | -1.542 | -4.587   | 4.846    | 0.026        | 0.019 | 0.013 |    |   |
| 13    | Epoch11                    | -36.656                       | -324.969                   | -107.437                  | -0.458           | -0.354 | -3.005   | 3.061    | 0.026        | 0.019 | 0.014 |    |   |
| 14    | Avg                        | -36.244                       | -325.508                   | -108.214                  | -0.046           | -0.893 | -3.782   | 3.942    | 0.027        | 0.02  | 0.014 |    |   |
| 15    | StDev                      | 0.585                         | 0.637                      | 0.95                      | 0.585            | 0.637  | 0.95     | 1.082    | 0.002        | 0.002 | 0.001 |    |   |
| 16    | Min                        | -36.774                       | -326.509                   | -109.454                  | -0.576           | -1.894 | -5.022   | 2.41     | 0.024        | 0.018 | 0.013 |    |   |
| 17    | Max                        | -35.063                       | -324.845                   | -106.802                  | 1.135            | -0.23  | -2.37    | 5.486    | 0.032        | 0.024 | 0.018 |    |   |
| 18    | Range                      | 1.712                         | 1.663                      | 2.652                     | 1.712            | 1.663  | 2.652    | 3.076    | 0.008        | 0.006 | 0.006 |    |   |
| 19    | Cp (+/- 3.000)             | 1.71                          | 1.57                       | 1.053                     |                  |        |          |          |              |       |       |    |   |
| 20    | Cpk (+/- 3.000)            | 1.684                         | 1.103                      | -0.274                    |                  |        |          |          |              |       | 2     |    |   |
| 21    |                            |                               |                            |                           |                  |        | -        |          |              |       |       |    |   |
| 22    | TRACK2                     | Х                             | γ                          | Z                         | DX               | DY     | DZ       | DTotal   | SX           | SY    | SZ    |    |   |
| 23    | Baseline                   | -33.575                       | -248.767                   | -35.743                   |                  |        |          |          |              |       |       |    |   |
| 24    | Epoch1                     | -33.824                       | -249.198                   | -37.95                    | -0.249           | -0.432 | -2.206   | 2.262    | 0.032        | 0.023 | 0.019 |    | 1 |
|       | Epoch2                     | -33.99                        | -249.78                    | -39.446                   |                  |        |          |          | 0.026        | 0.019 |       |    |   |
|       | Epoch3                     | -33.995                       | -249.452                   | -39.434                   | -0.42            |        |          |          | 0.027        | 0.019 |       |    | 1 |
|       | Epoch4                     | -33.961                       | -249.181                   | -38.591                   | -0.386           | -0.414 |          |          | 0.027        | 0.019 | 0.014 |    | Ĩ |
|       | Epoch5                     | -32.574                       | -250.741                   | -40.654                   | 1.001            | -1.974 |          | 5.387    | 0.027        | 0.019 |       |    | 1 |
|       | Epoch6                     | -33,755                       | -249.066                   | -38.14                    | -0.18            | -0.299 |          | 2.422    | 0.025        | 0.018 | 0.014 |    | 1 |
|       | Epoch7                     | -32.878                       | -250.581                   | -40.512                   |                  | -1.814 |          |          |              | 0.019 | 0.014 |    | - |
|       | Epoch8                     | -34.055                       | -249.432                   | -39.32                    |                  | -0.665 |          | 3.67     | 0.026        | 0.021 | 0.015 |    | 1 |
|       | Epoch9                     | -33.363                       | -250.365                   | -40,195                   |                  |        |          | 4.734    | 0.024        | 0.017 | 0.013 |    |   |
|       | Epoch10                    | -33.342                       | -250.414                   | -40.178                   |                  |        | 20.00000 |          |              | 0.018 | 0.014 |    | Ť |
|       | Epoch11                    | -33.945                       | -249.23                    | -38.572                   |                  | -0.464 |          |          | 0.025        | 0.018 |       |    | Ť |
|       | Avg                        | -33.607                       | -249.767                   | -39.363                   | -0.032           |        |          |          |              | 0.019 |       |    | + |


The "*Report.cvs*" file is a summary version of the "*Repeat.CVS*" file. It contains no individual epoch values for the coordinates.

#### **Step 9: Additional Functions**

**Select Baseline** – This function allows you to select a new "Master Baseline" file. This is typically used when you want to compare all the repeat files against the "Average.3d" file or another 3D file. Changing the Baseline file will not change the output CSV files, but it will re-align all the Repeat files to the new Master file.

**Reset Baseline** – This function will reset the repeat files back to the Master file or whatever the current driver file is.


**Import View Settings** – Use this command (refer to 4.3 Release Notes) to give all your Repeat 3D files the same viewpoint and vectors view parameters as a master file. For example, take the Average.3D file and modify the parameter to illustrate the magnitude and direction of the vectors. The point size, line thickness, background color and tolerance bar can be set to best display these values. This is shown below:



To import the graphical view settings simply select the files you wish to import the settings to and then right click and select "*Import*" – "*View Settings*". Select the Source 3D file (the Average.3D file in this case) and then press OK.

| Name                    | Measured Points  | Desi | gn Points |            |    |                      |        |
|-------------------------|------------------|------|-----------|------------|----|----------------------|--------|
| 3D Average              | 55               |      | 62        |            |    |                      |        |
| 30 Master File          | 0                |      | 62        |            |    |                      |        |
| 3D Repeat1              | 55               |      | 62        |            |    |                      |        |
| 3D Repeat 10            | To Course Marc   |      | 62        |            | Vs | elect Source 3D File | X      |
| 3D Repeat               | Information      |      | 62        |            |    |                      |        |
|                         | New              | - +  | 62        |            | 30 | Average              | ОК     |
| 3D Repeat:              | Import           | Þ    | AutoBar   |            |    | Master File          |        |
| 3D Repeat               | Export           | •    | Driver Fi | le         | -  | Repeat1              | Cancel |
|                         | Update           | •    | Data File | •          |    | Repeat10             |        |
|                         | Merge            |      | To Desig  | 10:        |    | Repeat11             |        |
| 3D Repeat -             | Alignment        | +    |           | ction Data |    | •                    |        |
| 3D Repeat:<br>3D Repeat | Transform        |      | View Set  |            |    | Repeat2              |        |
| ов кереас               | AutoRelabel      |      | Offset    |            |    | Repeat3              |        |
|                         | Rename AutoMatch | n -  |           |            |    | Repeat4              |        |
|                         |                  |      | Setup     |            |    | Repeat5              |        |
|                         | Driver File      |      |           |            | 30 | Repeat6              |        |
|                         | Detail File      |      |           |            | 30 | Repeat7              |        |
|                         | Template File    |      |           |            | 30 | Repeat8              |        |
|                         | Delete           |      |           |            | 30 | Repeat9              |        |
|                         |                  |      |           |            |    |                      |        |

After the view settings have been imported the Repeat Files appear as follows.



## Appendix

Reproduced from http://www.qualitydigest.com/dec97/html/cpk.html

#### **Process Capability: Minding Your Cpk's**

The process potential index, or Cp, measures a process's potential capability, which is defined as the allowable spread over the actual spread. The allowable spread is the difference between the upper specification limit and the lower specification limit. The actual spread is determined from the process data collected and is calculated by multiplying six times the standard deviation, s. The standard deviation quantifies a process's variability. As the standard deviation increases in a process, the Cp decreases in value. As the standard deviation decreases (i.e., as the process becomes less variable), the Cp increases in value.

By convention, when a process has a Cp value less than 1.0, it is considered potentially incapable of meeting specification requirements. Conversely, when a process Cp is greater than or equal to 1.0, the process has the potential of being capable.

Ideally, the Cp should be as high as possible. The higher the Cp, the lower the variability with respect to the specification limits. In a process qualified as a Six Sigma process (i.e., one that allows plus or minus six standard deviations within the specifications limits), the Cp is greater than or equal to 2.0.

However, a high Cp value doesn't guarantee a production process falls within specification limits because the Cp value doesn't imply that the actual spread coincides with the allowable spread (i.e., the specification limits). This is why the Cp is called the process potential.

The process capability index, or Cpk, measures a process's ability to create product within specification limits. Cpk represents the difference between the actual process average and the closest specification limit over the standard deviation, times three.

By convention, when the Cpk is less than one, the process is referred to as incapable. When the Cpk is greater than or equal to one, the process is considered capable of producing a product within specification limits. In a Six Sigma process, the Cpk equals 2.0.

The Cpk is inversely proportional to the standard deviation, or variability, of a process. The higher the Cpk, the narrower the process distribution as compared with the specification limits, and the more uniform the product. As the standard deviation increases, the Cpk index decreases. At the same time, the potential to create product outside the specification limits increases.

Cpk can only have positive values. It will equal zero when the actual process average matches or falls outside one of the specification limits. The Cpk index can never be greater than the Cp, only equal to it. This happens when the actual process average falls in the middle of the specification limits.