Search

Table of Contents

STARTING A V-STARS PROJECT 1
New Project 1
OPENING AN EXISTING V-STARS PROJECT 4
Open Project 4
TEMPLATE PROJECTS 6
Introduction 6
Creating a New Template Project 6
Opening a Template Project 7
Destination folder 8
IMPORTING FILES 9
Import Images 9
Setting the Image Path 9
Default 9
Manually Setting the Image Path 9
Picture from Disk 10
Import the Images into the Project 11
Importing Driver Files 11
Import Driver from Project Menu 12
Import Driver from Advanced Edit 13
Import Driver from Right Click on Data 13
Set Driver from Existing Data File 14
Importing Data Files 14
Import Data from Project Menu 15
Import Data File from Right Click on 3D Data Icon 16
PICTURE VIEW 17
Introduction 17
Picture Tools 17
Picture Icons 18
Picture Bar 18
Cursors Bar 19
View Bar 21
Status Bar 21
AUTOMEASURING 22
AutoMeasure Components 22
SuperStart 23
Initial Bundle 23
AutoMatch 23
Final Bundle 23
The AutoMeasure Dialog 24
SCALING MEASUREMENTS 26
Adding Scale Bars 26
Applying Scale 28
THE BUNDLE 29
Overview 29
Running a Bundle 29
Bundle Dialog 31
Bundle Setup 38
Bundle 38
Rejection Limit 38
Maximum Iterations 39
Triangulation 39
Rejection Limit 39
Sub-Sampling 39
Bundle Statistics 41
Introduction 41
Criteria Tests 41
The Number Test (\#) 41
The Percentage Test (\%) 41
The Value Test (V) 41
The Median Test (M) 41
Icons 42
Viewing Picture Summary 42
Viewing Points Summary 43
Viewing Scale Summary 45
Bundle Automatic Scale Rejection 45
GSI32.INI File Default Settings 46
Bundle General 46
Bundle Weak Criteria 49
Bundle Bad Criteria 51
3D VIEWER 53
Introduction 53
Viewpoint 53
Viewpoint Manipulation 53
Using the mouse 53
Panning 53
Zooming 54
Using the keyboard 54
Fitting 54
Rotating 54
Zooming 55
Panning 55
Selection 55
Selection Types 55
Single Selection 56
Multiple Selection 56
Identification 56

Contents

Delete and Rename 57
Delete 57
Rename 57
Display Options 58
View Setup 58
General 59
Tolerances 66
Adjusting the Tolerance 66
Setting the color 67
Color Schemes 68
Display Colors 69
Invert Print. 69
Invert Save 69
Additional Display Options 69
Clipping Planes 70
ALIGNMENTS 71
Introduction 71
Design Data 72
Introduction 72
Importing 73
Comparing Measured to Design 74
Viewing the Differences Graphically 75
Creating Design Data 77
Importing Data from a File 77
Driver File with Design Points 78
Alignment Options. 79
Residuals Quick/Standard 79
Axis 80
Quick. 81
Standard 81
Changing Standard Deviation Fields 82
File. 83
Manual 84
Alignment Setup 84
BASIC MEASUREMENT FUNCTIONS 85
Introduction 85
Functions 85
Average 85
Distance Basic Measurement Functions 86
Vector 86
SOLIDS 87
Introduction 87
Creating Objects 88
Planes 88
Lines. 90
Circles 91
Spheres 94 Zoom out
Search
Contents
Curves 94
Measurements 95
Plane to Plane 95
Line to Line 97
Plane to Line 98
Point to Object 99
Plane Positive Direction 101
Offsetting Planes 102
Point to Object Projection 103
Point to Curve 105
SURFACES 106
Introduction 106
Importing 106
Terminology 107
Commands 108
Measurement 108
Projection 111
Positive Direction 111
Surfaces in the Project 113
CONSTRUCTION OBJECTS 114
Introduction 114
Importing 115
Construction Objects 115
Vector Points 115
Average Points 116
SOLIDS Objects 118
Measurement Objects 119
REPORTS 123
Introduction 123
Setup 123
Creating 125
Template Files 126
The general section 126
The data section 126
FILE MENU 128
New Project 128
Open Project 128
Close 129
Save 129
Save Image As 129
Export Data Files 130
Report 132
Report Setup 132
Print 133 Zoom
in
Print Preview 133
Print Setup 134
Recent Projects 134
Exit 134
PROJECT MENU 135
Advanced Edit 136
Import 136
General Parameters 137
General - Camera 137
General - M Mode 137
Scanning Parameters -S-Mode 138
Scanning Parameters - M-Mode 138
Target Criteria 139
Ring Criteria 140
Code Criteria 141
Bundle 142
INCA Camera 142
Coded Target 143
Scale Bars 144
AutoMeasure 145
Global Point Edit 145
Update 146
Restore 147
Import 148
AutoBar 148
Driver 149
Data File 149
Probes 149
Images 150
Setup 150
Bundle 151
Triangulate 152
All Points 152
New Point(s) 153
Bundle 153
MMode 153
AutoMatch 153
All Pictures 154
Three Pictures 154
Setup 154
Label Setup 154
MMODE MENU 155
Introduction. 155
COMMAND MENU 156
SuperStart 156
AutoStart 157
Resect 157 Zoo'm
in Zoom
out
Search
Contents
Line 158
Find 158
Next String 158
Target Search. 158
PICTURE MENU 159
From Camera 159
From Disk 159
Next 160
Previous 160
Close 160
Reset 160
Delete 161
Contrast 161
Set Label 161
Quit Review Mode. 161
VIEW MENU 162
Picture Bar 162
Cursors Bar 163
View Bar 164
Status Bar 164
Construction Bar 165
Movement Bar 165
Show Data Window 165
Show Zoom Window 165
Show Labels 165
Show Crosses 165
Show Scan Points 165
Show Objects 165
TOOLS MENU 166
Customize 166
Zipping a Project 167
RIGHT CLICK MENUS 168
Cameras Icon 168
Pictures Icon 169
Data Icon 171
Right-click on Design Points 175
Right-click on Multiple 3D Files 175
Right Click on Points in Design 176
Right-click on Measured Points 176
Right-click on Created Objects 177
Right-click on Measurement objects. 179
ScaleBars Icon 187
Recycle Bin Icon 188
Right Click on Picture Thumbnails 188

Right Click in Picture 189
SuperStart 189
Right Click in Graphical View 190
Solids 191
Alignment 191
AutoMatch 191
Average 192
Distance 192
Vector 192
Scale 193
Measured 194
Design 194
Probe 194
Import 194
Update 195
ICONS 196
Introduction 196
KEYBOARD COMMANDS 200
Basic Keyboard Commands 200
View 200
Display 201
Object Analysis and Creation. 201
Surface Analysis 201
Advanced Keyboard Commands 202
New Keys 202
INDEX 203

Contents

Starting a V-STARS Project

New Project

The New command is used to commence a new V-STARS project. The New command is located under the File menu.

A new project will be started using the default V-STARS settings. If only one camera is present in the system directory, then this camera will be automatically added to the project. If multiple cameras are present, then you will be prompted to select the camera used to collect the images. If the PCMCIA drive is present, then V-STARS will prompt you to indicate the JOB folder the images are stored in. The image path can also be set manually.

Refer to the Importing Images section for more information on importing images. Zoolm

Once New is selected，the New Dialog box will be opened．You are required to specify a directory and project name．The default directory is typically $C: \ V-S T A R S \backslash$ Projects and the project is normally given a meaningful name． The Open button will create the new project and all the necessary setup files used by V－STARS．

New		？\times
Look in：$\square^{\text {D Demos }}$		

If two or more cameras are selected，then the last selected in the list will be the default or active camera．A green icon（⿶凵⿱䒑亡｜denotes the active camera．To change the default camera double click on the camera you wish to make the active．

If more than one camera is present in the system directory， then the Select Camera（s） dialog will appear．The cameras located in the C：\GSI \System directory are listed．If the camera used to collect the images is in the list， select it and press the OK button．

If the camera used is not listed， press the Browse button to locate the camera．The camera can typically be found on the PCMCIA card used to collect the pictures．

If the Cancel button is pressed on the Select Camera(s) dialog, then the new project will be terminated.

If the PCMCIA disk is in the PC, and is the active drive, then the Select Job dialog will appear.

Select the Job that contains your pictures and press the Open button. The images thumbnails will appear in your project.

If there is no PCMCIA active or the images are stored directly on another drive refer to the Importing Images section.

Opening an Existing V-STARS Project

Open Project

The Open command is used to open an existing V-STARS project. The Open command is located under the File menu. The project will be opened using the same settings as when the project was closed or saved.

Once Open is selected, the Open Dialog box will be opened. Select the directory and then the project name you wish to open. Press the Open button. The project will load.

If the image thumbnails are grayed out, you will need to re-specify their location.

To reset the image path, right click on the Pictures Icon and select Set Image Path. Set the directory to the location of the images and click the Open button.

Alternatively, the From Disk command located under the Picture menu can be used to reset the image path. It will load a dialog that can be used to navigate to an image path. The dialog is shown below:

Press Browse to select the path that the images can be found in. When a folder with GSI images has been located, a thumbnail of the selected file will be displayed. Adjust the Contrast controls to adjust the image contrast.

This command is also very useful to view different Jobs and carry out Job housekeeping.

Template Projects

Introduction

V-STARS allows the use of template projects. Template projects greatly improve repeat measurements by allowing you to set up a template that contains all the necessary project files. Once set up, the template can be used repeatedly. A template project is setup by creating a new V-STARS project and importing all of the desired files into this project. Once the project is configured with all desired files and settings, it is saved into a special file folder:
C: \Gsi\System\Templates \Projects.

Creating a New Template Project

Create a new template in the same manner that you create any new project, by selecting New from the File menu.

However, when creating a template project, create it in the
C: \Gsi\System\Templates \Projects directory.

$\mathrm{V}^{+} \mathbf{V}$-STARS	
File View Help	
New	$\mathrm{CtI}+\mathrm{N}$
Open...	Ctrlo
Open Iemplate Proiec	
Print Setup...	
1 Demo Frame Repeat	
Exit	

In this example, the new template project is given the name MyTemplate. Continue by selecting the appropriate camera, importing the desired Driver File etc. In addition, you may copy into the template project directory any related files that are not part of V-STARS. For instance, if an Excel Spreadsheet is used in conjunction with this project, that file can be copied into the template project directory. When a new project is created from this template, V-STARS will copy all files from the template project directory, including files not directly associated with V-STARS.

If you do not include a camera in your template project, V-STARS will prompt you to select one when the template project is opened.

Opening a Template Project

Once a template project is created, select Open Template Project from the File menu.

You will then be asked to choose from a list of templates.

Select the desired template and press OK.

Zooln in

Destination folder

The destination folder of a project opened from a template depends on an entry in the GSI32.INI. The entry is in the general section and is called ask project template root.
ask project template root=TRUE
If ask project template root is set to TRUE, upon selecting the desired template from the Select Project Template dialog, you are prompted for a destination folder and name for the new project. This way, you can specify any location as the project directory.

If, however, ask project template root is set to FALSE, the destination folder is $\mathrm{C}: \backslash$ Vstars \backslash Projects \backslash MyTemplate_X where x continues to increment each time the template is used.

Search

Importing Files

Import Images

Setting the Image Path

The image path can be set in a number of ways. The method used will largely depend on your preference. The Default occurs at the start of a project and is largely taken care of by V-STARS. The various methods are described below.

Default

When starting a new project, if the PCMCIA disk is in the PC, and is the active drive, then the Select Job dialog will appear.

Select the Job that contains your pictures and press the Open button. The images thumbnails will appear in your project.

Manually Setting the Image Path

To set the image path, right click on the Pictures Icon ($\left.\mathbf{F}^{\mathbf{5}=\mathbf{d}}\right)$ and select Set Image Path.

Set the directory to the location of the images and click the Open button.

The images thumbnails will appear in your project.

Picture from Disk

The From Disk command is located under the Picture menu and can be used to set or reset the image path. It will load a dialog that can be used to navigate to an image path. The dialog is shown below.

Press Browse to selec \dagger the path that the images can be found in. When a folder with GSI images has been located, a thumbnail of the selected file will be displayed. Adjust the Contrast controls to adjust the image contrast.

This command is also very useful to view different Jobs and carry out Job housekeeping.

Import the Images into the Project

The Import Images command is used to copy the image path images directly into the Project Directory. If the images are not already GSI files, they are converted during the import.

The Import Images) command is under the Project menu. The image path that has been set determines what images will be imported. If the image path has not been set the following dialog will appear.

v-STARS

There are 35 images to import into the project directory. This might take a long time.

Are you sure you want to import the images?

Prior to the import, you will be given a warning relating to the time it may take to import the images to your project. Press No to cancel the import.
do Import images prior to using the Zip With Images command under the Tools menu.

Importing Driver Files

Driver files can be imported in a number of ways. The method used will largely depend on your preference. The driver files that can be imported are 3D, XYZ or IGES files.

Search

Import Driver from Project Menu

The Import command opens the following dialog. Select a 3D, XYZ or IGES file to import it into the project and set it as the current driver. If this file is in the "XYZ" format V-STARS will prompt you for the files units.

A summary of the imported points is shown and the file is added to the project as the driver.

Import Driver from Advanced Edit

The Import command can also be accessed via the Advanced Edit dialog under the Project
menu. Once the Import command is pressed the procedure to import a driver is the same as the one described in the Import Driver From Project Menu section.

Import Driver from Right Click on Data

A right click on the 3D data node in the main project tree will access the Import command.

Once again, the import procedure is the same as the one described on the Import Driver From Project Menu section.

Zoom
in

Set Driver from Existing Data File

To set a 3D file as the driver file, right click on it and select Driver File. If the file is already the driver file then it will become a normal 3D file.

When a new file is selected as a driver, you will be prompted to re-resect all the pictures in the project.

It is advisable to re-resect the images.

Importing Data Files

Data files are imported using the Import Data command under the Project menu or by right clicking on the 3D Data Icon of the project tree. The data files than can be imported include 3D, XYZ and IGES files. The files imported are saved as 3D files.

A driver file can be converted into a regular data file by right clicking on it and deselecting the Driver setting. Conversely, a data file, can be set as a driver file by selecting the same flag. Refer to Set Driver from Existing Data File for more information.

Import Data from Project Menu

The Import command opens the following dialog. Select a 3D, XYZ or IGES file to import it into the project. If this file is in the "XYZ" format V-STARS will prompt you for the files units.

A summary of the imported points is shown and the file is added to the project.

If the name of the file already exists in the project, then the name will be incremented numerically to the next available name.

Import Data File from Right Click on 3D Data Icon

A right click on the 3D data icon in the main project tree will access the Import command.

The import procedure is the same as the one described on the Import Data from Project Menu section.

Picture View

Introduction

This section of the manual describes some of the aspects of the Picture View. To open a picture, click on its thumbnail. A "picture window" will appear with the full image.

Picture Tools

The small window seen in the picture is called the Zoom window. It is like a magnifying glass into the picture window. As you move the cursor over the picture, you will see a magnified view in the Zoom window. The green rectangle in the Zoom window is the measuring area, also known as the Region of Interest (ROI); the target center must be inside this rectangle to be measured. You can zoom in and out of image using the / \downarrow keys. The Zoom window contrast can be adjusted using the $\& \sim$ keys.

Generally, the picture contrast will be enhanced. To see what the picture actually looks like, select Contrast from the Picture menu and select "1". Notice now the picture is darker. We have deliberately underexposed the background

Zoo'm in
to make the targets easier to find and measure. V-STARS can automatically adjust the contrast for each picture when the contrast is set to Auto. We usually recommend you use this setting.

Contrast - Adjust the contrast of the Zoom Window.
Zoom Factor - Adjust the Zoom Window zoom factor.

ROI - Adjust the Region of Interest size.
Show Labels - Toggle the label display.
Hide - Hide the Zoom Window.
Select Font - Change the Zoom Window font.

You can also access some of the more frequently used commands by rightclicking the mouse in the picture window, and selecting the command from the pop-up menu.

The picture contrast setting has no effect on the measurement; it only helps you see the picture.

Picture Icons

Many of the functions accessible in the Picture View are controlled using the Picture Icons.

Picture Bar

(62) Camera Icon - Take a picture. Only active if one or more cameras are online. This command can also be initiated from the Picture - From Camera menu.
$\ddagger \quad$ Previous Image - Go back one image. When the first image is already active, the left arrow will be dimmed.

Next Image - Go forward one image. When the last image is already active, the right arrow will be dimmed.

M Icon - Initiate Multi-camera mode. Only active if two or more cameras are online

4 Probe Icon - Trigger the cameras in Multi-camera mode to fire simultaneously. This icon is only active if two or more cameras are online, and in M Mode.

Cursors Bar

The Cursor Bar is made up of nine icons. These have the following functionality.
(. Selection Cursor (when you wish to do any point selection.
 that are located in the driver file. If the label of a driver point is set the cursor will automatically change from the Selection Cursor to the Driver Points Cursor.
(9-1) New Points Cursor $(\overbrace{}^{53})$ - Use this cursor is manually measure new points.
S. SuperFind Cursor ($\stackrel{\text { FA }}{4}$) - This feature allows new points to be measured in all images (in which they exist) by measuring them in a single image. The point is measured in the current picture and then automatically in any other pictures that see the point. The point is then automatically triangulated and added to the current driver file. SuperFind is especially useful for picking up occasional points that were not AutoMatched, or for re-measuring points that were inadvertently deleted. For best results, you should usually re-run the bundle after you have measured any new points with SuperFind.

For SuperFind to work, you must have a good solution for the camera calibration, and a good resection solution for each picture. Normally, you will use SuperFind after you have let the AutoMeasure process run to conclusion. In this case, you will have a converged bundle solution, so the conditions above will be met. You can also use SuperFind after the AutoMatch portion of AutoMeasure is completed, but your success will depend on how good the camera and picture solutions are at that time.

This feature is implemented in much the same way you globally relabel a point.

1. Open the picture that has the point(s) that you wish to measure.
2. Select the SuperFind cursor \square from the measurement toolbar.
3. The cursor will change to the shape of the SuperFind cursor.

4. Type in the point label that you wish to assign to the new point.
5. Move the point inside the measurement window.
6. Click on the point. The point should now be marked with a cross and labeled.
7. Repeat steps 3-6 for any other points. If there are other points you want to measure that are not in this picture, just close the current picture, and open those picture(s) one at a time and repeat steps 3-6.
8. The 3D coordinates of the points will be automatically added to the current driver file. For the highest accuracy, you should re-run the bundle after all points are measured.

The point must be in at least three pictures for SuperFind to work. If the point is not measured, the point will not be marked with a cross or relabeled. Otherwise, the point will be added to the current driver file. If you know the point is in at least three pictures, but is not measured, then the camera and/or picture solutions are probably not good enough to use SuperFind yet. If this is the case, it is advisable to run the bundle to get a better solution.

OK OK Cursor - AKA "God Mode". This cursor is used in conjunction with the Driver and New point cursor. When activated all the target criteria rules are disabled. This means that targets that fail the acceptance criteria can still be measured. WARNING - Including unacceptable targets in the measurement can produce inconsistent and inaccurate results.
(50) Global Rename Cursor - Use this cursor when you wish to rename points in the images or driver file. All observations to the point will be renamed with the new label. Note that points in the previous Bundles will NOT be renamed.
(1) Rename Cursor - Use this cursor when you wish to rename points only in the current image or 3D file.

0 Global Delete Cursor - Use this cursor when you wish to delete points in the images or driver file. All observations to the point will be deleted. Note that points in the previous Bundles will NOT be deleted.

Delete Cursor - Use this cursor when you wish to delete points only in the current image or 3D file.

Search

View Bar

Yiew Bar	\underline{x}	
t．	煰	ρ

The View Bar is made up of four icons．These have the following functionality．
t．Up on level－Press this icon to move one level up the directory tree．

田 Bring Project to Top（ $\stackrel{\text { F12 }}{2})$－Press this icon to bring the V－STARS directory to the foreground．

9．Show／Hide Zoom Window（ ）－Press this icon to activate or deactivate the data zoom window．This icon is only active if a picture window is open．
［四运］Show／Hide Data Window（ ${ }^{\text {rio }}$ ）－Press this icon to activate or deactivate the image data window．This icon is only active if a picture window is open． Right click in the data window to view the additional options．

Pixel View－Display pixel grayscale values．

Target View－Display potential target pixels．

Size to Zoom－Resize Data window to match Zoom window．

Hide－Close Data window．

的的 Frame002－Data																
208	4	179	0	208	4	179	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0						0	0	0	0	
0	0	0	0	0	0	0		Pix	ve			0	0	0	0	
0	0	0	0	0	0	0			，V			0	0	0	0	
0	0	0	0	0	0	0						0	0	0	0	
0	0	0	0	0	0	0		Siz	To	oom		0	0	0	0	
0	0	0	0	0	0	0						0	0	0	0	
0	0	0	0	0	0	0		Hid				0	0	0	0	
0	0	0	0	0	0	0						0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Low $=0$				High $=208$												$1 /$

Status Bar

III	III	
Ready	－8．7210，－4．2300	

The Status Bar displays the status of V－STARS．If an image is open，the XY location of the cursor will also be displayed． out

AutoMeasuring

AutoMeasure Components

The AutoMeasure procedure is a collection of V-STARS routines that are automatically called to automate the measurement of the project. The AutoMeasure flowchart below describes the general steps undertaken by the AutoMeasure routine.

SuperStart

The SuperStart command will open the picture and complete the following processes:

1) Scan image for potential targets.
2) Determine whether an AutoBar is present.
3) Decode any codes that are present.
4) Use the known (coordinated) coded targets and AutoBar found to determine the location in space (resection) of the image.
5) Driveback to any points in the Driver file.

Initial Bundle

The Initial Bundle is typically carried out after all the images have been SuperStarted. The objective of the Initial Bundle is to establish with greater accuracy the location of the camera stations and of the points found in the SuperStart portion. These values are needed for the AutoMatching phase of the process. The initial bundle differs from the full bundle in that the Camera Calibration parameters are held fixed. For a more detailed explanation of the bundle process, refer to the Basics of Photogrammetry.

If the Solve Picture Stations box is unchecked, the Initial Bundle is skipped.

AutoMatch

The AutoMatch is a routine designed to automatically measured target points in the V-STARS project. The routine uses a sophisticated search routine to determine image point correspondence between points in different images. These observations are then combined to produce a point XYZ for each point AutoMatched. New points found by AutoMatch will be given the keyword name TARGET and appended to a number. For example, TARGET2032.
\square If the Find New Points box is unchecked, the AutoMatch is skipped.

Final Bundle

All the data that has been produced is passed into the Final Bundle process. The bundle is a very sophisticated mathematical routine that combines all the data together to produce an accurate set of coordinate data. As a byproduct of this process, the camera calibration and camera station values are also determined. For more information, please refer to the Bundle Section in this manual.

The AutoMeasure Dialog

The AutoMeasure command opens the Measure Project dialog shown. From this dialog, it is possible to complete the entire V-STARS measurement. The dialog is the interface for a convenient way to automate the measurement process.

The key aspects of the dialog are described below.

Status - The status area provides you with feedback on what commands need to be pressed to complete the measurement.

Status: Press the begin or continue button to scan pictures
Status: Press the continue button to solve picture stations

Activity: running bundle [6, 1.25um, 34\%]

```
Activity: Done scanning pictures
```

```
Activity: Done scanning pictures
```

Activity: running bundle [6, 1.25um, 34\%]

Activity - The activity area gives you an indication of how far into a process the procedure is or what stage has been completed.

Pictures－This section lists information about the pictures in the project．The number of pictures measured and the number left to be measured are displayed at the top of the frame．

In the main frame， information about individual

Pictures					
Measured： 35 of 35		Number Left： 0			
Picture	Points	Codes	Bars．	RMS	\triangle
園 Frame001．pic	158	16	1	0．56um	
⿴囗⿱一一⿰习习 Frame002．pic	153	19	1	0．50um	－
	158	17	1	1．13um	
	179	17	1	2．93um	
園 Frame005．pic	82	9	0	0．33um	
	62	8	0	0．51um	
	92	17	1	0．84um	
國Frame008．pic	148	20	1	0．50um	\checkmark

Points－The points frame summarizes information about the points in the project．The total number of points，the number matched，the number of codes，and the occurrence of the AutoBar are reported．

Find new points－If this box is checked then the

\lceil Find new points ∇ Solve picture stations $\sqrt{ }$ Attended Mode

 software will run the AutoMatch routine to measure any new points in the images．Solve Picture Stations－If this box is checked，the system will run an initial bundle after the image scanning to solve for the unknown picture stations．If Find new points
\checkmark Find new points ∇ Solve picture stations is checked，then this option will be checked and grayed out．

Attended Mode－If this is checked the AutoMeasure routine will stop at the end of each stage and wait for you to press the Continue command．

Begin－Press Begin to scan or re－scan the images．
Continue－Press the Continue command to continue the next step of the Auto Measure process．

Scaling Measurements

Photogrammetric measurements are inherently dimensionless and hence mus \dagger be scaled using an external scale standard. For more information, please refer to the Basics of Photogrammetry.

Adding Scale Bars

Right click on the ScaleBars Icon to add, create or modify scale bars.

New - Create a new scale bar using the following dialog. Enter the scale bar name, the end point labels and the scale distance. Press Save to add the new scale bar to the project.

Contents

Add - Add a scale bar from the system directory or browse for one from the computer or network.

Enabled - Enable or disable a scale bar by clicking on Enabled.

The Scale Bars command under the Advanced Edit dialog of the Project Menu opens the following Add Scale Bar dialog.

The dialog lists any of the scale bars in the current project. It is also possible to add a new scale bar by typing in the input box at the bottom of the dialog. The input format is as follows

Label1 Label2 Distance
Press the Add command to add the scale bar to the project.
To delete a scale bar, highlight it, and then press the Delete command.

Search Contents

Applying Scale

Solids	
Alignment	
Autolytatichi	
Average	
Distance	
Vector	
Scale	
Select	
Import	
Update	
Delete	
Save Image	
View Setup	

To apply scale to a particular 3D file, right click in the graphical viewer and select Scale. The Scale function is a convenient way to scale a 3D file without running the Bundle again. The results of the scaling are summarized in a dialog box.

Search

The Bundle

Overview

The Bundle Adjustment is the program that processes the photographic measurements to produce the final XYZ coordinates of all the measured points. In order to do this, it mus \dagger Triangulate the target points, Resect the pictures and Selfcalibrate the camera. The Bundle Adjustment program is called STAR, which stands for Self-
 Calibration, Triangulation and Resection. Refer to the Basics of Photogrammetry.

Running a Bundle

The Bundle command under the Project menu has three options. These are shown below.

Zoot

Search
Contents

Run
When Run is selected the main Bundle dialog will be opened.
The Run command is dimmed if there are no images scanned or frames resected. It is also dimmed if there are not at least two frames resected.

Summary
When Summary is selected, the Bundle Summary dialog is opened. A typical summary is shown below.

Setup
When Setup is selected, the Bundle Setup dialog is opened. Refer to the Bundle Setup Section for more information.

Bundle Dialog

Status - The status box displays the progress of the Bundle. While the Bundle is running it will display the
 current iteration number. When the Bundle has converged it will display a Bundle Converged message.

Current Point - The Current Point box displays the progress of the Bundle within the current iteration.

Rejection Limit - The Rejection Limit box displays the
Rejection Limit: 0.54 um value at which picture point observations are being rejected in the Bundle solution. When the Bundle is run with "fixed" rejection, a rejection value can be manually entered in this box.

Residual RMS- The Residual RMS box contains information about the global image closure for all the

| Residual RMS: | $0: 0.12 \mathrm{um}$
 $1: 0.11 \mathrm{um}$ |
| :--- | :--- | pictures. Use the up and down arrow keys to view the other entries in the information box.

The Residual RMS values are your best indication of how things are going within the bundle. If the bundle is converging, the RMS values should be getting smaller. If the RMS is getting larger or oscillating, then the Bundle may be diverging. This may indicate a more serious problem with the network.

Zoom out

Pictures - The Picture section contains information about the images in the project. The total number of images along with the number of bad and weak images is displayed. Press the More button for more information about the Pictures. Refer to the Bundle Statistics section for more information on the More command in the Picture section.

Points - The Points section contains information about the points in the project. The total number of points along with the number of bad and weak points is displayed. The number of Two Ray points is also displayed. A Two Ray point is any point that only has two observations to it. Press the More button for more information about the Points. Refer to the Bundle Statistics section for more information on the More command in the Points section.

Scales - The Scales section contains information about the scale bars in the project. The total number of scales along with the number of bad and weak points is displayed. Press the More button for more information about the Scale Bars. Refer to the Bundle Statistics section for more information on the More command in the Scales section.

Camera - Click the More button to view the camera calibration information. Press the More button in the Camera Summary to view the additional calibration parameters

Search

Camera Summary区

Control- The control box displays the number of control points in the bundle. Control points are held fixed in the bundle process and are usually used when there is good external control available.

To create control, import the control point into the Design folder of the current driver. Open the Design folder and list the points. To create the control points, highlight the points you wish to mark. Right click over the points and select the Control option. Points marked as control will be displayed with a different icon. Control points are shown in the adjacent image.

Δ CONTROL1	3.7352
Δ CONTROL2	3.4914
Δ CONTROL3	3.2584
Δ COMTROL.	29320

Points must be in the Design folder to be set as control.

Contents

Click the More button to view the Control Point Summary.

Accuracy - The accuracy box displays information about the Bundle result. The bundle units are listed in the brackets at the top.

RMS X, Y, Z - The RMS is the Root Mean Square and is computed using the standard deviations of all the points.

Max X, Y, Z - The Max boxes display the maximum standard deviation value in X, Y and Z.

Points over limit - The Points over

Accuracy Summary				区
Accuracy Limit: 0.	20	nches		
Points	sx	sy	sz	\wedge
\$ AUTOBAR1	[0.0099]	0.0011	[0.0033]	
\& AUTOBAR2	[0.0233]	[0.0086]	0.0012	
\& AUTOBAR3	[0.0367]	[0.0134]	0.0016	
\& AUTOBAR4	[0.0310]	[0.0083]	0.0019	
¢ AUTOBAR5	[0.0192]	[0.0025]	[0.0034]	
¢ AUTOBAR6	[0.0292]	[0.0095]	0.0012	
\& CODE41	[0.1197]	[0.0282]	[0.0095]	
¢ CODE75	[0.0977]	[0.0571]	[0.0216]	\checkmark

Plan Quality Factor - The plan quality factor is a global measure of how good the network was.
Plan Quality Factor: 1.01 Typically, the Plan Quality Factor should be between 1-2. Values exceeding 2 indicate less that ideal geometry or overlap, or a poor calibration.

RMS of Measurement - The RMS box displays the final global image closure for all the pictures. The RMS of measurements indicates the quality of the measurement. The lower the number, the better the measurement accuracy.
A number of $0.40 \mu \mathrm{~m}$ or less is typical. A larger number could be caused by many problems including:

1. A dirty lens. It is important to keep the lens clean and dry.
2. Dirty targets. Targets should be kept clean and dry.
3. Deformation of the object. The measured object must not change shape during the photography. This includes any artifacts (AutoBar, scale bars, etc.) attached to the object.
4. Extremely overexposed or underexposed targets.

Initial Bundle - When checked, an Initial Bundle is run instead of a full Bundle. In an Initial Bundle, the camera calibration parameters are held fixed.

Setup - The Setup button will take you directly to the Bundle Setup dialog. In previous versions of V-STARS, you had to exit the Bundle to make changes to the setup. For more information on the Bundle Setup, please refer to the section on the Bundle Setup.

Save Info - The Save Info button will save the bundle summary dialog's information into a text file. This is particularly useful if you wish to review the Bundle Summary later or include the summary in a report.

A typical Bundle summary is shown below:

Bundle Dialog Information
Status: Bundle Converged after 2 Iterations

Current Point:
Rejection Limit: $0.86 u m$
Residual RMS:
0: $0.22 u m$
1: 0.22 um
2: 0.22um

Pictures

Total:	19
Weak:	0

Bad: 0

Points

Total: 175
Weak: 0
Bad: 0
Two Ray: 0
Scales

Total:	0
Weak:	0
Bad:	0
RMS:	N / A
Control Points	
Control Points:	N / A

Accuracy

RMS:		
X:	0.019	
Y:	0.008	
Z:	0.009	
Max:	0.039	
X:	0.014	
Y:	0.017	
Z:	0	
Points over limit:	1.05	
Plan Quality Factor:	0.22 um	

Start - Press the Start Button to commence the Bundle process. Once Started a Stop button will appear. When stopped the dialog buttons will change as shown in the
 adjacent dialog.

Contents

Press Continue? to continue from where the bundle stopped, or Stop? to stop the bundle. If Stop? Is pressed again the following dialog appears.

v-STARS

(i) Warning: If the unndile is stopeded, all data will revert to preadiustment values. Do you really want to stop?

Press Yes to stop the bundle and revert to its original starting values. Press No to continue the Bundle process.

Reject - once the Bundle has converged, press the Reject button to reject the bundle and reset the values to their pre-bundle state.

Accept - Once the Bundle has converged, press the Accept button to accept the bundle close the bundle dialog.

Search

Bundle Setup

The Bundle Setup command opens the Bundle Setup dialog. The dialog is shown below.

The Bundle Setup dialog is divided into three parts. They are Bundle, Triangulation and Sub-Sampling. For the most part, you don't need to worry about changing the setup values. In fact, it is probably advisable not to change the Bundle and Triangulation section values at all.

Bundle

Rejection Limit	The Rejection Limit for each iteration (in microns) of the bundle is calculated by multiplying the RMS of the previous iteration by the rejection factor and adding the rejection addition.
Convergence Limit	The bundle converges and stops when the RMS of the residuals between two successive iterations is less than this value (in microns).
Unflatness Sigma	Accounts for influence of unflatness of sensor on accuracy. Value is in microns.

Minimum Rays

Total Error
Propagation

If the bundle has not converged, it stops after this number of iterations. Pressing the Start button will restart the bundle at the next iteration.

Minimum number of rays for a point to be included in the bundle.

If checked the total accuracy estimates for points in the bundle is calculated. If unchecked, only the limiting accuracy estimates are calculated.

The Total accuracy estimates take more time, but are more accurate. The bundle's Plan Quality Factor cannot be calculated unless this box is checked.

Triangulation

Rejection Limit

Convergence Limit

Maximum Iterations

Fixed Rejection

The Rejection Limit for each iteration (in microns) of the triangulation is calculated by multiplying the RMS of the previous iteration by the rejection factor and adding the rejection addition.

The triangulation converges and stops when the RMS of the residuals between two successive iterations is less than this value (in microns).

Maximum number of Triangulation iterations.
If checked the triangulation rejection limit is fixed. If unchecked, the rejection limit is allowed to adjust.

Sub-Sampling

Sub-sampling is used to speed up the bundling of projects with many points. The four main Sub-Sampling options as described below.

None - when selected the Sub-Sampling will be disabled. In this mode, all the input areas are grayed out. All points will be used in the bundle adjustment. Percent - The Percent option will use the specified percentage of the total number of sub-samplable points. This percentage is set in the Number input box.
Fixed - The Fixed option will use a fixed number of the total sub-samplable points. The number of points is set in the Number input box.
Skip - The Skip option will select every $n^{\text {th }}$ sub-
samplable point as it is encountered. Once again, n is defined in the Number input box.

By default the number input box is set to -1 . Please enter an appropriate number once you have decided on the type of sub-sampling you wish to do.

慖 In sub-sampling, the software selects the points from the set of sub-samplable points by selecting every $\mathrm{n}^{\text {th }}$ point in the measurement (points are ordered alphanumerically by label); n is determined by the sub-sampling option chosen above.

If a sub-sampling option is selected, additional options are available. These are:
Triangulate Only or Re-Bundle - When the bundle solution using the sub-sampled set of points is complete, you have two choices. You can select Triangulate Only to use that solution to triangulate all the points.

Unsampled Points
C Triangulate Only
(c) ReBundle With All

Alternatively, by selecting ReBundle with All, you can automatically re-run the bundle adjustment using all the points and use that solution to triangulate all the points. The first choice is faster; the second choice is more accurate (however, the accuracy improvement should be negligible if you have selected a good sub-sample set; see 曾 below).

AutoMatch Only - When checked, only AutoMatched points will be subsampled. AutoMatched points begin with the prefix TARGET. All other points will be included in the bundle adjustment. When unchecked, all points (except codes, nuggets, and control, see above) will be sub-sampled.

Include Points - The

include points option will include in the bundle any of the

Point Sets
V AutoMatched Only
\sqrt{V} Include Points \quad S1,S2,DE23>DE34 points that are listed in the adjacent text box. The text box supports the "*" and "?" wildcards. Multiple strings can be entered; a space or a comma must separate them; case does not matter. A range of points can be specified by separating them with the ">" symbol (i.e. "linel > line 120" would include all points with labels from linel to line 120 inclusive); spaces are allowed between the > symbol and the two labels.

You should be careful when sub-sampling. Make sure there are still enough points in the bundle adjustment to get a good solution. This means you should have at least 20 well-distributed points (preferably 40) in each picture, and at least 50 well-distributed points (preferably 100) total. When in doubt about the number of points or whether they are well distributed, include more points. Also, make sure that any tie and/or fill points you have used for the measurement are included in the sub-sampled data set.

Bundle Statistics

Introduction

After a bundle, V-STARS will examine the data, classify the pictures, points, and scale bars as good, weak, or bad based on user specified criteria. The criteria will in no way effect the bundle results and are only used to indicate to you the quality of the measurement.

Criteria Tests

Four basic tests are performed on the data. Each test has its own set of weak criteria and bad criteria. A picture or point is classified good, weak or bad depending upon which criteria it fails (or passes). If the picture or point passed all criteria then it is classified good. If it fails the weak criteria but not the bad criteria then it is classified weak. If it fails the bad criteria then it is classified bad. Scale bars are tested the same way but only one point has to fail the criteria for the entire scale bar to be classified weak or bad. The point values that fail a criteria are marked with either a pair of ** to denote failure of a BAD criteria or [] to denote failure of a WEAK criteria. The values are enclosed within the asterix (* ${ }^{*}$) or the brackets ([]).

The Number Test (\#)

This test examines the number of points in a picture and the number of rays on a point. The default limits are described in GSI32.ini Settings description.

The Percentage Test (\%)

This test examines the percentage of points accepted in a picture and the percentage of rays accepted on a point. The default limits are described in GSI32.ini Settings description.

The Value Test (V)

This test examines the sigma X, sigma Y, sigma Z, sigma azimuth, sigma elevation and sigma roll of a picture and the sigma X, sigma Y and sigma Z of a point. If the value is greater than the criteria then this test has failed. The default limits are described in GSI32.ini Settings description.

The Median Test (M)

This test examines the sigma X, sigma Y, sigma Z, sigma azimuth, sigma elevation and sigma roll of a picture and the sigma X, sigma Y and sigma Z of a point. If the value is greater than the criteria multiplied by the median of all the like values then this test has failed. The default limits are described in GSI32.ini Settings description.

Icons

The pictures，points and scale bars will be associated with one of the following icons depending upon the classification that V－STARS assigns．Refer to the Icons section for a full listing of the V－STARS icons

Pictures
⿴囗才ㅇ Good Picture
평 Weak Picture
8 Bad Picture

Points
\＆Good Point
\diamond Weak Point
－Bad Point

Scale Bars
Good Scale Bar
FI Weak Scale Bar
f Bad Scale Bar

Viewing Picture Summary

The statistics are viewed by selecting the More buttons from the Bundle dialog．If a picture or point is weak then the reason it is weak will be highlighted with brackets and preceded by a \＃，\％，V or M，indicating that it failed the number，percentage，value or median tests respectively．If a picture or point is bad then the reason it is bad will be highlighted with asterisks and preceded by a \＃，\％，V or M，indicating which test it failed． Below is the Picture Summary dialog after a bundle．

Zooln in
 weak because they all failed the number test using the weak criteria (note the brackets around the number of points).

Viewing Points Summary

The Points Summary dialog contains a great deal of statistical data related to the bundle. The following information is provided in the dialog.

Points Point Label for the point.
Sigma $X \quad$ The final standard deviation in the X direction for the point Sigma Y The final standard deviation in the Y direction for the point Sigma $Z \quad$ The final standard deviation in the Z direction for the point RSS RSS stands for square Root of the Sum of Squares. The formula for the RSS accuracy of a point is:

$$
R S S=\sqrt{\sigma_{X}^{2}+\sigma_{Y}^{2}+\sigma_{Z}^{2}}
$$

The RSS is a useful statistic that combines the separate coordinate accuracy estimates into one meaningful quantity. It represents the accuracy estimate of the distance of the measured point from its true value.

Rays The number of rays the point is seen by.
Closure The overall image space closure for the point.

Below is a typical Point Summary dialog after a bundle.

WALL2 is classified bad (${ }^{(}$)because it failed the percentage and number test. Note that it also failed the sigma Y and sigma Z value and the sigma X, sigma Y and sigma Z median tests. The rejected observations for WALL2 are shown in the frame on the right of the dialog. The majority of the points with the yellow icons are classified weak (\diamond) because they failed the sigma X and sigma Z median test. Note that WALLl also failed the sigma X, sigma Y, sigma Z value and median tests. TARGET333 is weak because is failed the weak number test.

Viewing Scale Summary

Adjacent is the Scale Bar Summary dialog after a bundle. Barl is classified weak because point 122
failed the sigma Y value test using the weak criteria. Note that point 121 passed all the tests but the scale bar is still classified weak because only one point has to fail in order for the scale bar to fail.

Scale Summ			区	
Scale Bars	Difference	Distance	Γ^{121}	
P8Bar	0.0526	16.5000	Rays:	4 of 4
- Bar2	-0.0268	32.0000	5X:	0.0024
			SY:	0.0027
			SZ:	0.0029
			${ }^{122}$	
			Rays:	4 of 4
			SX:	0.0023
			SY:	V [0.0032]
			SZ:	0.0024
				OK

Bundle Automatic Scale Rejection

The bundle can automatically reject scale bars based on criteria defined in the GSI32.ini file. Criteria are provided for rejecting scale bars with deviations that are large relative to the other scale bars (as defined by the RMS of their deviations), or larger than a fixed value.

By default, this feature is disabled (-1). The following lines in the GSI32.ini file control the scale bar rejection.
< 0 : Relative scale bar rejection
scalebar rejection factor $=-1$
disabled.
> 0 : Multiply RMS of all scale bars by this factor to get the rejection limit.
scalebar rejection value=-1 <0: Absolute scale bar rejection disabled.
> 0: Any scale bar deviation with an absolute value greater than this value is rejected.

The units for this value are defined by the "accuracy units" variable in the GSI32.INI file.

GSI32.INI File Default Settings

All values listed are default values.

Bundle General

This section contains items related to the general operation of the bundle. Many of these can also be set in the Bundle Setup dialog.

GSI32.ini Entry
rejection factor=3.0
rejection addition=0.0002
convergence limit $=0.000005$
maximum iterations=10

Comment
Rejection level for each iteration (in mm) of the bundle is calculated by multiplying the RMS of the previous iteration by the rejection factor and adding the rejection addition. The fixed rejection flag value must be false to enable these values.

The bundle converges and stops when the RMS of the residuals between two successive iterations is less than this value (in mm).

If the bundle has not converged, it stops after this number of iterations. Pressing the Start button will re-start the bundle at the $11^{\text {th }}$ iteration.

TRUE = calculate total accuracy estimates for points in the bundle.
FALSE= calculate only the limiting accuracy estimates.
The Total accuracy estimates take more time but are more accurate. The bundle's Plan Quality Factor cannot be calculated unless this value is True.

Minimum number of rays for a point to be included in the bundle.

Minimum number of rays an automatched point must have in order to be included in the bundle.

Triangulation rejection limit (mm).
Initial triangulation rejection limit (mm).
Triangulation convergence limit (mm).

GSI32.ini Entry
triangulation maximum iterations=30

```
resection rejection
```

limit=0.002
auto resection
rejection=FALSE
resection rejection factor=3
resection convergence
limit=0.00001
resection maximum
iterations=30
confidence factor=1.0
unflatness sigma $=0.0005$
fixed rejection limit=FALSE
weighted=FALSE
accuracy limit units=inches

Comment

Maximum triangulation iterations to perform.
Resection rejection limit (mm).
TRUE $=$ Reject resection points that are > RMS resection rejection factor. FALSE= Reject resection points that are > resection rejection limit.

Multiplier used to calculate the resection rejection limit.

The resection converges and stops when the RMS of the residuals between two successive iterations is less than this value (in mm).

If the resection has not converged, it stops after this number of iterations.

All bundle estimated accuracies for points (sigmas) are multiplied by this confidence factor (allows estimates to be scaled to reflect actual accuracies achieved). If $=1$, then estimated accuracies are no \dagger changed.

Accounts for influence of unflatness of sensor on accuracy. Value is in mm .

TRUE = Adjust bundle rejection limit using rejection factor and rejection addition. FALSE = Use a fixed rejection limit for the bundle. Initially, the bundle rejection limit is 10 times the largest RMS of the residuals of all the resected pictures.

TRUE = weight image sigmas for each point based on target size (not usually used) FALSE $=$ use 0.0005 mm for the image sigmas.
Units of the accuracy limit.

GSI32.ini Entry
accuracy limit=0.002
write old input file=FALSE
resection triangle goodness=-1
impossibly close units=inches impossibly close
distance=0.05
power user mode=TRUE
subsample type=0
subsample number=10
subsample only
automatch=FALSE
subsample only
triangulate=FALSE
scalebar rejection factor=-1
scalebar rejection addition=0
scalebar rejection value=-1

Comment

If the accuracy estimate (sigma) for any of the three coordinates of a point is larger than this value, the point is over the accuracy limit. The count of these points is given in the Bundle Summary dialog. Details are available using the more button. A value < 0 disables this check.

If TRUE input.txt file is created
The resection triangle test is disabled.

Used to merge automatched points that are in fact the same point. If, after the bundle converges, any points are found within this distance of each other, they are combined.

This is impossible for targets, but not for projected dots.

TRUE allows you to do things not normally allowed (run "singular" bundles, etc.) Set type of points to subsample. Set this value from the Bundle Setup dialog. Set subsample number. Set this value from the Bundle Setup dialog. TRUE = subsample all points, FALSE = subsample only Automatched points (TARGET\# pts).
Subsample options. Set this value from the Bundle Setup dialog.
-1: Disabled
>0 : Factor to multiply scale bar RMS by Rejection level for each scale bar (in mm) is calculated by multiplying the RMS by the rejection factor and adding the rejection addition.
Absolute value at which the scale bar is rejected.

Bundle Weak Criteria

This section contains the values used to determine if a picture, point or scale bar is weak. To disable one of the tests change the value to -1. The criteria below are used for general bundle adjustments. Weak data are summarized in the bundle dialog summary, and weak values are flagged in the listings that are accessed by pressing the More button in the bundle summary dialog. Weak criteria are meant to identify things that are probably OK but may need to be looked at.
picture percentage of points
= 80.0
picture sigma median x = -1.0
picture sigma median y = -1.0
picture sigma median z = -1.0
picture sigma median azimuth
= -1.0
picture sigma median
elevation = -1.0
picture sigma median roll = -
1.0

```

GSI32.ini Entry
units = inches
```

```
picture number of points = 12
```

```
```

picture number of points = 12

```
```

picture sigma x = -1.0

```
picture sigma x = -1.0
picture sigma y = -1.0
picture sigma y = -1.0
picture sigma z = -1.0
picture sigma z = -1.0
picture sigma azimuth = -1.0
picture sigma azimuth = -1.0
picture sigma elevation = -
picture sigma elevation = -
1.0
1.0
picture sigma roll = -1.0
```

picture sigma roll = -1.0

```

\section*{Comment}

Units used for all the dimensional values in this section (such as coordinate sigmas)

Picture number test. A picture is weak if its number of accepted points is less than this value.

Picture percentage test. A picture is weak if its number of accepted points is less than this percentage.

Picture value test. A picture is weak if any of its accuracy estimates (sigmas) are greater than the specified value.

If the value is \(<0\) then the test is disabled. These checks are usually disabled.

A picture is weak if any of the accuracy estimates (sigmas) are greater than the specified value multiplied by the median sigma for all the pictures. This checks if a picture has weak accuracy compared to the "average" picture. A value < 0 means the weakness check is disabled. These checks are usually disabled.

\section*{GSI32.ini Entry}
point number of rays \(=4\)
point percentage of rays \(=\) 75.0
point sigma \(\mathrm{x}=0.002\)
point sigma \(y=0.002\)
point sigma z \(=0.002\)
point sigma median \(x=3.0\)
point sigma median \(y=3.0\)
point sigma median \(z=3.0\)
scalebar number of rays \(=\) 4
scalebar percentage of rays \(=75.0\)
scalebar sigma \(x=0.002\)
scalebar sigma \(y=0.002\)
scalebar sigma \(z=0.002\)
scalebar sigma median \(\mathrm{x}=\)
2.0
scalebar sigma median \(\mathrm{y}=\)
2.0
scalebar sigma median \(\mathrm{z}=\)
2.0

\section*{Comment}

Point number test. A point is weak if its number of accepted image measurements is less than this value.

Point percentage test. A point is weak if its percentage of accepted image measurements is less than this value.

A point is weak if any of its 3 accuracy estimates (sigmas) are greater than the specified value.

This check compares the accuracy to a fixed value. A value \(<0\) means the weakness check is disabled.

Scale bar number test. A scalebar is weak if the number of accepted image measurements for either of its points.

Scale bar percentage test. A scalebar is weak if its percentage of accepted image measurements for either of its points is less than this value.

A scalebar is weak if any of the three accuracy estimates (sigmas) for either of its points are greater than the specified value. This check compares the accuracy to a fixed value. A value < 0 means the weakness check is disabled.

A scalebar is weak if any of the three accuracy estimates (sigmas) for either of its points are greater than the specified value multiplied by the median sigma for all the points. This checks if a scalebar has weak accuracy compared to the "average" scalebar. A value \(<0\) means the weakness check is disabled.

\section*{Bundle Bad Criteria}

This section contains the values used to determine if a picture, point or scale bar is bad. To disable one of the tests change the value to -1. The criteria below are used for general bundle adjustments. Bad data are summarized in the bundle dialog summary, and bad values are flagged in the listings that are accessed by pressing the More button in the bundle summary dialog. Bad criteria are meant to identify things that are probably going to have to be removed from the Bundle.
```

GSI32.ini Entry
units = inches
picture number of points = 6
picture percentage of points
= 50.0
picture sigma x = -1.0
picture sigma y = -1.0
picture sigma z = -1.0
picture sigma azimuth = -1.0
picture sigma elevation = -
1.0
picture sigma roll = -1.0
picture sigma median x = -1.0
picture sigma median y = -1.0
picture sigma median z = -1.0
picture sigma median azimuth
= -1.0
picture sigma median
elevation = -1.0
picture sigma median roll = -
1.0
point number of rays = 2

```
point percentage of rays =
50.0

\section*{Comment}

Units used for all the dimensional values in this section (such as coordinate sigmas)

Picture number test. A picture is bad if its number of accepted points is less than this value.

Picture percentage test. A picture is bad if its number of accepted points is less than this percentage.

Picture value test. A picture is bad if any of its accuracy estimates (sigmas) are greater than the specified value.

If the value is \(<0\) then the test is disabled. These checks are usually disabled.

A picture is bad if any of the accuracy estimates (sigmas) are greater than the specified value multiplied by the median sigma for all the pictures. This checks if a picture has bad accuracy compared to the "average" picture. A value < 0 means the badness check is disabled. These checks are usually disabled.

Point number test. A point is bad if its number of accepted image measurements is less than this value.

Point percentage test. A point is bad if its percentage of accepted image measurements is less than this value.

GSI32.ini Entry
point sigma \(x=0.02\)
point sigma \(y=0.02\)
```

point sigma z = 0.02

```
```

point sigma median x = 10.0
point sigma median y = 10.0
point sigma median z = 10.0

```
scalebar number of rays \(=2\)
50.0
```

scalebar sigma x = 0.02
scalebar sigma y = 0.02
scalebar sigma z = 0.02

```
scalebar sigma median \(x=5.0\)
scalebar sigma median \(y=5.0\)
scalebar sigma median \(z=5.0\)
scalebar sigma median \(y=5.0\) scalebar sigma median \(z=5.0\)

\section*{Comment}

A point is bad if any of its 3 accuracy estimates (sigmas) are greater than the specified value.

This check compares the accuracy to a fixed value. A value < 0 means the badness check is disabled.

Scale bar number test. A scalebar is bad if the number of accepted image measurements for either of its points.
scalebar percentage of rays \(=\) Scale bar percentage test. A scalebar is bad if its percentage of accepted image measurements for either of its points is less than this value.

A scalebar is bad if any of the three accuracy estimates (sigmas) for either of its points are greater than the specified value. This check compares the accuracy to a fixed value. A value \(<0\) means the badness check is disabled.

A scalebar is bad if any of the three accuracy estimates (sigmas) for either of its points are greater than the specified value multiplied by the median sigma for all the points. This checks if a scalebar has bad accuracy compared to the "average" scalebar. A value < 0 means the badness check is disabled.

\section*{3D Viewer}

\section*{Introduction}

To help visualize your data, a graphical three-dimensional viewer is included in V-STARS. You can easily view your measured object from any perspective, and compare the measured results to design values. You can also transform the data into the design coordinate system before comparison. Several different types of transformations are possible. Simple measurements are also available with the viewer such as point-topoint distances, vector point calculations, and average point calculations. These are described in the Basic Measurement Functions Section of the manual.

\section*{Viewpoint}

\section*{Viewpoint Manipulation}

Viewpoint manipulation involves changing the position of the entire scene relative to your screen. The primary tool used to manipulate the scene is the mouse.

\section*{Using the mouse}

The most common use of the mouse is to rotate the scene. To rotate the scene, click and hold the right mouse button and move the cursor. If the cursor is moved to the right, the scene will rotate to the right and if the cursor is moved to the left, the scene will rotate to the left. Likewise, if the cursor is moved up the scene will rotate up and if the cursor is moved down to scene will rotate down.

The sensitivity of the rotation is affected by the value of the Rotation Multiplier. This figure can be changed in the View Setup Dialog. Refer to the View Setup Section for more information.

\section*{Panning}

To pan the scene, click and hold the right mouse button and move the cursor while also holding the \()\) key down. If the cursor is moved to the right, left, up or down the scene will pan to the right, left, up or down.

Zoolm
in

\section*{Zooming}

To zoom the scene, click and hold the right mouse button and move the cursor while also holding the \(\xrightarrow{\text { cmi }}\) key down. If the cursor is moved up the scene will zoom out. If the cursor is moved down the scene will zoom in.

If you are using the Microsoft IntelliMouse and are running Windows NT 4.0 or later then, you may use the mouse wheel to pan and zoom the scene. To pan using the mouse wheel, click and hold the wheel and move the cursor. This will perform the same panning action described earlier. To zoom simply rotate the wheel. Rotating the wheel away from you will cause the scene to zoom out, and rotating the wheel towards you will cause the scene to zoom in.

The sensitivity of the pan and zoom is affected by the Translation Multiplier. Refer to the View Setup Section for more information on changing the Translation Multiplier.

\section*{Using the keyboard}

\section*{Fitting}

The most commonly used keyboard command is the Fit command. The Fit command will adjust the scene so that all the entities will fit onto the display. Press the SPACE to perform a Fit. Three additional commands related to the Fit command are the Fit X , Fit Y and Fit Z commands. These commands will adjust the scene so you are looking down the negative \(X, Y\), or Z-axis. Press the \(\xrightarrow{X}, 4\) and \(\underbrace{Z}_{\square}\) keys to perform these actions. Once you are fitted to the axis, pressing the key again will adjust the scene so you look up the positive axis.

\section*{Rotating}

To rotate the scene about the screen use the \(\leftrightarrows\) and \(\leftrightarrows\) arrow keys. Pressing the left arrow key will rotate the scene counter clockwise \(1^{\circ}\). Pressing the right arrow key will rotate the scene clockwise \(1^{\circ}\). If the key is held while this operation is performed then the rotation amount is multiplied by 10 .

Zoom in

To rotate the scene up, down, left and right hold the \(\xrightarrow{\text { ctr1 }}\) key down while pressing the the rotation amount is multiplied by 10 .

The sensitivity of the rotation is affected by the value of the Rotation Multiplier. Refer to the View Setup Section for more information on changing the Rotation Multiplier.

\section*{Zooming}

To zoom the scene use the \({ }^{1}\) and \(\downarrow\) arrow keys. Pressing the \({ }^{1}\) arrow will zoom in and pressing the arrow will zoom out. If the \(\xrightarrow{1}\) seynth is held while this operation is performed then the zoom amount is doubled.

\section*{Panning}

To translate the scene up, down, left and right hold the key down while pressing the
translated in one-unit increments. If the operation is performed then the translation amount is multiplied by 10 .

The Translation Multiplier affects the sensitivity of the pan and zoom. Refer to the View Setup Section for more information on changing the Translation Multiplier.

\section*{Selection}

\section*{Selection Types}

There are two types of selection operations that can be performed using the 3D viewer: Single Selection and Multiple Selection. When performing a selection you may hold the \(\stackrel{\rightharpoonup}{\text { shntit }}\) key down to add entities to the current selection. If the 4 key is not held down then current selections will be deselected.

If \(\square\) is on, then the selection function is reversed. New selections will be added to the current selection by default and if the \(r\) key is held down then the current selections are deselected. To deselect the points, switch the \(\xrightarrow{\text { caps Lock }}\) to off and click anywhere in the viewer.

\section*{Single Selection}

To perform a single selection, position the cursor over a particular objec \(\dagger\) and click the left mouse button. The selected object will be highlighted. If two objects lie on top of one another then both objects will be selected. Alternatively, a point can be selected by clicking and holding the left mouse button and moving the cursor. As you move the cursor, a rectangle will form. When you release the button, the points within the square will be selected.

\section*{Multiple Selection}

To perform a multiple selection, click and hold the left mouse button and move the cursor. As you move the cursor, a rectangle will form. When you release the left button, everything that lies entirely within that rectangle will be selected. Alternatively, hold


The \(\stackrel{\square}{\square}\) shint key and select multiple points or use the \(\xrightarrow{\text { Caps Loot }}\) feature described in the Selection Types section.

\section*{Identification}

To identify an entity, position the cursor over the entity. If enabled, the Tool Tip window will pop up with information about the entity. If the Tool Tip window is disabled the information will appear in the lower left corner of the display. To enable or disable the Tool Tip, go to the second page of the View Setup dialog and

Measured Point
Label: TARGET86
X: 992.029
Y: -38.627
Z: - 12.559 check or uncheck the Tool Tip check box. Refer to the View Setup section for information on switching the Tool Tip on.

The residual and measurement information is directly tied to the component vector options. For example, if you are only displaying the Delta \(X\) vector component then only the Delta \(X\) value will be displayed.

\section*{Delete and Rename}

\section*{\(0 \cdot 0|\sigma| 0\)}

\section*{Delete}

To delete objects you must first select them. Once selected, you may delete them by using the Delete command from the right click menu or by pressing the key. You may also use the delete cursor to delete objects.
The delete cursor works the same as the standard selection cursor except when a selection is made the selected objects are deleted (you will be given a warning message before the deletion takes place).

If the objects you are deleting are points and the data file is the current driver file then you may use the global delete cursor.

The global delete cursor behaves the same way it does when you are deleting points in a picture. All points selected will be removed from the driver file and from all pictures (you will be given a warning message before the deletion takes place).

\section*{Rename}

To rename points from within the graphical view you must use the rename cursor.

The rename cursor works the same as the standard selection cursor except when a selection is made the selected objects are renamed to the current point label. When the rename cursor is active, you may use the keyboard to enter the current point label just as you would while editing a picture. The current point label is displayed in the lower left of the screen.

If the data file is the current driver file then you may use the global rename cursor. The global rename cursor behaves the same way it does when you are renaming points in a picture. All points selected will be renamed in the driver file and in all pictures.


When renaming points in the graphical view you cannot use the line following command.

\section*{Display Options}

\section*{View Setup}

Many display options are accessed through the View Setup dialog. To access the View Setup dialog select View Setup from the right click menu or press the


\section*{General}

\section*{View - Measured Data}

When the measured items (entities) listed are checked they are visible in the graphical view. To switch off a particular entity simply uncheck the relevant box and press the Apply button or OK. Refer to the Solids section of the manual for more information on the different entities.

The Cylinder option is dimmed, as this entity has not been incorporated into V-STARS at this time.

\section*{View - Design Data}

When the design items (entities) listed are checked they are visible in the graphical view. To switch off a particular entity simply uncheck the relevant box and press the Apply button or OK.

\section*{View - Probe Data}

If the project includes data that has been collected using a probe it will be visible if this option is checked.

\section*{Vectors - Design Residuals}

When checked, the measured to design data residuals are shown. Design Residuals are the difference vectors between measured and design data.

\section*{Vectors - Entity Residuals}

When checked, the residuals for any entity measurements are shown. Entity Residuals are the difference vectors between an entity and the points used to create it.

\section*{Vectors - Entity Measurements}

When checked the residuals for any measurement made to an entity is shown. Entity Measurements are the difference vectors between an entity and the points that were measured to it after it was created. Entity Measurements are displayed as dotted lines, whereas Design Residuals and Entity Residuals are displayed as solid lines.

\section*{Circle - In Plane}

When checked the in-plane residuals for a circle are shown. The Circle In Plane check box controls the in plane circle vectors and Circle Out Plane controls the out of plane vectors. The in plane vector is the component of the circle vector that is parallel to the plane of the circle. Refer to the Solids section of this manual for more information on Circles.

Zoof! in

\section*{Circle - Out Plane}

When checked the out plane residuals for a circle are shown. The out plane vector is the component of the circle vector that is perpendicular to the plane of the circle.

\section*{Components - Total}

The Components group of check box allows you to choose which type of vector is displayed. When checked the total component of the vector is shown. The Total vector represents all the individual XYZ components. The total vector can be switched on or off using the \(\stackrel{\text { kis }}{\sim}\) key.

\section*{Components - XYZ}

Check the appropriate box to view the individual XYZ vector residuals. If Delta \(X\) is checked then the \(X\) component of the vector is displayed. If Delta \(Y\) is checked then the \(Y\) component of the vector is displayed. If Delta \(Z\) is checked then the \(Z\) component of the vector is displayed.
The vectors can also be switched on or off using the and \(Z\) components respectively.

\section*{Highlight Points}

The Highlight Points text box supports the "*" and "?" wildcards. Multiple strings can be entered; a space or a comma must separate them; case does not matter. A range of points can be specified by separating them with the ">" symbol (i.e. "linel > line 120" would highlight all points with labels from linel to line 120 inclusive); spaces are allowed between the > symbol and the two labels. By default, highlighted points are displayed with a yellow marker. The highlight color can be changed in the Display Colors section of the Graphical View Setup.


Search
Contents

\section*{General (cont.)}


\section*{View - Coordinate Axis}

Switch on the coordinate axis in the graphical view. The size of the axis can be controlled using the Axis Size input box or the or keys.



\section*{View - Scale Bars}

Any scale bars listed in the project scale bars folder will be signalized using a yellow line drawn between the two ends.

View - AutoBar
If an AutoBar is present, then yellow lines will be drawn through the ends of the AutoBar points. (AutoBar 1 - AutoBar3 and AutoBar2 AutoBar4)
autobar3
AUTOBAR2
autobarg
autobarg

Rutobara

\section*{View - Labels}

Switch the labels on or off for a 3D file. The labels can also be toggled using the key. The size of the labels can be controlled using the Label Scale input box or the \({ }_{\square}^{(H)}\) or keys.

\section*{View - Normals}

The positive direction of a plane or surface may be determined by viewing the normals. Within V-STARS, the normals indicate the positive direction of the plane or surface.

Switch the normals on or off for planes and surfaces.
 The normals are denoted by a line perpendicular to the surface/plane in the positive direction.

Zoom in

View - Normals Selected
Only view the normals when the surface or plane is selected.

\section*{View - Picture Stations}

Switch the picture stations on or off. This option is only applicable to the current driver file. This command can also be implemented using the key.

Double-click on a camera station to view the picture taken from that station.

\section*{View - Rays}

All of the points seen from a picture station and all of the picture stations that see a point can be visualized by viewing the picture and point rays. The 3D file must be the active driver in order for this feature to be active. Select a picture station to see all of the points that are seen by that particular picture station. A green line is drawn from the picture station to each point seen. A red line means that the point is rejected at that particular station. Select a point to see all of the picture stations that see that particular point. A green or red line is drawn from the point to the picture station depending upon whether or not the point was rejected. Selecting a camera displays all the points seen from that particular station. Double clicking the camera will open
 the image captured from the station.
This command can also be implemented using the \({ }^{\mathbb{N}}\) key.
The picture stations must be switched on before the rays will be active.
The rays are only available in the active bundle.

Zooln in

\section*{View - Wireframe}

Switch off the solid modeling of surfaced and planes.
This command can also be implemented using the \(\stackrel{ \pm}{=} \mathrm{key}\).


\section*{View Lighting}

When lighting is switched on, surfaces, planes and cameras are shaded based on a light source being present at the viewpoint in the 3D file. This gives the object a more realistic 3D feel. This command can also be implemented using the key.

\section*{Tolerance Bar}

When the tolerance bar is switched on, it will be displayed on the right hand side of the screen. To change the tolerance bar, check the tolerance tab of the View Setup. This command can also be implemented using the \(\leftrightarrows\) key.

\section*{Enable Tool Tip}

When the tool tip is switched on, it will be displayed information about the object the mouse is over in a tool tip box.
\begin{tabular}{|l|}
\hline Measured Point \\
\hline Label: TARGET86 \\
\(X: 992.029\) \\
\(Y:-38.627\) \\
\(Z:-12.559\) \\
\hline
\end{tabular}

\section*{Axis Size}

This input box controls the size of the Axis.

\section*{Step Scale}

The Step size is used to control how much the keyboard commands increment and decrement certain settings. The residual, measurement and label scale commands are affected by this value.

\section*{Point Size}

This input box controls the size of the point entities. The size of the points can also be controlled using the or 9 keys to decrease and increase the size respectively. Hold the \(\xrightarrow{T \text { shit }}\) key to augment the step.


\section*{Line Width}

This input box controls the width of the line entities. The width of the lines can also be controlled using the,\(\stackrel{8}{7}\) respectively. Hold the \(\xrightarrow{\text { sshitt }}\) key to augment the step.

\section*{Label Scale}

This input box controls the size of the labels. The size of the labels can also be controlled using the \({ }^{\mathrm{H}}\) keys to decrease and increase the size respectively. The key can be used to switch on the labels.

\section*{Residual Scale}

In cases where the vectors are very small, it is desirable to add a scaling factor. The size of the vectors can also be controlled using the 4 decrease and increase the vector scale. Hold the key to augment the step.

\section*{Measurement Scale}

This input box controls the size at which measurements to entities are displayed. The size of the vectors can also be controlled using the 410 decrease and increase the vector scale. Hold the key to augment the step.

\section*{Translation Multiplier}

The Translation Multipliers control the sensitivity of the viewpoint manipulations. A value of 1.0 indicates normal sensitivity, a value of 2.0 will double the sensitivity and a value of 0.5 will halve the sensitivity.

\section*{Rotation Multiplier}

The Rotation Multipliers control the sensitivity of the viewpoint manipulations. A value of 1.0 indicates normal sensitivity, a value of 2.0 will double the sensitivity and a value of 0.5 will halve the sensitivity.

\section*{Label Skip}

The label skip determines how many points to skip when displaying the labels. If the skip is set to one then all labels are displayed, if the skip is set to two then every second label is displayed. Press the \(\sqrt{6}\) and keys to decrease and increase the label skip.


\section*{Tolerances}

The color of the difference vectors may be setup by selecting the Tolerance tab of the View Setup Dialog. A color Tolerance Bar shows what range value is associated with what color is available. On the second page of the View Setup dialog, under the General (cont.) is the Tolerance Bar check box. This check box will turn the Tolerance Bar on and off. The Tolerance Bar may also be toggled on and off by pressing the \(\stackrel{0}{4}\) key.


\section*{Adjusting the Tolerance}

The center column of edit fields contains the numerical ranges that correspond to the colors to the right. You may edit these values directly (keeping in mind that the upper value must be larger than the lower value) or you can use the Adjust buttons.

The Adjust buttons allow you to automatically set all of the ranges based on a standard tolerance value. To use the Adjust buttons first enter a tolerance value in the tolerance field at the bottom of the page. Next, select one of the edit fields above and enter a value. If you wish the tolerance bar to have a middle value of zero, then simply press the Adjust button in the middle of the range. All other tolerance values are adjusted from this field using the tolerance range in the input box.


Zoom out

\section*{Setting the color}

On the right side of the page is a column of color buttons. To change color, click the color button and you will be presented with the standard Windows color dialog. Select the color you want and click OK.

\section*{Color Gradient}

Check the gradient check to create a smooth gradient between adjacent colors.



\section*{Color Schemes}

There are five standard color schemes available. These are shown below.



Search

\section*{Display Colors}

The colors of the various entities can be set in the Display Colors dialog. To change color click the color button and you will be presented with the standard Windows color dialog. Select the color you want and click OK.

\section*{Invert Print}

Check the box to invert points and the background for a screen print. This is a handy way to save printer toner!


Invert Save
Check the box to invert points and the background for a screen save.

\section*{Additional Display Options}

\section*{Title and Window Dimensions}

Press the \({ }^{\top}\) key to toggle the name of the 3D file on and off. Press the \({ }^{6}\) key to toggle the window dimensions on
 and off.

Zooin in

\section*{Perspective and Orthographic}

There are two main view settings: Perspective and Orthographic. The default is Perspective because this is how the real world is perceived. The further the objects are from the viewpoint the smaller they appear. Orthographic view is a mode in which all objects appear to be the same size regardless of their distance from the viewpoint. Perspective and Orthographic views may be toggled using the key.

Center of Rotation
The center of rotation is displayed with a cross hair. By default, the cross hair is hidden. Press the \(\hat{6}\) key to show the cross hair. This will increase the divisor value to one. The size of the cross hair is equal to the size of the coordinate axis divided by the cross hair divisor. To increase the cross hair division, thus
 decreasing the cross hair size press the \(\hat{6}\) key. To decrement the cross hair divisor, thus increasing the cross hair size, press the \(\xlongequal{2}\) key. When the cross hair divisor is equal to zero the cross hair is hidden.

\section*{Field of View}

The field of view is controlled using the and \(n=\sim\) keys. The field of view is only used while in the Perspective view and can range from \(0^{\circ}\) to \(180^{\circ}\).

\section*{Clipping Planes}

The clipping planes control how much of the scene is displayed. Usually the 3D viewer takes care of the clipping planes and you should never have to modify them. There are two clipping planes used, the near plane and the far plane.

Near clipping plane, Inc / Dec
Far clipping plane, Inc / Dec


\section*{Alignments}

\section*{Introduction}

Alignments are normally used to transform from the local V-STARS coordinate system into your desired coordinate system. If the AutoBar is used, the V-STARS measurement is in the coordinate system defined by the AutoBar. If an AutoBar is not used, the measurement is in the coordinate system defined by whatever driver is used at the start of the measurement. In either case, this is not usually the final coordinate system desired. Often, the coordinate system is defined by a subset of the measured points that have coordinates in your desired coordinate system. These points may consist of precisely made tooling targets that are located in bushed holes, or they may be defined by features on the measured object (such as part edges, or hole locations or intersections of lines, planes, etc.) that are targeted in some way. In any case, it is important that the points representing your defined coordinate system be targeted precisely or else the accuracy of the transformation will be degraded. In fact, the accuracy of placing the targets precisely on your coordinate system's defining features often is the determining factor in overall measurement accuracy.

V-STARS can perform several different types of coordinate transformations. These include:
- Axis Alignment - The Axis Alignment Transformation exactly aligns three specified points with the coordinate axes. Axis alignment is also often called 321 alignment or Point-Line-Plane alignment. The Axis Alignment coordinate system is defined by the location of the first point (called the Anchor point), by the line connecting the first point to the second point (called the Axis Point), and by the plane defined by the first two points and the third point (called the Plane Point).
- Quick - The Quick transformation uses all of the common points in the Design and Measured folders for the transformation. Quick transformation is commonly used when all the control points are considered equally accurate (for example, when some previously measured or otherwise established tooling points on a part are used to define your coordinate system). The Quick transformation gets its name from the fact that the operator normally has to do very little to run the transformation. Since the accuracies for all the points are identical, there is no need to setup the accuracy estimates in the Design file; the Quick transformation will do it for you.

The Quick transformation can also be useful when trying to get the best possible comparison between two sets of measurements. By comparing the two sets of measurements after transformation into a
common coordinate system, the best possible agreement between the two sets is achieved.
- Standard - The Standard transformation is the most powerful since it provides the operator with the greatest control over the transformation, but it involves the most work to setup. Use the Standard transformation when the control points are of unequal accuracy. This is appropriate, for example, when there is alignment data that may only be accurate in one or two directions. For example, points on a base plane may define the \(Z\) value, but not the \(X\) and \(Y\). In a Standard transformation, the \(Z\) value would be held FIXED and the \(X\) and \(Y\) allowed to remain APPROXIMATE or UNKNOWN.
- \(\quad\) File - Transformations based on imported transformation parameters.
- Manual - Transformations based on manual shifting, rotation and scaling of the data.

The Quick and Standard transformations are so-called "rigid-body" transformations. Rigid-body transformations allow up to seven parameters in the transformation. These include three translations (in \(X, Y\) and \(Z\) ), three rotations (one about each axis) and scale. Such a transformation is called rigid body because it does not allow the shape of the object to change; it only allows the object to be moved, rotated and (optionally) re-scaled into your defined coordinate system.
In general, V-STARS transforms the Measured point coordinates into the desired coordinate system using the Design data.

\section*{Design Data}

\section*{Introduction}

Starting with version 4.0, V-STARS introduced a new concept called design data. Design data normally represents engineering nominal values for points being measured. By proper use of design data, a measurement can be set up to automatically transform into a desired coordinate system. In addition, the differences between the measured and design data are automatically computed and can be viewed graphically.
 out

\section*{Importing}

Consider a project with two 3D files, Final Frame and Frame Points. Final Frame contains newly bundled measurements and Frame Points are engineering nominals of the part. We desire to
 compare Final Frame to Frame Points. Therefore, we wish to have Frame Points as design data within Final Frame. We do this by importing Frame Points into Final Frame as design data.
This is done by right clicking on the Final Frame 3D file and selecting Import. Then, select To Design. When the file open dialog is displayed, Frame Points is selected. A summary of the number of points imported will be displayed.


The data from Frame Points is now in the design folder of Final Frame.
The XYZ values of the design points can be viewed by clicking on the design points as shown below.



\section*{Comparing Measured to Design}

Once design data is imported into a 3D file, the two data sets can be easily compared. V-STARS compares two data sets by aligning them to the same coordinate system. A comparison is automatically done by virtue of an alignment. To compare the two data sets, begin by right clicking on the Bundle you wish to transform and select Quick from the Alignment menu.

The Alignment - Quick dialog will appear. Press Begin to start the alignment calculation.
 After the calculation is made, summary information is shown. Refer to the Alignment option section for more information.

\section*{Alignment - Quick}

Data Set: Final Frame - millimeters


To see full details of the point-to-point differences between measured and design, press the More button. The More button brings up the Alignment Information dialog. This dialog shows individual point deviations. Rejected points are placed at the top of the list.


Alignment Information
Design \(\mid\) Measured Residuals \(/\) Transformation
\begin{tabular}{|c|c|c|c|c|c|}
\hline Label & DX & DY & DZ & Total & - \\
\hline - 1024 & -0.043 & 0.126 & 0.042 & 0.140 & \\
\hline - 1038 & -8.513 & 0.974 & 0.060 & 8.569 & \\
\hline - 1039 & -7.836 & -0.024 & 0.051 & 7.837 & \\
\hline - 1040 & .7.834 & -0.024 & 0.052 & 7.835 & \\
\hline \& 1001 & 0.044 & 0.036 & 0.004 & 0.057 & \\
\hline \& 1002 & -0.009 & 0.030 & 0.015 & 0.035 & \\
\hline \& 1003 & 0.007 & 0.009 & -0.000 & 0.012 & \\
\hline \& 1004 & 0.004 & 0.003 & -0.001 & 0.005 & \\
\hline \& 1005 & 0.003 & -0.002 & -0.008 & 0.009 & \\
\hline \& 1006 & -0.002 & 0.002 & -0.007 & 0.007 & \\
\hline \& 1007 & -0.001 & 0.011 & -0.005 & 0.012 & \(\checkmark\) \\
\hline
\end{tabular}

RMS of Residuals
```

 X: 0.013 Y: 0.012 Z: 0.010 Total: 0.020
    ```
```

 Save
    ```

OK
Cancel Apply

Press the Save button to save the results of the alignment to a text file.

\section*{Viewing the Differences Graphically}

In addition to calculating differences (measured to design), V-STARS also allows those differences to be viewed graphically. To do this, select the appropriate 3D file. Then, activate the 3D viewer by clicking in the view. Press the \(\qquad\) to Fit the points to the display.


Since measured to design residuals are usually small, we must use a magnification factor to make the difference vectors visible. To set the magnification factor, right click in the view and select View Setup. Verify that the Design Residuals check box of the Vectors group is checked and the Total check box of the Components group is checked.

On the second page change the Residual Scale to a value of say 1000 and press the Apply button. Move the View Setup Dialog so that you can see the 3D graphic. If the vectors are too large or still too small, change the Residual scale value again. Reduce or increase the value until you are satisfied with the vector display and then press OK. After changing the residual scale, the difference vectors should be easily visible. A typical example is shown below.



\section*{Creating Design Data}

Design data cannot be edited directly. Design data is intentionally readonly. One way to create (and edit) a set of data to use as design coordinates is to first create a new 3D file. Do this by right clicking the 3D data folder and select Data File from the New menu option.

A new 3D file will be created. The new file has the default name NewDataFile and is ready to be renamed. In this example, the file was renamed to MyData.


To start adding new points, right click on MyData and select New. Then, select Point. The screen changes to a list with a single new point added.
\begin{tabular}{|l|r|r|r|r|r|r|r|}
\hline Point Label & \(X\) & \(Y\) & \(Z\) & Sigma \(X\) & Sigma Y & Sigma \(Z\) & Offset \\
\hline \&NEWPOINT & 0.000 & 0.000 & 0.000 & FIXED & FIXED & FIXED & 0.000 \\
\hline
\end{tabular}

Additional new points can be added by pressing the key.

Each field can be edited by double-clicking the cell. Double click a label cell, for instance, to edit the label. You can use the \(\stackrel{\text { Tol }}{\leftrightarrows}\) key and \(\leftrightarrows\) to navigate between cells. Once you prepare the data inside the list editor, that data can be imported to design data of a different data file.
\begin{tabular}{|l|r|c|c|c|c|c|c|}
\hline Point Label & \(X\) & Y & \(Z\) & SigmaX & Sigma Y & Sigma \(Z\) & Offset \\
\hline \$ NEWPOINT & 1.000 & 1.000 & 2.000 & FIXED & FIXED & FIXED & 0.000 \\
\$ NEWPOINT1 & 1.500 & 1.500 & 2.75 & FIXED & FIXED & FIXED & 0.000 \\
\hline
\end{tabular}

\section*{Importing Data from a File}

Data can also be imported from external files. V-STARS can read any ASCII file of coordinates that has the following format (in addition to V-STARS' native "3D" format, and the IGES format).
\(\begin{array}{llllll}\text { Label } X & Y & Z & S X^{*} & S Y^{*} & S Z^{*}\end{array}\)
* - Optional fields.


Where:
1. One or more spaces or tabs separate each field.
2. Label contains any alphanumeric combination of characters (16 chars max) not containing spaces.
3. \(X, Y\), and \(Z\) are decimal numbers separated by spaces or tabs.
4. [Optional] SX, SY, and SZ are decimal numbers separated by spaces or tabs.

The above format is commonly called the "XYZ" format.
To import a file, right-click on the 3D data folder and select Import. Then, select Data File. Navigate to the desired file, select it and press the Open button. If this file is in the "XYZ" format V-STARS will prompt you for the files units. A summary of the imported points is shown and the file is added to the project.

Once an external file is imported, it can be imported to design data of a different data file. Refer to Importing Data Files Section.

\section*{Driver File with Design Points}

Design points in a driver file are driven back to just like measured points. When a bundle is run and the current driver file has design points, these design points are copied to the design folder of the newly bundled file. At the end of the bundle, an automatic coordinate transformation (standard) takes place fine-tuning the alignment of the newly bundled (measured) points into the system of the design points.


Search

\section*{Alignment Options}

\section*{Residuals Quick/Standard}

Selecting the Residuals - Quick option will display the usual residuals dialog. However, selecting the Residuals - Standard will display a dialog similar to the one below. The dialog has brackets around any residuals that were not included in the standard transformation (due to their sigmas not being fixed). In addition, the statistics at the bottom of the display will not include any bracketed values in their calculation.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Point Label & X & Y & Z & Sigma \(X\) & Sigma \(Y\) & Sigma \(Z\) \\
\hline \& ERS1 & 298.4934 & 21.9827 & 146.2924 & FIXED & FIXED & FIXED \\
\hline \& ERS2 & 298.4948 & -0.2246 & 151.4334 & APPROX & FIXED & FIXED \\
\hline \& ERS3 & 298.4712 & -21.4437 & 146.4561 & APPROX & APPROX & FIXED \\
\hline \& ERS4 & 298.4606 & -41.6743 & 154.9358 & UNKNOWN & UNKNOWN & FIXED \\
\hline \& ERS5 & 298.4563 & -41.5792 & 176.3950 & UNKNOWN & UNKNOWN & FIXED \\
\hline \& ERS6 & 298.5018 & -0.4182 & 176.8844 & UNKNOWN & UNKNOWN & FIXED \\
\hline \& ERS7 & 298.5383 & 41.5906 & 154.6425 & UNKNOWN & UNKNOWN & FIXED \\
\hline \& ERS8 & 298.5186 & 41.5327 & 176.9134 & UNKNOWN & UNKNOWN & FIXED \\
\hline \& ERS9 & 298.5411 & 41.3769 & 206.1472 & UNKNOWN & UNKNOWN & FIXED \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Information & \\
\hline New & \\
\hline Import & \\
\hline Export & \\
\hline Update & \\
\hline Alignment & Residuals - Quick \\
\hline Transform & Residuals - Standard \\
\hline \begin{tabular}{l}
AutoRelabel \\
Rename AutoMatch
\end{tabular} & Axis \\
\hline \(\checkmark\) Driver File & Standard \\
\hline Detail File & File \\
\hline Template File & Manual \\
\hline Delete & Quick Probe \\
\hline & Standard Probe \\
\hline & Setup \\
\hline
\end{tabular}

Another feature is that the transformation can be re-computed by typing in a new rejection value and pressing the Apply button. The results of the transformation can also be saved using the Save button. The results are saved to a standard ASCll format in a text file.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Alignment Information \(\mathbf{x}\)} \\
\hline \multicolumn{7}{|l|}{Design Measured Residuals} \\
\hline  & DY & DZ & Total & & & - \\
\hline \$ ERS1 0.0020 & -0.0019 & -0.0004 & . 0028 & & & \\
\hline ¢ ERS2 [0.0039] & 0.0005 & 0.0008 & 0040 & & & \\
\hline \$ ERS3 [0.0009] & [-0.0044] & -0.0006 & 0045 & & & \\
\hline \$ ERS4 [-0.0005] & [-0.0031] & 0.0010 & 0032 & & & \\
\hline \& ERS5 [0.0003] & [-0.0031] & \(-0.0006\) & 0032 & & & \\
\hline \& ERS6 [-0.0001] & [-0.0012] & 0.0013 & 0018 & & & \\
\hline \& ERS7 [-0.0004] & [0.0009] & 0.0010 & 0014 & & & \\
\hline ※ ERS8 [-0.0003] & [0.0001] & 0.0025 & 0026 & & & \\
\hline \& ERS9 [-0.0006] & [-0.0000] & 0.0024 & 0025 & & & \\
\hline \& ERS10 [-0.0004] & [-0.0011] & 0.0013 & 0018 & & & \\
\hline \& ERS12 [-0.0020] & [-0.0008] & -0.0000 & 0022 & & & - \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\(\left[\begin{array}{cccccc}\text { RMS of Residuals } & & & \\ \text { X: } 0.0020 & \text { Y: } 0.0014 & \text { Z: } & 0.0019 & \text { Total: } 0.0031\end{array}\right]\)}} \\
\hline & & & & & & \\
\hline Rejection: 0.0098 & \multicolumn{2}{|r|}{Recalc...} & & \multicolumn{3}{|c|}{Save} \\
\hline & \multicolumn{2}{|r|}{OK} & Cancel & \multicolumn{3}{|c|}{\(\Delta \mathrm{Apply}\)} \\
\hline
\end{tabular}


Search

\section*{Axis}

The 3D viewer portion of the axis alignment involves selecting the Anchor, Axis and Plane points in that order. Using the \(r\) sey perform a single selection of the three points and select Axis from the Alignment the right click menu. The following dialog will appear. The Anchor point, Axis point and Plane point should be set to the points you highlighted. They can be selected manually by using the pull down menus. The Anchor point can also be set by typing in the appropriate values.

The Axis direction and Plane point direction can also
 be set via the radio buttons. Press Begin to initiate the Axis alignment. Press
Undo to reverse the alignment.

Press the More button to view additional information on the transformation.


\section*{Quick}

Select the Quick option to complete a transformation in which all the points are treated equally. The dialog is shown below.


Automatic Rejection - When checked, V-STARS computes the optimal rejection limit. Uncheck this button if you wish to apply a fixed rejection limit.

Hold Scale - When checked the scale factor in the transformation is held fixed. It is common to unfix the scale when you wish the design to scale the measurements.

Points - The points frame summarizes the points involved in the in the alignment.
RMS of Residuals - The RMS frame summarizes the results of the transformation.
More - Press More to view additional information about the transformation.
Undo - Press Undo to reverse the alignment. 畐 only the last transformation can be undone.

Close - Press Close to accept the transformation.

\section*{Standard}

The Standard transformation is very similar to the Quick transformation. The difference lies in the Design file. In a Standard transformation, the Standard Deviations of each coordinate are considered in the transformation solution. The following Standard Deviation settings are available.

FIXED The coordinate is used in the transformation.
APPROXIMATE The coordinate is used to help initiate the transformation, but is not used in the final transformation.
UNKNOWN The coordinate is used in the transformation.

\section*{Changing Standard Deviation Fields}

\section*{Changing an entire} column - To change the entire column simply click on the Sigma \(X\), Sigma Y or Sigma Z tab at the top of the point listing. The input dialog will appear.

Select the appropriate
\begin{tabular}{|l|l|l|}
\hline\(F\) & \(A\) & \(U\) \\
\hline
\end{tabular} setting and then the \(\stackrel{+}{=}\) key to
 accept the change. The entire column will
change.
\begin{tabular}{|r|c|c|r|}
\hline \multicolumn{4}{|c|}{} \\
\hline\(Z\) & SigmaX & Sigma Y & Sign \\
\hline 6.8332 & FIXED & 0.0003 & 0.0 \\
-0.3352 & FIXED & 0.0003 & 0.0 \\
17.4437 & FIXED & 0.0003 & 0.0 \\
10.0522 & FIXED & 0.0003 & 0.0 \\
0.2433 & FIXED & 0.0003 & 0.0 \\
8.7039 & FIXED & 0.0003 & 0.0 \\
16.5518 & FIXFD & 00003 & 0.
\end{tabular}

The addition and multiplication signs can also be used to add or multiply the values in the column. For example, if you wanted to flip the values in the \(Y\) column, you would type in \(-\frac{1}{2}\) ind and then the \(\stackrel{+}{=}\) key.

Changing selected entries - To change only a selection of entries simply select the entries you wish to change and press the Tab you wish to modify. Enter the
setting and press the \(\stackrel{+}{=}\) key.



The dialog on the right shows how the Sigma \(X\) values of Control2, 4, and 5 have been changed to UNKNOWN.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Point Label & \(\times\) & Y & Z & Sigma X & Sigma \(Y\) & Sigm. \\
\hline ¢ CONTROL1 & 9.0569 & -27.7619 & 6.8332 & FIXED & 0.0003 & 0.00 \\
\hline \&CONTROL2 & 11.6895 & -32.9236 & -0.3352 & UNKNOWN & 0.0003 & 0.00 \\
\hline ¢ CONTROL3 & 6.5023 & -18.7816 & 17.4437 & FIXED & 0.0003 & 0.00 \\
\hline \& CONTROL4 & 7.9125 & -24.8670 & 10.0522 & UNKNOWN & 0.0003 & 0.00 \\
\hline \& CONTROL5 & 11.2600 & -32.2322 & 0.2433 & UNKNOWN & 0.0003 & 0.00 \\
\hline \& CONTROL6 & 8.2248 & -25.8253 & 8.7039 & FIXED & 0.0003 & 0.00 \\
\hline ¢ CONTROL7 & 6.4823 & -19.2330 & 16.5518 & FIXED & 0.0003 & 0.00 \\
\hline ¢ CONTBOL: & 156186 & . 328771 & 21.4953 & FIXED & 00005 & 0 O \\
\hline
\end{tabular}

Changing single entries - To change a single entry, simply double click in the field you wish to

\begin{tabular}{|llll|}
\hline 1.3352 & UNKNOW/N & 0.0003 & 0.0002 \\
.4437 & ETXED & 0.0003 & 0.0002 \\
1.0522 & UNKNOW/N & 0.0003 & 0.0002 \\
.2433 & UNKNOWN & 0.0003 & 0.0002 \\
\hline
\end{tabular} move to the next field.

The data in the Design is protected and cannot be changed. If changes are necessary, make the change in a 3D file and re-import the data into the Design area.

File.
The File alignment allows you to perform a transformation using a transformation file that is in a compatible third party package's format. Currently, transformation files from CATS, HOLOS, and GSI are supported.

Selecting the File option will display the following dialog. Browse to select the file that contains the pre-defined values. Press OK to implement the transformation.



\section*{Manual}

The Manual alignment allows you to manually shift, rotate or scale a 3D file into a new position.

Select the 3D file that needs to be manually aligned and select the Manual option from the right-click Alignment menu. The following dialog will be displayed. You can shift the data in each of the three coordinate axes; you can rotate around each of
 the three axes, and you can change the scale.

To shift the data in X, Y or Z, type the shift values in the boxes and press the Begin button. The value in the boxes will be added to every point in the file. To rotate the data around the \(X, Y\), or Z-axis, enter the rotation value in the appropriate box, and press the Begin button. You can only rotate around one axis at a time. A positive value rotates counter-clockwise around the axis as viewed down the positive axis.

To scale the data, enter a value in the scale box and press Begin. Every point coordinate will be multiplied by the scale value.

The Undo button will only undo the most recent alignment.

\section*{Alignment Setup}

Setup - Modify the default alignment settings. By default the scale in the Quick and Standard are allowed to adjust. By default the Automatic Rejection is also enabled. If the Automatic Rejection is disabled, then the Rejection Limit can be set manually.

The Convergence Limit and Maximum Iterations can also be set.


Zooin in

\section*{Basic Measurement Functions}

\section*{Introduction}

V-STARS can perform several different types of basic measurement and point creation functions. Functions that are more comprehensive are available in the optional Solids and V-SURF modules. The options can be reached by right clicking in the graphical view.

Many of the SOLIDS objects have a Create Template Object check box. This check box is used to create Construction object. Refer to Construction Objects for more information.
\begin{tabular}{|ll|}
\hline Solids & \\
\hline Alignment & \\
AutoMatch & \\
Average & \\
Distance & \\
Vector & \\
Scale & \\
\hline Select & \\
Import & \\
Update & \\
\hline Delete & \\
\hline Save Image \\
View Setup & \\
\hline
\end{tabular}

\section*{Functions}

\section*{Average}

Create the average of a number of different points. Select the points and then select the Average command. Enter a name in the Label field and press OK to create the point. The Average command can also be reached by using the key in the graphical view or \(\sim\) in the text view.



\section*{Distance}

Compute the distance between two points. If two points are selected the distance will be computed immediately. If not, a point dialog appears and the two points must be selected. The Distance command can also be reached by using the

key.


Basic Measurement Functions

\section*{Vector}

To create a vector point, select the two points that define the vector and select
Vector from the right click menu or press the
 key. The Vector Point dialog is displayed. Enter an offset and a new point label and press OK to add the point to the 3D file. To create a point in the opposite
 direction enter a negative number in the offset field.
Press the Flip button to flip the first and second points.


\section*{SOLIDS}

SOLIDS is sold as a separate add-on to V-STARS. Please contact GSI for more information.

\section*{Introduction}

SOLIDS is V-STARS' built-in graphical analysis module. Using SOLIDS, you can create Planes, Lines, Circles, Curves and Spheres by fitting point data. In addition, measurements between these entities can be calculated. For instance, Plane-toPlane measurements can be made to determine the angle between the planes. Finally, intersecting these entities can generate new entities. For example, the line of intersection between two planes can be created. The SOLIDS menu can be reached by right clicking in the graphical window or on the 3D node or a 3D file.
\begin{tabular}{|c|c|}
\hline Solids & Plane \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Alignment \\
Autaflyatch
\end{tabular}} & Line \\
\hline & Circle \\
\hline Average & Sphere \\
\hline Distance & Curve \\
\hline Vector & Measure \\
\hline Scale & Project \\
\hline \multirow[t]{2}{*}{Select Import Update} & Flip \\
\hline & Offset \\
\hline Update & Setup \\
\hline Delete & \\
\hline Save Image & \\
\hline View Setup & \\
\hline
\end{tabular}

Many of the SOLIDS objects have a Create Template Object check box. This check box is used to create Construction object. Refer to Construction Objects for more information.


Search

\section*{Creating Objects}

\section*{Planes}

Select the data file, which contains the points to fit. Select the points that are to be
included and select Plane from the right click menu. The Plane command
 reached using the \(\bigoplus_{\square}^{\mathbb{P}}\) key

The Plane Parameters dialog appears. This dialog is used to give a name to the plane. Also shown in this dialog are the residuals and the RMS of the plane fit. If there are rejected points, they will be displayed at the top of the list.

Press OK to accept and add this plane to the 3D file

Plane Parameters
Name: NewPlane
A: -0.000
B: -0.000
C: 1.000
D: - 0.302

Final RMS: \(\quad 0.185\)
Points Accepted: 39
Points Rejected: 0
\(\lceil\) Create Template
\begin{tabular}{|l|c|c|}
\hline Label & Residuals & \\
\hline \$ 1039 & -0.097 & \\
\$ 1040 & -0.416 & \\
\$ 1041 & -0.304 & \\
\& 1042 & -0.233 & \\
& 0 K & \\
& & Cancel \\
\hline
\end{tabular}


Contents



Click on the "Planes" folder in the 3D file to view the plane that has been created. A list of the planes in this 3D file is shown below.


Double click on a plane in the list to display more information.


If points are obscured by the plane turn on the wireframe view of the data by pressing the \(\stackrel{+}{=}\) key.


Search

\section*{Lines}

To illustrate a different way of creating a SOLIDS object select the Line command from the right click menu without selecting any points. A list of all the points is displayed. The Line command can also be reached using the \({ }^{\square}\) key.


Select the desired points and press OK. The Line Parameters dialog appears. This dialog is used to give a name to the line. Also shown in this dialog are the residuals and the RMS of the line fit. If there are rejected points, they will be displayed at the top of the list.

Press OK to accept and add this line to the 3D file.

Just as with planes, the lines are now displayed on the tree.



\section*{Circles}

This time we will create the circle by selecting points from the points list view. Select the Points node on the tree. The list of points is displayed to the right. Select the points and select Circle command from the right click menu.

The short-cut keys can be accessed while in the points view by also pressing the \(\stackrel{\text { rshitr }}{ }\) key.
\begin{tabular}{|c|}
\hline  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Point Label & x & Y & Z \\
\hline \$ AUTOBAR2 & 608.587 & 700.641 & 6.369 \\
\hline \& Autobar3 & 557.967 & 637.011 & 6.526 \\
\hline ¢ AUtobara & 506.932 & 700.298 & 6.857 \\
\hline \& autobars & 557.620 & 757.643 & 19.553 \\
\hline ¢ autobarig & 557.720 & 687.910 & 6.328 \\
\hline \& 1 & 137.542 & 193.312 & -0.211 \\
\hline \& \(\mathrm{C}^{2}\) & 166.379 & 159.643 & -0.491 \\
\hline \& \({ }^{\text {c }}\) & 151.566 & 117.817 & -0.861 \\
\hline \& 6 & 107.876 & 109.607 & -0.901 \\
\hline \& 5 & 79.453 & 143.289 & -0.427 \\
\hline \$ 66 & 93.964 & 185.233 & -0.284 \\
\hline Ae CIRCLE_AVERAGE & 122.797 & 151.483 & -0.529 \\
\hline ¢ CODF1 & 8465 & 158.495 & . 0269 \\
\hline
\end{tabular}


The Circle Parameters dialog appears. This dialog is used to give a name to the circle. Also shown in this dialog are the in plane residuals and RMS of the circle fit. If there are rejected points, they will be displayed at the top of the list.


The circle residual has two components. The in plane and out plane residual. The in plane residual is the component of the circle residual that is parallel to the plane of the circle. The out plane circle residual is the component of the circle residual that is perpendicular to the plane of the circle. Below is a diagram of the in plane and out plane circle residuals.



Press the Add button to add the center point of the circle to the 3D file.

Enter a point label in the Name field and press OK to add the point to the 3D file. Press OK to accept and add this circle to the 3D file
\begin{tabular}{ll}
\multicolumn{1}{l|}{ Add Point } & \multicolumn{1}{l|}{} \\
\hline \multicolumn{1}{l}{ Name: \(\sqrt{\text { ClRCLE_CENTER }}\)} \\
\(X: \sqrt{122.837}\) & SX: \(\sqrt{\text { FIXED }}\) \\
\(Y: \sqrt{151.491}\) & SY: \(\sqrt{\text { FIXED }}\) \\
\(Z: \sqrt{-0.529}\) & SZ: \(\sqrt{\text { FIXED }}\) \\
\hline \(0 K\) & Cancel \\
\hline
\end{tabular}


Just as with planes and lines the circles are now displayed on the tree.
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
- 30 Final Frame \\
(7) 30 Design \\
\(\dagger\) In Construction \\
Points \\
AutoBars \\
Planes
Lines
Circles
Measurements
\end{tabular} \\
\hline
\end{tabular}

\section*{Spheres}

A Sphere is created in a similar manner to that of the circle. Select the points that fall on the sphere surface, and select the Sphere command.

\section*{Curves}

A Curve is created in a similar manner to that of the other geometric features described. The only important exception is that the points MUST be selected in the order they appear in the curve. This can be achieved by sequentially manually selecting the points or by naming the points in order.

Once the Curve command is selected, you will be presented with a dialog box. This will give you to opportunity to name the curve, reorder the points and adjust the number of control points and degree of the curve.

The control points control the shape of the curve. The number of control points must be less than or equal to the number of input points. Generally, you will not get a very good fit if the number of control points is set too high. A large number of control points will over-approximate the solution and force the best-fit curve to pass through each of the input points. The degree of the curve must be less than the number of control points.


Zoom in

Above is an example of a curve (red curve) that was fitted with too many control points. In this example, there are 21 points. The smooth curve (green curve) was created using four control points and a degree of three. The undulating curve was created using 21 control points and a degree of three.

\section*{Measurements}

\section*{Plane to Plane}

In order to perform a plane-to-plane measurement you need to select two planes. Select both planes by holding down the rshitt key and clicking on each wireframe.



Select Measure from the right click SOLIDS menu. The Plane-to-Plane Measurement dialog is displayed.


This dialog is used to name the measurement and to optionally add the line of intersection to the 3D file. If the planes were parallel, their parallel distance would be displayed. If the planes intersect, the angle of intersection is displayed and the line of intersection can be added by pressing Add Line.

Press OK to add the measurement to the 3D file. All measurements preformed with SOLIDS are stored the Measurements folder of a 3D file shown below. Select Plane to Plane under the Measurements folder to list of all the Plane-toPlane measurements in this 3D file.

Double click on a measurement in the list to display more information.
\begin{tabular}{|l|l|l|}
\hline Plane to Plane & Angle & Distance \\
\hline A S NewPlane to NewPlane1 & \(89.887 \mathrm{~N} / \mathrm{A}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline  \\
\hline
\end{tabular}


Fit View
Search
Contents

\section*{Line to Line}

Two lines are needed in order to perform a line-to-line measurement.
Select both lines by holding down the \(\xrightarrow{\sim}\) sey and clicking on each line.


Zoom
in


Search

Select Measure from the

Press OK to add this measurement to the 3D file. Like the Plane to

\begin{tabular}{l|l} 
Angle of Intersection: & 89.947 \\
degrees \\
Distance: & 0.137 \\
millimeters
\end{tabular}
Г Create Template

Plane measurements, Line-to-Line measurements are stored under the Measurements folder in a folder called Line to Line.

\section*{Plane to Line}

To perform a plane to line measurement, select a plane and line.



Select Measure from the right click SOLIDS menu. The Plane to Line Measurement dialog is displayed.

This dialog is used to name the measurement and to optionally add the point of intersection between the plane and line (if the two entities are not parallel) to the 3D file.

Press OK to add this measurement to the 3D file. Like Plane-to-Plane and Line-to-Line measurements, Plane-to-Line measurements are stored
 under the Measurements folder in a folder called Plane-to-Line. Press the Add Point command to add the intersection point.

\section*{Point to Object}

To perform a point to object measurement, select the points and the plane. Select Measure from the right click menu. The Point to Object Measurement dialog is displayed which shows the point to object distances.



Press OK to add these measurements to the 3D file.
To view the results select the relevant plane in the Point to Plane measurements section.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Point Label & Projected \(X\) | & ProjectedY| & Projected Z| & Dellax & Delta Y & DeltaZ & Total \\
\hline \$1058 & 151.461 & 741.878 & -0.017 & -0.000 & -0.000 & 0.052 & 0.052 \\
\hline \$1059 & 101.207 & 742.318 & -0.029 & -0.000 & -0.000 & 0.034 & 0.034 \\
\hline \$1060 & 50.227 & 742.018 & -0.041 & 0.000 & 0.000 & -0.017 & -0.017 \\
\hline \$1061 & -1.247 & 743.620 & -0.053 & -0.000 & -0.000 & 0.053 & 0.053 \\
\hline \$1062 & -0.507 & 695.894 & -0.068 & 0.000 & 0.000 & -0.294 & -0.294 \\
\hline ¢1063 & 0.153 & 648.640 & -0.084 & 0.000 & 0.000 & -0.276 & -0.276 \\
\hline ¢1064 & -0.375 & 598.616 & -0.101 & 0.000 & 0.000 & -0.256 & -0.256 \\
\hline \$1065 & 0.297 & 551.561 & -0.117 & 0.000 & 0.000 & -0.207 & -0.207 \\
\hline ¢1066 & 0.826 & 501.696 & -0.133 & 0.000 & 0.000 & -0.215 & -0.215 \\
\hline \&1067 & 0.850 & 457.130 & -0.148 & 0.000 & 0.000 & -0.163 & -0.163 \\
\hline \$1068 & 0.731 & 412.127 & -0.164 & 0.000 & 0.000 & -0.123 & -0.123 \\
\hline \$1069 & 1.440 & 369.004 & -0.178 & 0.000 & 0.000 & -0.111 & -0.111 \\
\hline \&1070 & 0.591 & 322.721 & -0.194 & 0.000 & 0.000 & -0.061 & -0.061 \\
\hline \& 1071 & 1.458 & 279.005 & -0.208 & 0.000 & 0.000 & -0.045 & -0.045 \\
\hline \$1072 & 1.132 & 231.906 & -0.224 & 0.000 & 0.000 & -0.042 & -0.042 \\
\hline \& 1073 & -0.571 & 184.575 & -0.240 & -0.000 & -0.000 & 0.013 & 0.013 \\
\hline ¢1074 & 0.492 & 138.272 & -0.256 & -0.000 & -0.000 & 0.031 & 0.031 \\
\hline \$1075 & 0.068 & 95.945 & -0.270 & -0.000 & -0.000 & 0.088 & 0.088 \\
\hline \$1076 & -0.200 & 47.552 & -0.286 & -0.000 & -0.000 & 0.080 & 0.080 \\
\hline \& 1100 & -1.097 & 372.479 & -0.177 & 0.171 & 0.245 & . 730.214 & . 730.214 \\
\hline \&1101 & -0.675 & 416.357 & -0.162 & 0.171 & 0.245 & . 730.252 & . 730.252 \\
\hline \$1102 & -1.519 & 328.600 & -0.192 & 0.171 & 0.245 & . 730.177 & . 730.177 \\
\hline \$1103 & 1124.644 & 418.575 & 0.102 & 0.171 & 0.245 & . 730.682 & . 730.682 \\
\hline \&1104 & 1124.253 & 325.925 & 0.071 & 0.171 & 0.245 & .730.686 & . 730.686 \\
\hline \& 1105 & 124.448 & 372.250 & 0.086 & 0.171 & 0.245 & .730.684 & .730.684 \\
\hline
\end{tabular}


A listing of all the point measurements for this object are displayed. The blue points (10581076) are residuals of
the points used to create the object and the green points (1100-1105) are measurements made after the creation of the object.

When doing a plane, line, circle or sphere fit it is possible for some points to be rejected (their residual is larger than the rejection limit). In this case, V-STARS will add the rejected points to the object as measurements.

\section*{Plane Positive Direction}

Often before you begin measuring to a plane you will want to define the positive direction. The positive direction allows you to determine which side of the plane you are measuring. The plane shown below has the positive direction pointing up (the line having the color of the plane indicates the positive direction). The measurements are colored to show positive and negative distances. In this case, the color tolerances were set up so red vectors are measurements whose points are "below" the plane (negative total distance) and blue vectors are measurements whose points are "above" the plane (positive total distance). If we were to flip the positive direction of the plane the color of the vectors would reverse.


To flip the positive direction of a plane select the plane you want to flip and select the Flip command from the SOLIDS menu or press the key.

The positive direction is also used to tell V-STARS in which direction to compensate when a point has an offset. V-STARS always compensates in the opposite direction of the positive direction.


Below we see two examples of the positive direction being used to determine which direction to compensate.


\section*{Offsetting Planes}

To offset a plane, select the plane you wish to offset and then the Offset command from the SOLIDS menu. The Offset dialog allows you to specify the distance you wish to offset the plane by. The units of the project are also the units of the offset. The offset will occur in the direction of the normal. Type in a negative value to offset the plane
 in the opposite direction. The new plane will be named according to the label modification option selected. Check the Delete
Components box to delete the original plane.


\section*{Point to Object Projection}

To perform a point to object projection select the plane and the relevant points.


Select Project from the right click SOLIDS menu.

This dialog allows you to specify the prefix or postfix for the new points. In this case, the new points will have the same label as the old ones but prefixed with "PROJ_". Press OK to add the new points to the 3D file.


Select the points folder under the relevant 3D file. A listing of the measured points in the 3D file will be displayed. Using the vertical scroll bar, scroll to the newly projected points. Notice that these new points have a different icon \({ }^{\text {或 }}\) from the other points. This icon is used to mark these points as constructed points and not measured points. Constructed

points are created from other points and objects, while measured points are created by the Bundle.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Point Label & x & Y/ & z & Sigmax & Sigma \(Y\) & Sigmaz & Offset \\
\hline \$ 66 & 93.964 & 185.233 & -0.284 & 0.008 & 0.008 & 0.011 & 0.000 \\
\hline Pe CIRCLE_AVERAGE & 122.797 & 151.483 & -0.529 & 0.003 & 0.003 & 0.004 & 0.000 \\
\hline Ae CIRCLE_CENTER & 122.837 & 151.491 & -0.529 & FIXED & FIXED & FIXED & 0.000 \\
\hline \& CODE1 & 8.466 & 158.495 & -0.269 & 0.007 & 0.008 & 0.011 & 0.000 \\
\hline ¢ CODE2 & 8.038 & 620.050 & -0.377 & 0.007 & 0.007 & 0.011 & 0.000 \\
\hline \& CODE3 & 1118.771 & 673.670 & -0.063 & 0.008 & 0.008 & 0.013 & 0.000 \\
\hline \& CODE4 & 1120.038 & 72.427 & -0.283 & 0.008 & 0.010 & 0.016 & 0.000 \\
\hline \& CODE6 & 963.997 & 188.556 & -31.873 & 0.008 & 0.008 & 0.011 & 0.000 \\
\hline \$ CODE7 & 180.891 & 86.572 & - 32.051 & 0.009 & 0.008 & 0.012 & 0.000 \\
\hline AePROJ_SHINY1 & 910.607 & 186.278 & -0.026 & FIXED & FIXED & FIXED & 0.000 \\
\hline RePROJ_SHINY2 & 910.272 & 128.373 & -0.046 & FIXED & FIXED & FIXED & 0.000 \\
\hline RePROJ_SHINY3 & 910.027 & 86.280 & -0.060 & FIXED & FIXED & FIXED & 0.000 \\
\hline AePROJ_WHITE0 & 214.364 & 239.200 & -0.172 & FIXED & FIXED & FIXED & 0.000 \\
\hline Pe PROJ_WHITE1 & 214.835 & 191.308 & -0.188 & FIXED & FIXED & FIXED & 0.000 \\
\hline PePROJ_WHITE2 & 215.348 & 139.207 & -0.205 & FIXED & FIXED & FIXED & 0.000 \\
\hline \$ SCALE1 & 13.834 & 781.931 & -14.227 & 0.008 & 0.008 & 0.011 & 0.000 \\
\hline \$ SCALE2 & 1131.413 & 782.548 & -12.478 & 0.008 & 0.008 & 0.011 & 0.000 \\
\hline \$ SCALE3 & 193.255 & 52.014 & -19.158 & 0.008 & 0.008 & 0.011 & 0.000 \\
\hline \$ SCALE 4 & 929.884 & 52.132 & -18.054 & 0.008 & 0.008 & 0.011 & 0.000 \\
\hline \& SHINY1 & 910.615 & 186.288 & -31.949 & 0.008 & 0.008 & 0.011 & 0.000 \\
\hline \$ SHINY2 & 910.279 & 128.383 & - 32.101 & 0.008 & 0.008 & 0.011 & 0.000 \\
\hline - SHINY3 & 910.035 & 86.291 & - 32.212 & 0.016 & 0.015 & 0.021 & 0.000 \\
\hline Ae WHITEO & 214.371 & 239.211 & -31.378 & 0.018 & 0.017 & 0.024 & 0.000 \\
\hline \$ WHITE1 & 214.843 & 191.318 & -31.652 & 0.008 & 0.008 & 0.011 & 0.000 \\
\hline ¢ WHITE2 & 215.355 & 139.217 & -31.950 & 0.008 & 0.008 & 0.011 & 0.000 \\
\hline
\end{tabular}


\section*{Point to Curve}

Point to curve measurements can be made as if the curve were just like any other V-STARS Solids object.

Another type of measurement may also be made using curves. A curvilinear distance is the distance between two points along a curve. To create a curvilinear distance measurement, first select the two points in the graphical view (these points must be able to project to the curve) and then select the curve.
Press \(\xlongequal{\text { crit }} \stackrel{\text { s. }}{\sim}\). A dialog box will be displayed showing the result.


A curvilinear distance measurement may also be made by selecting two curves that intersect a third. First, select the two intersecting curves. Then select the curve along whose distance you wish to measure. Press

be prompted with a similar dialog box, but this time you will
 have to fill in the names of the two intersecting points. This will compute the curve distance between the two intersection points.


\section*{Surfaces}

V-SURF is sold as a separate add-on to V-STARS. Please contact GSI for more information.

\section*{Introduction}

V-SURF is V-STARS' built-in surface analysis module. Using V-SURF, you can measure point to surface deviations while in S-Mode or M-Mode.

\section*{Importing}

Since V-STARS lacks the ability to create surfaces at this time, you must import them from an external CAD package. To import a surface to V-STARS you must first export the surface to an IGES file using your CAD package. V-STARS can only interpret NURBS Surfaces (IGES entity type 128), be sure you CAD package is set to export surfaces as NURBS. Refer to your CAD documentation for more information. From within V-STARS you may now import this IGES file as you would any 3D file.



\section*{Terminology}

For the purposes of display, all surfaces within V-STARS are displayed using a series of lines, called strokes. Each stroke is divided into a series of points called resolutions.

The three surfaces below are displayed using a grid of \(4 \times 4\) strokes. Each stroke has a resolution of 25 , meaning there are 24 individual line segments per stroke.

Below is a diagram showing two stokes. The first has a resolution of 15 and the second a resolution of eight. Both will produce the same result, but one is a more realistic visualization of the surface.


As the number of strokes and their resolution is increased, the displayed surface will look more realistic. However, this also requires more memory and greater processor power. Remember that the stroke and resolution only determine how the surface is displayed and not how the surface is defined.

Previous versions of V-STARS used the strokes to find approximate coordinates for surface measurement. As of version 4.1 SR2, this is no longer the case. V-STARS will find the measurement approximation automatically without any intervention.

While in the graphical view you may increase or decrease the stroke of a surface by holding the increase or decrease the resolution by holding the respectively. If no surfaces are selected then the change affects all surfaces; otherwise, only the selected surfaces will be affected.

\section*{Commands}

If you have a V-SURF Surfaces license but do not have a SOLIDS license the following right click menu will be available to you in the graphical view and the points list.

If you do have a SOLIDS license as well as a Surfaces license then you can access the surface functions from the SOLIDS sub menu.

The three commands available to use with surfaces are Measure, Project and Flip. The Measure command will measure the selected points to the selected surfaces. The Project command will create new points by projecting existing ones onto a surface. The Flip command will change the positive direction of a surface.


\section*{Measurement}

The measurement functions for surfaces work the same way that the SOLIDS functions work. As surfaces have boundaries, (unlike planes and lines) it is sometimes impossible for a point to measure to a surface.


Contents


Below we see some selected points and a selected surface.


After selecting the measure command, we are presented with the Surface Measurement dialog.

This dialog allows you to specify the way V-STARS will make the measurement. This particular dialog indicates that V-STARS will measure the selected points
 to the closest selected surface. If we had selected more than


Zoom out
one surface and a particular point could be measured to multiple surfaces only the closest surface would be measured. It is also shown that the surface tolerance is enabled. This will only allow points that are within the tolerance ( 0.1 inches in this example) to be measured. You will also notice that there is a Create Template check box. If this box is checked then V-STARS will also create a measurement template object. Refer to Construction Objects section for more information.


Here we see that the selected points are now measured to the surface. The vectors shown are multiplied by a factor of 1000 . If one of the selected points could have been measured to more than one surface and the Closet radio button was selected then we would have been presented with the following dialog.


The Surface ambiguity dialog lets you know that the point can be measured to more than one surface (within the specified tolerance, if enabled). It shows to which surfaces the point can be measured, the unit
vector of the surface normal at the measurement point and the total distance from the surface. The surfaces are sorted by distance with the smallest listed first and selected. If you press OK, the point will measure to the selected surface. If you press OK to All then all future ambiguities will be resolved by automatically selecting the surface with the smallest distance. If you press Skip then this point is skipped and no measurement is made. If you press Cancel, the measurement process is stopped.

\section*{Projection}

Point to surface projection works jus \(\dagger\) like point to surface measurement. Except instead of a measurement being created a new point is created. After selecting the points and the surface to which they will project, we select the Project command and are shown this dialog.


This dialog indicates the new points will have the same label as the existing points but be prefixed with "PROJ_". If the Create Template check box were checked then V-STARS would also create measurement construction templates.

\section*{Positive Direction}

Often before you begin measuring to a surface, you will want to define the positive direction. The positive direction allows you to determine which side of the surface you are measuring. The surface shown below has the positive direction pointing up (the lines having the color of the surface indicate the positive direction). The measurements are colored to show positive and negative distances. In this case, the color tolerances were set up so red vectors are measurements whose points are "below" the surface (negative total distance) and blue vectors are measurements whose points are "above" the surface (positive total distance). If we were to flip the positive direction of the surface the color of the vectors would reverse.



To flip the positive direction of a surface select the surface you want to flip and select the Flip command or press the \({ }^{\text {F }}\) key.

The positive direction is also used to tell V-STARS which direction to compensate when a point has an offset. V-STARS always compensates in the opposite direction of the positive direction.


\section*{Surfaces in the Project}

Like the SOLIDS objects, surfaces are listed under their own node on the project tree.

The project tree shown above shows that Bundlel contains surfaces in the Design area and Surl contains surfaces in the Measured area. The advantage of placing surfaces in the design area is that they are not affected by transformations and are copied to the new data file after a bundle. Placing surfaces in the measured area of a 3D file allows them to be affected by the transformation when you do an axis, quick or standard alignment.

When you select the Surfaces node, a list of the surfaces contained in the 3D file is displayed
 below.
\begin{tabular}{|l|c|c|c|c|}
\hline Name & Stroke & Res & Active & Trimmed \\
\hline ヵBS SURF & \(3 \times 3\) & \(25 \times 25\) & Yes & No \\
®BS SURF_2 & \(3 \times 3\) & \(25 \times 25\) & Yes & No \\
®BS SURF_3 & \(3 \times 3\) & \(25 \times 25\) & Yes & No \\
\hline
\end{tabular}

Double click on a surface in the list to display more information.

This dialog allows you to manually enter a stroke and resolution. You can also activate and deactivate the surface as well as change the color.



\section*{Construction Objects}

\section*{Introduction}

Construction objects allow constructed point and object entities, such as vector points, planes, lines, etc. to be automatically computed at the end of each bundle. For example, say that point 1130 is a vector point. Point 1130 is defined to be 100 mm from a targeted-point 130 in the direction of another targeted-point 131. Points 130 and 131 are calculated as a result of the bundle. Point 1130, however, is constructed from 130 and 131. By creating a construction object, you can have V-STARS automatically calculate the point 1130 each time a bundle is run. Similar construction objects are available for planes, lines, circles, sphere and all the objects and measurement types supported by V-STARS and SOLIDS.

To manually create/update the construction objects after a bundle, right click on the 3D data file and select Update | Construction Objects from the pop up menu, or select right click in the graphical view and select \(\dagger\) Update | Construction Objects from the pop up menu.


V-STARS will overwrite any existing objects with the newly calculated ones (one exception is with measured points, if a point already exists that was not created by a construction object then that point will not be overwritten).

Construction objects appear as a folder in a 3D file. Currently, V-STARS supports vector point, average point, plane, line, circle, spheres and measurement construction operations.


Zoof in

\section*{Importing}

Like design data, construction objects may be imported from other 3D data files. To import construction data into a 3D file, right click on the file and select Import | Construction Data. You will be shown a file open dialog. Select the 3D data file that contains the construction data you wish to import and select OK. A summary of the objects imported will be displayed.

\section*{Construction Objects.}

\section*{Vector Points}

There are two ways to create a vector point construction object. The first way is create the vector point as you normally would, but make sure the Create Template check box is checked before you press OK. The vector point as well as the vector point construction object is created and added
 to the data file.

The second way is to create just to construction object. Right click on the 3D file you wish to contain the object and select New | Construction Object.
Select Vector Point from the list and you will be presented with this dialog.




Enter a vector distance in the offset field, a first point label, second point label, new point label. Press OK to save the vector construction object.

On subsequent bundle runs, V-STARS automatically recalculates the vector point.
\begin{tabular}{|c|}
\hline  \\
\hline
\end{tabular}

To view and edit existing vector construction objects select Vector Points from the project tree under the Construction branch.

A list of the all the vector construction objects contained in this 3D file is displayed.
\begin{tabular}{|l|l|l|l|}
\hline Label & Point Label 1 & Point Label 2 & Distance \\
\hline \& 1000 & 1002 & 1001 & 100.000 \\
\& SHINY3 & SHINY1 & SHINY2 & 100.000 \\
\& WHITE0 & WHITE2 & WHITE1 & 100.000 \\
\hline
\end{tabular}

You can double click on an existing vector object to edit it. To create a new vector object right click in the list and select Add. To delete an existing vector object right click on the object and select Delete.

\section*{Average Points}

There are two ways to create an average point construction object. The first way is create the average point as you normally would, but make sure the Create Template check box is checked before you press OK. The average point as well as the average point construction object is created and added to the data file.

The second way is to create it is just like the vector construction object. Right click on the 3D file you wish to contain the object and select New Construction Object from the New menu. Select Average Point from the list and you will be presented with this dialog.



Enter a label for the average point in the name field. To add a new point to the average point construction object, press the Add button and type the point label into the edit field (wildcard characters may be used). To remove a point, select it and press the Del button. Press OK to save the average point construction object. Wild cards can also be used. The first dialog will create a point called Average. It will be the average of the points 1001-1004. The second point will also create a point called Average. It will be the average of all the points in the 3D file that have a label that starts with the number 1 and has another three characters.

On subsequent bundle runs, V-STARS automatically recalculates the average point. In order for the average point to be created, ALL of the non-wildcard point labels must exist in the measured 3D data.

To view and edit existing average construction
 objects select Average Points from the project tree under the Construction branch.

A list of the all the average construction objects contained in this 3D file is displayed.
\begin{tabular}{|l|c|r|}
\hline Point Label & Labels & WildCards \\
\hline \$ CIRCLE_AVERAGE & 6 & 0 \\
\$ 1100 & 2 & 0 \\
\$ 1105 & 2 & 0 \\
\$ 1106 & 2 & 0 \\
\hline
\end{tabular}

You can double click on an existing average object to edit it. To create a new average object right click in the list and select Add. To delete an existing average object right click on the object and select Delete.


\section*{SOLIDS Objects}

To use any of the SOLIDS construction objects you must have a SOLIDS license.

All of the V-STARS SOLIDS objects can be created using construction templates. As with average and vector points there are two ways to create a SOLIDS construction object. The first way is to create the object as you normally would, but make sure the Create Template check box is checked before you press OK. The SOLIDS object as well as the construction object is added to the data file.

The second way is to just create the construction object. Right click on the 3D file you wish to contain the object and select New | Construction Object. Select Plane, Line, Circle or Sphere from the list and you will be presented with a dialog.


Enter a label for the construction object in the name field. To add a new point to the construction object, press the Add button and type the point label into the edit field (wildcard characters may be used). To remove a point, select it and press the Del button. Enter a rejection limit to use (-1 means no rejection limit) or check the Automatic Rejection check box and enter a sigma value. If the construction object is a circle or sphere, you can enter a center point label into the result field. If you do not enter the result point label then the center point will not be created. Press OK to save the construction object.

The first dialog shows a circle construction object. It will create a circle called "Circlel" using points C1, C2, C3, C4 and C5. It will use a three-
sigma automatic rejection limit. The second dialog will also create a circle called "Circle 1". In this example, any point that starts with "C" will be used to create the circle. It will use a three-sigma automatic rejection limit and create a center point called CENTER. On subsequent bundle runs, V-STARS automatically recalculates the object. In order for the object to be created, ALL of the non-wildcard point labels must exist in the measured 3D data.

To view and edit existing construction objects
 select Plane, Line, Circle or Sphere from the project tree under the Construction branch.

A list of the all the circle construction objects contained in this 3D file is displayed.
\begin{tabular}{|l|c|c|c|}
\hline Name & Labels & Wildcards & Center I \\
\hline O Circle1 & 5 & 0 & \(\mathrm{C0}\) \\
\hline O & Circle2 & 5 & 0 \\
\(\mathrm{~N} / \mathrm{A}\) \\
O & Circle3 & 0 & 1 \\
\hline
\end{tabular}

The center column lists the name of the center point to construct and is displayed only if you are viewing circle or sphere construction objects. If no center point is to be created, N/A is displayed. You can double click on an existing construction object to edit it. To create a new construction object right click in the list and select Add. To delete an existing construction object right click on the object and select Delete.

\section*{Measurement Objects}

To use any of the measurement objects that use SOLIDS objects or Surfaces you must have a SOLIDS and/or Surface license.

Any object measurement that can be made using V-STARS can be created using construction templates. As with other construction objects there are two ways to create a measurement construction object. The first way is to create the measurement as you normally would, but make sure the Create Template check box is checked before you press OK. The measurement as well as the measurement construction object is added to the data file.

The second way is to create just to measurement construction object. Right click on the 3D file you wish to contain the object and select New | Construction Object. Select Measurement from the list and you will be presented with this dialog.


Contents


Enter a label for the measurement construction object in the name field. Enter the name for the first object and select its type. Enter the name for the second object and select its type. If either of the objects are design objects then check the Design check box. If the type of measurement defined by the two objects can produce a result object, (a plane to line measurement can produce a point of intersection) enter the result name in the result field. If you do not enter the result name then the result object will not be created.

The first dialog shows a point to plane measurement construction object. It will create a point-to-plane measurement called Basel using point Tl and plane Base.

The dialog below shows a plane-to-plane measurement construction object. It will create a plane-to-plane measurement called FrontBase using plane Front and plane Base. It will also create the line of intersection called FrontBase.


The dialog below shows a point to plane projection construction object (notice that the Projection check box is checked). It will create a new point called Tl _PROJ by projecting point Tl to the plane Front.



On subsequent bundle runs, V-STARS automatically recalculates these objects. The objects can also be created using the Update Command under the Graphical View right click menu.

To view and edit existing construction objects
 select Measurements from the project tree under the Construction branch.

A list of the all the measurement construction objects contained in this 3D file is displayed.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name & Object1 & Type1 & Object2 & Type2 & Result & Project \\
\hline \ BASE_L1002 PROJ_BASE_L1002 & BASE_L1002 & Point & PROJ_BASE_L1002 & Point & \(N / A\) & No \\
\hline \ BASE_L103 PROJ_BASE_L103 & PROJ_BASE_L103 & Point & BASE_L103 & Point & \(N / A\) & No \\
\hline \% BASE_LA202 & LA202 & Point & Base & Plane & \(N / A\) & Yes \\
\hline \% PROJ_BASE_LA202 & BASE_LA,202 & Point & L100 & Plane & \(N / A\) & Yes \\
\hline \% \(\mathrm{B602}\) & B602 & Point & Line1 & Line & \(N / A\) & No \\
\hline \$ B604 & B604 & Point & Line1 & Line & \(N / A\) & No \\
\hline (O) B201 & B201 & Point & Circle 1 & Circle & \(N / A\) & No \\
\hline (1) B202 & B202 & Point & Circle1 & Circle & \(N / A\) & No \\
\hline - 8803 & B803 & Point & Sphere1 & Sphere & \(N / A\) & No \\
\hline 08804 & B804 & Point & Sphere1 & Sphere & \(N / A\) & No \\
\hline \& 1900 to Base1 & L1900 & Plane & Base1 & Plane & L1900 to Base1 & No \\
\hline - L700 to Base1_1 & L700 & Plane & Base1 & Plane & \(N / A\) & No \\
\hline
\end{tabular}

Shown above are several different types of measurement constructors. The Name column contains the name of the measurement. The Object columns contain the names of the involved objects and the Type column contains the type of objects involved. The Result column contains a measurement result (plane to plane measurement L1900 of Basel creates a line called L1900 to Basel). The Project column indicates if the measurement is a projection. Measurement BASE_LA202 is a point to plane projection. Point LA202 will be projected to plane Base and the newly projected point will be called BASE_LA202. You can double click on an existing construction object to edit it. To create a new construction object right click in the list and select Add. To delete an existing construction object right click on the object and select Delete or press the \(\leftrightarrows\) key.


\section*{Reports}

\section*{Introduction}

V-STARS has the ability to generate an ASCII report of measurements and SOLIDS analysis. The Report and Report Setup commands can be found under the File menu option. Reports provide a way for you to save ASCII text file representations of 3D coordinate data files.

\section*{Setup}

To setup which entities are included in a report select Report Setup from the File menu.




The Report Setup dialog appears.


Use this dialog to select the different entities to be included in the report. In addition, you can select the report header file to use.
fir y
Use the Tab separator if you wish to import the report file directly into Excel.


\section*{Creating Reports}

Select Report from the File menu to generate a report.

The Select Data Set(s) dialog appears

\(\mathrm{V}^{+}\)V-STARS - Demo Frame Repeat
Eile Eroject MMode Command Pict
\begin{tabular}{|c|c|}
\hline New & \(\mathrm{Cr\mid l}+\mathrm{N}\) \\
\hline Qpen... & Crito \\
\hline Open Iemplate Project & \\
\hline Close & \\
\hline Export Data File[s) & , \\
\hline Report.. & \\
\hline Report Setup... & \\
\hline Efint & Ctrit \({ }^{\text {P }}\) \\
\hline Print Preyiew & \\
\hline Print Setup... & \\
\hline 1 Demo Frame Repeat1.pri & \\
\hline \(\underline{2}\) Measured_Wall.pri & \\
\hline 3 Vertical Panel Pictures.pri & \\
\hline Exit & \\
\hline
\end{tabular}

Select one or more 3D files and press OK.
For each selected file, the Save As dialog appears prompting you for a report file name.


Enter a report file name and press the Save button to save the report.

\section*{Template Files}

Report template files stored in the system directory ( \(\mathrm{C}: \backslash\) Gsi \(\backslash\) System) have an RPT extension. These files define a header to be attached to a report generated by V-STARS. Choose the Custom option under the Header section of the Report Setup dialog, and you will be allowed to select one of the RPT files to use.

Report template files are ASCII text files with the standard V-STARS INI type entries. Here is an example RPT file:

[general]
name=GSI Default
[data]
GSI Default Report
\%logo\%
Project: \%project\%
Name: \%name\%
FileName: \%filename\%
FullFileName: \%fullfilename\%
Date: \%date\%
Time: \%time\% 24 Time: \%time \(24 \%\)
\%! this is a comment
\%! another comment
\%end\% the end


\section*{The general section}

The name entry should be set to the name of this report. This is the name, which will appear in the custom report combo box in the Report Setup dialog.

\section*{The data section}

Everything after the line [data] will be echoed out as a header to a report. There are some special keyword-strings you can use which will be substituted for at run time. These include time, date, project name, and other such unknowns. Following is list of keywords:
\begin{tabular}{ll} 
\%! & Comment Line: this whole line is ignored \\
\(\% \%\) & Percent Sign: since the percent sign is used as a key \\
& character, you must use two of them to get a \(\%\) to display.
\end{tabular}
\%end\%
Early End Of File: must be the FIRST text in a line. This key marks and early end of file. All after this keyword are ignored.
\%logo\% V-STARS logo
\%version\%
V-STARS software version number
\%project\% V-STARS project name
\%name\%
The name of the object (i.e. - Bundle)
\%filename\%
The name of file (i.e. - Bundle.3D)
\%fullfilename\% The name full file name including path (i.e. - C: \Bundle.3D)
\%units\% The units the file is in (i.e. - inches, meters, etc...)
\%accuracy\% The accuracy used for sigma values (i.e. - U99, three sigma)
\%date\%
\%time\%
Today's date (i.e. - May 10, 1996)
Current time (i.e. - 2:25:11 PM)
\%time24\%
Current 24 hour/military time (i.e. - 14:25:11)

All keywords are case insensitive


Fit View
Search

\section*{File Menu}


\section*{New Project}


Refer to New Project in the Starting a V-STARS Project section for an explanation of how to start a new project.

\section*{Open Project}


Refer to Open Project in the Starting a V-STARS Project section for an explanation of how to open an existing project.

\section*{Open Template Project}

Refer to Open Template Project in the Starting a V-STARS Project section for more information on Template Projects.


\section*{Close}

The Close command will close the existing V-STARS project. A save of the V-STARS project is carried out automatically upon closing. All the window positions, and settings will be saved in the local GSI32.ini file.

\section*{Save}

The Save command will update the existing V-STARS GSI32.ini file and any other files that have been modified.

\section*{Save Image As}

The Save Image As command is only active when an image is open. It will save/convert an image as a GSI, TIFF, BMP or DIB format file. Select the file that needs to be converted and set the file type by setting the file extension.



\section*{Export Data Files}

The Export Data
Files command will export a V-STARS 3D file into one of a number of third party software file formats. Some of these formats will only be active when a current driver is available. This is due to the particular file format expecting a direction vector for each point. This direction vector is derived from the camera positions.


Depending on whether the export format requires the directional vector or not, one of two dialogs will appear. The first automatically selects the driver and adds the appropriate extension.



Search
Contents

The second allows you to select the file or files they wish to export.


The Export Data Files option also has a Setup dialog. This dialog can be used to modify the manner in which Text and V-SURF data is saved.

The Text export setup is shown in the adjacent image.

The V-SURF export setup is shown in the adjacent image.



Search

\section*{Report}

The Report command will create a report for any of the 3D files in the project. You can customize what they want to report. This is done in the Report Setup. The report is a useful way to summarize almost all of the collection, alignment and analysis carried out in a project. Refer to the Report Section of the manual for more information.

\section*{Report Setup}

The Report Setup command is used to customize the format of the report. The dialog is shown below. You just have to simply modify the form so that it meets your output requirements. Refer to the Report Section of the manual for more information.



\section*{Print}

The Print
command can be used to print image frames or the 3D graphical view. Select the item that needs to be printed and set the graphic to the view that is to be printed. Select the Print command. Select the printer and press the OK command.


1
To reverse the background on the print, open the View Setup dialog and select the Display Colors tab. Check the Invert Pt/Bkg on Print.

\section*{Print Preview}

The Print Preview command is used to preview the data that will be printed.



\section*{Print Setup}

The Print Setup command is used to modify the current printer settings. The Print command can also be accessed from this dialog.

\section*{Recent Projects}

A recent project can be loaded by simply selecting it from the recent project list at the bottom of the File menu.


\section*{Exit}

The Exit command closes the active project and then exits V-STARS.


Contents

\section*{Project Menu}



Search

\section*{Advanced Edit}

The Advanced Edit
command opens the Advanced Edit dialog shown. From this dialog a number of different V-STARS, project settings can be altered. Driver files can be imported, and Scale Bars can be added or removed.


\section*{Import}

The Import command opens the following dialog.


Select a 3D, XYZ or IGES file to import it into the project and set it as the current driver. If this file is in the "XYZ" format V-STARS will prompt you for the files units. A summary of the imported points is shown and the file is added to the project.

Zoón in

Search

\section*{General Parameters}

The General command opens the following General Parameters dialog. There are five option tabs.

General - Camera
Exposure - When a camera is online the camera exposure can be set from the camera dialog.

Strobe - If the camera is online and a Remote Camera Strobe (RCS) is in use, the strobe power can be set.

Save Images - In online mode images can are saved if the Save Images box is checked.


\section*{General - M Mode}

Continuous Trigger Delay - Length of time between triggers when cameras are in continuous mode.

Save Images - Option to save images when in M-Mode.
Save Epochs - Option to save Epochs when in M-Mode.


Zoom out

\section*{Scanning Parameters -}

S-Mode
Delta -Indicates the value the pixel has to change for that pixel to be marked as the part of a target boundary.

Step - Number of pixels to scan.

White Level Bias - The Bias value is added to the blob's gain value and the resultant number is the background value for the target.


White Level Gain - The maximum and minimum values in the target blob are subtracted and multiplied by the gain.

\section*{Scanning Parameters - M-Mode}

Delta - Indicates the value the pixel has to change for that pixel to be marked as the part of a target boundary.

Step - Number of pixels to scan.
Probe Pixel Count Min - Minimum number of pixels needed for a probe target to be valid.

Probe Pixel Count Max - Maximum number of pixels needed for a probe target to be valid.


Search

Target Criteria

Target pixel count minimum and maximum number of pixels to constitute a target.

X pixel count minimum and maximum number of pixels in the \(X\) direction.

Y pixel count -


Black/White ratio - The maximum and minimum ratio of black pixels to white pixels in a target blob.

Aspect ratio - Ratio of \(X\) pixels to \(Y\) pixels.
Target Filters - The target filters are very effective in removing false targets. This, in turn makes AutoMatching faster and more reliable. In some cases, they will remove legitimate targets. If so, this is generally because those targets are of poor quality and will be rejected in the Bundle adjustment anyway. One filter removes targets whose shape is unacceptable (Shape Filter); the other filters out targets that are too dim (Brightness Filter).

Zooim
in


Search

\section*{Ring Criteria}

Target pixel count -
minimum and maximum number of pixels to constitute a ring target.

X pixel count -
minimum and
maximum number of
pixels in the \(X\) direction.


Black/White ratio - The maximum and minimum ratio of black pixels to white pixels in a ring blob.

Aspect ratio - Ratio of \(X\) pixels to \(Y\) pixels.

Zooin
in

\section*{Code Criteria}

Target pixel count -
minimum and maximum number of pixels to constitute coded target nuggets and the main pay point.

\section*{X pixel count -}
minimum and maximum number of pixels in the \(X\) direction.

Y pixel count -
minimum and
maximum number of
pixels in the \(Y\) direction.


Black/White ratio - The maximum and minimum ratio of black pixels to white pixels in a target blob.

Aspect ratio - Ratio of \(X\) pixels to \(Y\) pixels.


\section*{Bundle}

The Bundle command opens the Bundle Setup dialog. The dialog is shown below. Refer to the Bundle Setup in the Bundle section of the manual for an explanation of the Bundle Setup.

\section*{INCA Camera}

The INCA Camera command opens the following dialog. If the INCA cameras are online then the network connection can be reset or the image compression changed. If multiple cameras are in use there will be tabs visible.



Zoom out

\section*{Coded Target}

The Coded Target command opens the following coded target setup dialog. This is shown below.


Cluster Nearness Factor

Ringed Targets
Code Size

Cluster Size \(\quad\) The minimum and maximum number of target to cluster together before starting a new cluster.

Thresholds These parameters are used to set up the decoding process. These should not be adjusted without first consulting GSI.

Zoom in

Target Nuggets Check this box to switch on the coded nuggets. The square targets in a coded target (called the "nuggets") can be measured just like the central target. This means that every time a code is seen, eight targets are measured. (Seven nuggets and one central point.)

This is very useful when a picture cannot be automatically measured because it has less than four known coded targets. By turning coded nuggets on, you can often automatically measure a picture that has only three (and sometimes only two) coded targets. This capability also supports a new kind of target developed by GSI that can greatly automate the measurement of certain geometrical features.

The images must be scanned/re-scanned in order for the nuggets to be measured.

\section*{Scale Bars}

The Scale Bars command opens the following Add Scale Bar dialog. This is shown below.


The dialog lists any of the scale bars in the current project. It is also possible to add a new scale bar by typing in the input box at the bottom of the dialog. The input format is as follows:

\section*{Label1 Label2 Distance}

Press the Add command to add the scale bar to the project.
To delete a scale bar, highlight it and press the Delete command. Zoom
in

\section*{AutoMeasure}

Refer to the AutoMeasure section in the manual for more information on AutoMeasuring.

\section*{Global Point Edit}

The Global Point Edit command opens the following dialog.


From this dialog, points or observations to points can be removed from the Bundle. When a point is deleted, it is removed from each of the images that have an observation to that point. Before deleting the points, you will be given an option to continue with the deletion.


Points can also be renamed from within this dialog by highlighting the label and changing the text.


\section*{Update}

The Update command has several options. These are shown below:


Camera(s) The update command will copy the camera parameters in the current project to the camera in the c: \GSI \System directory. If the camera does not exist in the System folder, you have the option to copy it there. An update is tantamount to a camera re-calibration and should not be completed unless the network used to re-calibrate the camera was an especially strong one. The update command is password protected to prevent accidental implementation.

Probes The update command will copy the probe parameters in the current project to the corresponding probes in the C: \GSI \System directory. If the probes do not exist in the System folder, you have the option to copy them there. An update is tantamount to a probe re-calibration and should not be completed unless the correct calibration procedure has been followed. The update command is password protected to prevent accidental implementation.

Scale Bars The update command will copy the scale bar parameters from the current project to the scale bar in the \(C: \backslash G S I \backslash\) System directory. If the scale does not exist in the System folder, you have the option to copy it there. An update is tantamount to a scale bar re-calibration. The update command is password protected to prevent accidental update.

Settings
Default System Configuration

This is used to update the INCA camera calibration files for any camera in the project. The camera calibration file on the INCA camera is overwritten with the one in the project. The update procedure is written to a PCMCIA disk. When this disk is inserted into the INCA camera the update is completed automatically when the camera boots. You will be prompted for the system password prior to the update procedure being written to the PCMCIA disk.

WARNING - If you own multiple cameras take care not to update the incorrect camera. If you happen to update the camera with the incorrect camera file, then simply repeat the update process with the correct file.

This updates any of the Window settings that you have set. The position of toolbars, windows and other Window settings is saved. New projects take on these settings.

This updates any of the V-STARS system settings that you have set. Any changes that have been made are saved in the default GSI32.ini file. Any new projects take on these settings.

\section*{Restore}

The Restore command is used to restore any settings that have been made to the Windows Settings or System Configuration back to the factory default.



\section*{Import}

The Import command has several options. These are shown below:


\section*{AutoBar}


Add an AutoBar to the project. This is very useful if you own multiple AutoBars. Once imported, the AutoBar is set as the Driver file. The AutoBars that V-STARS lists are found in the C: \GSI\System directory.

Typically, the AutoBar is imported automatically for you at the start of the AutoMeasure routine and hence this function is rarely used.


Driver


This is used to import any 3D, XYZ or IGES file and mark it as the Driver for the project. Navigate to the desired file, select it and press the Open button. If this file is in the "XYZ" format V-STARS will prompt you for the files units. A summary of the imported points is shown and the file is added to the project.

For more information, refer to the Importing Driver Files section of the manual.

Data File This is used to import any 3D, XYZ or IGES file into the project. Navigate to the desired file, select it and press the Open button. If this file is in the "XYZ" format V-STARS will prompt you for the files units. A summary of the imported points is shown and the file is added to the project.

For more information, refer to the Importing Data Files section of the manual.

\section*{Probes}


This is used to import Probes into the project. By default, the probes are selected from the GSI system directory.


Zoom

Search
Contents

\section*{Images}

This is used to copy the project images into the project. You are given a warning before import being completed as the image copy can take a few minutes depending on the number of images in the JOB.
v-Stars区
? There are 35 images to import into the project directory. This might take a long time.

Are you sure you want to import the images?


For more information, refer to the Import Images section of the manual.

\section*{Setup}

This dialog allows you to define the manner in which IGES files are imported.



\section*{Bundle}

Refer to the Bundle section for more information on the Bundle menu.
The Bundle command has three options. These are shown below:
Run
When Run is selected the main Bundle dialog will be opened.

The Run command is dimmed if there are no images scanned or frames resected. It is also dimmed if there are not at least two frames resected.

Summary When Summary is selected, the Bundle Summary dialog is opened. A typical summary is shown below.


Setup When Setup is selected, the Bundle Setup dialog is selected. Refer to Bundle Setup section for more information.


Search Contents

\section*{Triangulate}

The Triangulate command has several options. These are shown below:


\section*{All Points}


Select the All Points function to triangulate new points in particular pictures. At least two pictures must be selected. A Triangulation Summary dialog appears and you are given the option to accept or reject the Triangulation and to name the triangulation file.



\section*{New Point(s)}


Select the New Points function to triangulate selected new points. The number of rays to each new point is displayed to guide you.

Once again, a triangulation summary appears before the Triangulation file being created.

Run a bundle with the camera locations and camera calibration parameters held fixed. This provides you with improved triangulated values.

In M-Mode Triangulate any of the points seen in both images.
MMode

\section*{AutoMatch}

The AutoMatch command has three options. These are shown below.



Select the All Pictures function to run the full AutoMatch procedure. In this case, all possible combinations of images will be calculated. The best combinations (typically 16) are then used to determine the location of any new points.

Three Pictures


Select the Three Pictures option to select three images to AutoMatch. In this mode of AutoMatch it is up to you to decide whether the combination selected is worth AutoMatching. A Triangle goodness number is displayed to help this decision process. A figure of greater than \(20 \%\) is recommended.

\section*{Label Setup}


The Label Setup command loads the Label Setup dialog. This is shown in the adjacent image. This dialog sets the point and string increments. Based on the values in the dialog shown, the first string would start with 101. Subsequent points would labeled 102, 103, and so forth. By setting the increment to a negative value the string will decrement.

Selecting the Next String command \(\square\) from the Command menu will change the string to 201.


Search
Contents

\section*{MMode Menu}

\section*{Introduction}

Please refer to the M Mode manual for an explanation of the Mmode Menu.



Search

\section*{Command Menu}


The command menu is only active when an image is open.

\section*{SuperStart}


The SuperStart command will reset the open picture and complete the following processes:
1. Scan image for potential targets.
2. Determine whether an AutoBar is present.
3. Decode any codes that are present.
4. Use the known (in XYZ) coded targets and AutoBar found to determine the location in space (resection) of the image.
5. Driveback to any points in the Driver file.

If the frame has been measured previously then you will be warned before the image is reset.

?) SuperStart will delete all measured points in this picture. Are you sure?



\section*{AutoStart}


The AutoStart command will use the existing resection values to driveback to the points in the driver file. Any points already measured in that frame will be skipped.

\section*{Resect}


The Resect command will open the Resect Picture dialog.


The dialog displays the position (XYZ) and attitude (AZ, El, and Roll) of the camera in space.

The Rejection Limit can be adjusted and the resection re-run by using the Resect button. By selecting Automatic Rejection, the software determines the optimal rejection limit.

In the residuals frame all the rejected points can be removed by selecting the Delete Rejected Points command. Individual observations can also be enabled, disabled or deleted by right clicking over the points you wish to modify and selecting one of the options.


\section*{Line}


The Line command will automatically label points located in a uniform direction that have approximately equal spacing. The first and second points that have been labeled determine the direction of the line. For example, it is possible to label a circle as the direction is continuously updated. The routine will stop when the start of the circle is reached.

The line function is typically used to label new points or for Global relabeling. In both cases, the function behaves the same.

The software will beep when it reached a gap in the line or the last point in the sequence.

Find


The Find command will find a point that you have defined. If the point is visible and measured in a frame, the cursor will move to its location.

\section*{Next String}


The Next String command will increment the current label by the amount specified in the String Setup dialog. Refer to Label Setup for more information.

\section*{Target Search}

The Target Search command will scan the image and locate any potential targets. This option is typically used when you have changed one of the scanning parameters and you want to see the effects of the change.


\section*{Picture Menu}


\section*{From Camera}


The From Camera command will only be active if an INCA camera is in online mode. When selected the default camera will capture an image. This command is equivalent to the camera icon.

\section*{From Disk}

The From Disk command will load a dialog that can be used to navigate to an image path. The dialog is shown below:


Search

Image Selection
C:VstarsiDemosiBasic Frame Pictures


Press Browse to select the path that the images can be found in. When a folder with GSI images has been located, a thumbnail of the selected file will be displayed. Adjust the Contrast controls to adjust the image contrast.

This command is also very useful to view different Jobs and carry out Job housekeeping.

\section*{Next}


The Next command will open the next image in the project. If there is no next image, the command will be ignored.

\section*{Previous}


The Previous command will open the previous image in the project. If there is no previous image, the command will be ignored.

\section*{Close}

The Close command will close the image that is currently open and active.

\section*{Reset}

The Reset command will reset the active image. Prior to doing this, you will be warned.
\begin{tabular}{l} 
Warning \\
\begin{tabular}{l} 
?) Resetting a picture will permanently delete all measured points. \\
Are you sure?
\end{tabular} \\
\cline { 1 - 3 } \\
\hline
\end{tabular}
\(\underset{\text { in }}{\text { Zoom }}\)

\section*{Delete}

The Delete command will delete the active image picture file from the project.
嚎 The key does not remove the original image from the disk, it only removes the file that represents that image in the project.

\section*{Contrast}

The Contrast command will adjust the contrast setting of the active picture. The settings range from 0 (No enhancement) to 10 (Maximum enhancement). The AUTO setting is used to get the best contrast solution.

Right clicking on the image and selecting Contrast can produce the same result.

\section*{Set Label}

The Set Label command will sets the current point label. This command can be simply reached by starting to type the label name whilst in the active window.
\begin{tabular}{|l|}
\hline FRAME1 \\
\hline TARGET124 \\
TARGET125 \\
TARGET126 \\
TARGET127 \\
\hline
\end{tabular}

\section*{Quit Review Mode}


After an AutoStart or SuperStart, points that have not be found, but are coordinated, will appear in red. To remove these annotations simply select the Quit Review command.


\section*{View Menu}


\section*{Picture Bar}


The Picture Bar features five icons. These have the following functionality.
(2) Camera Icon - Take a picture. Only active if one or more cameras are online. This command can also be initiated from the Picture - From Camera menu.
\(\oplus \quad\) Previous Image - Go back one image. When the first image is already active, the left arrow will be dimmed.
\(\rightarrow \quad\) Next Image - Go forward one image. When the last image is already active, the right arrow will be dimmed.

M M Icon - Initiate Multi-camera mode. Only active if two or more cameras are online

Probe Icon - Trigger the cameras in Multi-camera mode to fire simultaneously. This icon is only active if two or more cameras are online, and in M Mode.

\section*{Cursors Bar}

(4. Selection Cursor (this is the default cursor. This cursor must be active when you wish to do any point selection.
-1. Cross Cursor \((\stackrel{12}{2})\) - Use this cursor is manually locate points in the image that are located in the driver file. If the label of a driver point is set the cursor will automatically change from the Selection Cursor to the Driver Points Cursor.
 points.

S> SuperFind Cursor ( \(\stackrel{\text { FA }}{\sim}\) ) - This cursor allows new points to be measured in all images (in which they exist) by measuring them in a single image. The point is measured in the current picture and in any other pictures that see the point. The point is then automatically triangulated and added to the current driver file. Refer to the SuperFind section for a more complete description.

OK OK Cursor - AKA "God Mode". This cursor is used in conjunction with the Driver and New point cursor. When activated many of the target criteria rules are disabled. This means that targets that fail the acceptance criteria can still be measured. WARNING - Including unacceptable targets in the measurement can produce inconsistent and inaccurate results.
\({ }^{20}\) Global Rename Cursor - Use this cursor when you wish to rename points in the images or driver file. All observations to the point will be renamed with the new label. Note that points in the previous Bundles will NOT be renamed.
(7) Rename Cursor - Use this cursor when you wish to rename points only in the current image or 3D file.

5 Global Delete Cursor - Use this cursor when you wish to delete points in the images or driver file. All observations to the point will be deleted. Note that points in the previous Bundles will NOT be deleted.

Delete Cursor - Use this cursor when you wish to delete points only in the current image or 3D file.

\section*{View Bar}

t. Up on level - Press this icon to move one level up the directory tree.

路 Bring Project to Top ( \(\overbrace{\text { F212 }}\) ) - Press this icon to bring the V-STARS directory to the foreground.
a Show/Hide Zoom Window ( ) - Press this icon to activate or deactivate the data zoom window. This icon is only active if a picture window is open.
 deactivate the image data window. This icon is only active if a picture window is open.
Right click in the data window to view the additional options.
Pixel View - Display pixel grayscale values.

Target View - Display potential target pixels.

Size to Zoom - Resize Data window to match Zoom window.

Hide - Close Data window.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 产 \({ }^{2}\) & m & 002 & D & ata & & & & & & & & & & & X \\
\hline 208 & 4 & 179 & 0 & 208 & 4 & 179 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & & Pixe & vie & & & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & & Tar & t V & & & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & & Size & To & oom & & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & & Hid & & & & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multicolumn{3}{|l|}{Low \(=0\)} & & \multicolumn{3}{|l|}{High \(=208\)} & & & & & & & & & , \\
\hline
\end{tabular}

\section*{Status Bar}
\begin{tabular}{|c|c|c|}
\hline II & \multicolumn{2}{|l|}{III} \\
\hline Ready & -8.7210, -4.2300 & \\
\hline
\end{tabular}

The Status Bar displays the status of V-STARS. If an image is open, the XY location of the cursor will also be displayed.

\section*{Construction Bar}


The Construction Bar is made up of nine icons. The bar will only be active when the cameras are in M-Mode. For a description of the functions of the icon, please refer to \(M\) Mode Manual.

\section*{Movement Bar}

\section*{Movem...区}

9 1 ?
The Movement Bar is used to control cameras connected to the Electronic Pan Head. The buttons will be disabled unless a camera is connected to the pan head.

\section*{Show Data Window}

Switch on the data window. Please refer to the explanation given under the View Bar section.

\section*{Show Zoom Window}

Switch on the zoom window. Please refer to the explanation given under the View Bar section.

\section*{Show Labels}

Switch on the target labels in the picture window. The labels will be displayed in green.

\section*{Show Crosses}

Switch on the crosses that identify targets. If crosses are switched off then the labels will also be removed. The crosses will be displayed in green.

\section*{Show Scan Points}

Show points that have been identified as potential targets by V-STARS. Scan points are denoted by red squares.

\section*{Show Objects}

Show the location of items such as Scale Bars and the AutoBar. A yellow line drawn between the endpoints denotes a scale bar. A yellow cross through the outer points identifies an AutoBar.


\section*{Tools Menu}


\section*{Customize}

It is possible to add programs to the tools menu. This means that you can call programs such as Word, Excel or Explorer directly from V-STARS. To add a new tool:
1. Select the Customize option from the Tools Menu.
2. Press the Add button to add a new tool.
3. Browse to the appropriate executable using the "..." button.
4. Enter any relevant arguments.
5. Select the initial directory for any data using the "..." button. If you want the command to use the current project directory as the initial directory, leave this field blank.
6. Press OK to accept the tool.

This dialog shows how to create a tool that will open an explorer window to the current project. This is done by running explorer and parsing the arguments "/e,.".


\section*{Zipping a Project}

You can easily compress (zip) all project data using the Zip Projects commands on the Tools menu. This is accomplished using PKZIP. The compressed project is a .zip file that is given the name "project name.zip". You have two choices; you can save all data, or all data except the image files (*.gsi files). This feature is useful for saving a completed project in a compressed format that saves space. However, its main use is to allow you to easily zip up the state of a project when a problem or bug is found. Then, you can send the zip file to GSI for analysis. We urge customers to use this feature. Often, as you work around or through a problem, you end up changing the state of the project, and we can no longer reproduce the problem. It will help us tremendously in finding and diagnosing problems if you use this command immediately after finding a problem.

To save a project, select either Zip Project - No Images or Zip Project - With Images from the Tools menu. A DOS window will be displayed showing the progress of the ZIP operation. We recommend you not do anything else while the ZIP operation is running. When it is done, the DOS window will disappear, and the data you selected will be saved in a file in the project directory. The file's name will match the name of the project and will have the name "project name.zip".
\begin{tabular}{|l|l|}
\hline Tools Window Help \\
\hline Customize \\
\hline WinTrans \\
Command Prompt \\
Edit ASCII File \\
Explorer \\
Excel \\
BAE reduction \\
\hline Zip Project - No Images \\
\hline Zip Project - With Images \\
\hline
\end{tabular}

The Zip Project - With Images command will only zip the .gsi files if they are in the project directory, or a subdirectory of the project directory. Use the Import Images command to copy the images into the project directory.


Search

\section*{Right Click Menus}

The following dialog boxes and menus can be accessed by "right-clicking" in certain areas within the V-STARS project. Right click menus are a very handy way to access some of the more commonly used V-STARS functions and commands.

\section*{Cameras Icon}

Right click on the camera icon or on any camera in the camera tree.


Default - Set the camera as the "active" or default camera. This is only applicable when there are more than two cameras in the project. The default camera will be the one that fires when the camera icon is pressed.

Add - Add a camera to the project. The following dialog is opened. You can select a camera or have the option to Browse for a camera. The cameras listed are located in the c:/GSI/ System directory.


Update- The update command will copy the camera parameters in the current project to the camera in the c : /GSI/System directory. If the camera does not exist in the System folder, you have the option to copy it there. An update is tantamount to a camera re-calibration and should not be completed unless
 the network used to re-calibrate the camera was an especially strong one. The update command is password protected to prevent accidental implementation.


Zoom out

Delete - Delete the camera from the project. The camera is deleted to the Recycle Bin (䨏 Recycle Bin ) and can be retrieved if necessary.

\section*{Pictures Icon}

Right click on the picture node icon or on any picture listed in the picture tree.


Information - Retrieve information about the current picture selected. The following dialog is opened. You can examine data related to the particular picture. This item is not available if the Picture node is selected.

Enabled - Enable and disable images in the picture tree. If a particular picture is selected, then it is the only one enabled/disabled. To enable/disable multiple images, right click on the picture node. Disabled pictures will be displayed with a red line through a red circle.
- - Ed Pictures
(8) Frame001.pic
Frame002.pic
Rad
Frame004.pic



Search Contents

Resect - Open the image resection dialog. Refer to the Basics of
Photogrammetry for more information on the Resection process.

If Resect is selected from the main Picture node then all the pictures can be resected from the one dialog. The Rejection
Limit can also be set from within this dialog.

Driveback- The driveback command is used to check all the pictures for points that haven'† been measured yet. It is especially useful when new points have been added to the project via triangulation process. The number of new points found in each picture and the RMS
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Resect Pictures} & X \\
\hline Picture & Points & RMS & Close \\
\hline \multirow[t]{7}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{7}{*}{\begin{tabular}{ll}
3317 & \(0.24 u m\) \\
3391 & \(0.24 u m\) \\
3209 & \(0.43 u m\) \\
3375 & \(0.21 u m\) \\
3385 & \(0.21 u m\)
\end{tabular}}} & \\
\hline & & & Resect \\
\hline & & & \\
\hline & & & \\
\hline & & & Select Alll \\
\hline & & & Select Resected \\
\hline & & & Select Unresected \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Rejection Limit (um): 50.00
\(\square\) Automatic Rejection}} & \\
\hline & & & \\
\hline
\end{tabular}
 closure is displayed.


Set Image Path - Opens a file dialog box that is used to locate the image directory.
Rescan Image Path - Checks the image path for any new images. This is typically used when pictures have been added to the project.

Include All Images - Searches the image path and re-imports any images that were previously deleted or added.

Renumber - Renumber the images from the lowest available number.
Images in the Recycle Bin must be deleted in order to reclaim the numbers associated with deleted files.

Delete - Delete the picture from the project.
The physical image is NOT deleted, only the V-STARS reference to that picture (the pic file). The picture can be restored from the Recycle Bin or added using the Include All Images command.

\section*{Data Icon}

Right click on the data node icon, on any file listed in the data tree or any of the objects listed in the individual 3D files.

New - A new data file can be created using the Data File command. A new point can be added to any file using the Point command. It is also possible to create a new construction object from the New menu. Please refer to Construction Object section for a full explanation.



Import - The Import command allows you to import various files or objects into a V-STARS project or file.

AutoBar - Add an AutoBar to the project. This is very useful for customers with multiple AutoBars. Typically, the AutoBar is imported automatically for you at the start of the AutoMeasure routine. Refer to the Import section of the manual for more information.


Construction Data - Import the construction objects of the selected file into the construction area of the right-clicked file. This is useful to transfer previously created construction objects into a 3D file.


Driver File - Import a new driver file into the V-STARS project. Refer to Import Driver File section of the manual for more information.

Data File - Import a data file in to the project. This is done via the standard Open File Dialog.

To Design - Import the points of the selected data file in to the design area of the file that was right clicked. This is done via the standard Open File Dialog.

Offset - Import offset values for individual points via an offset file. The offset values are added to the offset column for each of the points listed in the offset file. The offset file has the following format:

Point Label Offset
The file should be saved with a *.txt extension.


Setup - Enter the setup dialog for the IGES import. The options are shown in the adjacent image.


Export- The Export command allows you to export 3D files or points from V-STARS into other file formats.

IGES - Export points, lines, circles, planes, etc into an IGES format.

VDA - VDA is a common automotive file format. The file outputted must be the driver file. If a regular data file is selected the VDA option will be dimmed out.

V-SURF - Export V-SURF surface measurements to an output file. A V-SURF license is required.

3D - Export a 3D file into a new 3D file.
AAT - Export data to a Caps NT file format. The file outputted must be the driver file. If a
 regular data file is selected the AAT option will be dimmed out.

Delcam - Export data to a Delcam file format. The file outputted must be the driver file. If a regular data file is selected the Delcam option will be dimmed out.

ECDS - Export points into the ECDS file format. This is a data file based the ECDS theodolite system.

ManCat - Export points to the ManCat file format. This is a data file based the ManCat theodolite system.

Metrolog - Export points to the Metrolog file format.


NC - Export points to the NC (Numerical Control) file format.
XYZ - Export points to an XYZ format as space delimited. The format exported is

Pt Label X Y Z Sigma X Sigma Y Sigma Z Offset
Text - Export points to a text format as space or tab delimited. This is set in the Setup dialog. The default format exported is

Pt Label X Y Z Sigma X Sigma Y Sigma Z Offset

Setup - Change the export options for V-SURF and Text Export. The following dialogs are available.

Text - Swap between Tab and Space delimited. The output fields can also be selected.


V-SURF - Swap between
Tab and Space delimited. The output fields can also be selected modified.

The points can also be sorted by Label, X, Y, Z or Total residual.



\section*{Right-click on Design Points}

By right clicking on the design point's icon, a number of options are available. These are shown in the adjacent image.

Export - A number of export files options are available. An explanation of these can be found in the previous section. If the Design folder is rightclicked, an IGES export is also available.

Moved to Measured - move the Design points to the measured folder.


Delete - Delete the entire folder or parts of the folder.

\section*{Right-click on Multiple 3D Files}

Merge - You can merge several 3D files into a single 3D file using the Merge command. Points with the same label are averaged, and the average values of the points are written to the merged file.

To merge a number of files, select the files you want to merge and select the Merge command. A dialog box will appear. Enter the name of the merged data file in the field. Press the OK button. The 3D file with the merged data will be saved in the current project. If Merge is grayed out, you have not selected at least two 3D files.



Ensure data is in the same coordinate system prior to merging. Merging unaligned data sets will produce unpredictable results.

\section*{Right Click on Points in Design}

Solids - Pass highlighted points into a Solids function. Refer to the SOLIDS Section for more information.

Copy - Highlight points and select Copy to copy them to the clipboard.

Paste - Paste points from the clipboard to the 3D file.

Delete - Highlight points and select Delete to delete them from the Design folder.


Control - Points in the Design folder can be set as control points. Control points are held fixed in the bundle process.
\begin{tabular}{|ll|}
\hline\(\Delta\) CONTROL1 & 3.7352 \\
\(\Delta\) CONTROL2 & 3.4914 \\
\(\Delta\) CONTROL3 & 3.2584 \\
\(\Delta\) COMTROL & 30220 \\
\hline
\end{tabular} To create control points, highlight the points you wish to mark. Right click over the points and select the Control option. Points marked as control will be displayed with a different icon.

\section*{Right-click on Measured Points}

By right clicking on the measured point's icon, a number of options are available. These are shown in the adjacent image.

Export - A number of export files options are available. An explanation of these can be found in the previous section.

Moved to Design - move the Measured points to the Design folder.


Delete - Delete the all the points in the folder.



Search

\section*{Right-click on Created Objects}

By right clicking on objects created in V-STARS such as Planes, Lines, Circles etc. a number of options are available. The options available will depend on the type
 of object. The adjacent image shows the plane options.

Properties - Display the properties of the object.

Measure - Create a measurement to that object. The objects available for measurement are listed.

Check the Design check box to measure to Design objects.



Additional objects can be located by changing the pull down menu to another object type.

Flip - Flip the positive direction of the object. Only available for planes and surfaces.

Offset - Offset the plane and create a new plane. The adjacent dialog contains the offset options available. The original plane can be deleted by selecting the Delete
Components check. The plane is offset in the direction of the plane normal, unless the offset value entered is negative. Refer to the SOLIDS section on Plane Offsets for more information.
Export - Export the selected objects to a Text or Tabbed Text file. Any information found in the property section will be written to a text file. This text file can be directly imported into Excel.

Delete - Delete the selected objects.



Search
Contents

\section*{Right-click on Measurement objects}

By right clicking on objects in the measurement section, it is possible to export the measurement results directly to a .txt file.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Point Label & Proj X | & ProiY & Proiz & Delta \(X\) & Delta \(Y\) & DeltaZ & Total & Offset \\
\hline \$ TARGET4 & -1.1651 & -15.8935 & -6.5416 & -0.0002 & 0.0000 & -0.0000 & -0.0002 & 0.0000 \\
\hline \$ TARGET5 & -1.1896 & -15.8126 & -6.0016 & 0.0009 & -0.0001 & 0.0001 & 0.0009 & 0.0000 \\
\hline \$ TARGET6 & -1.1762 & -16.0654 & -6.7301 & -0.0004 & 0.0001 & -0.0000 & -0.0005 & 0.0000 \\
\hline \$ TARGET7 & -1.2142 & -15.7364 & -5.4699 & -0.0013 & 0.0002 & -0.0001 & -0.0013 & 0.0000 \\
\hline \$ TARGET8 & -1.2007 & -15.9838 & -6.1889 & 0.0016 & -0.0002 & 0.0001 & 0.0016 & 0.0000 \\
\hline \multirow[t]{3}{*}{\$ TARGETO} & 1077 & 12000 & c0171 & -0.0006 & 0.0001 & -0.0000 & -0.0006 & 0.0000 \\
\hline & & Text & & & & & & \\
\hline & Delete & & & & & & & \\
\hline
\end{tabular}

Right click on distance measurements to convert these to Scalebars.


Update -The update command is used to update the values of objects within V-STARS.

AutoBar - Deletes the current projec \(\dagger\) AutoBar and replaces it with the update project AutoBar values.


Probe - This option is only available when there are probes in the project. Any probe measurements present will be updated using the probe calibration values in the project. This option is useful for instances when the probes used in a measuement are recalibrated after the measurement. The new calibrations can then be applied to the original measurements.

Construction Objects - Update or add any of the construction object found in the 3D file. Construction objects are typically updated automatically after a bundle.

Alignment - The alignment menu accesses the V-STARS alignment functions. Please refer to the Alignment Section of the manual for more information.

\section*{Residuals - Quick}

View the results of a Quick alignment. From this dialaog it is also possible to re-calculate the transformation using a different rejection factor.

\section*{Residuals - Standard}

View the results of a Standard alignment. From this dialaog it is also possible to re-calculate the transformation using a different rejection factor.
\begin{tabular}{|c|c|}
\hline  & \\
\hline  & \begin{tabular}{l}
Residuals - Quick \\
Residuals - Standard
\end{tabular} \\
\hline  & \begin{tabular}{l}
Axis \\
Quick
\end{tabular} \\
\hline 田3D Poir \(\downarrow\) Driver File & Standard \\
\hline PcaleB: Detaill File & File \\
\hline * Probes Template File & Manual \\
\hline * Recycle Delete & Ouick Probe Standard Probe \\
\hline & Setup \\
\hline
\end{tabular}

Axis- Initiate an Axis alignment. Select the Anchor Point, Axis Point and Plane Point. The Anchor Point coordiante value can also be set from the dialog window. Use the radio buttons to set the axis directions. Refer to the Alignment Section for more information.

Quick - Initiate a Quick Alignment. Refer to the Alignment Section for more information.

Standard - Initiate a Standard Alignment. Refer to the Alignment Section for more information.

File - Select the File option to display a dialog from which a file with pre-defined transformation values can be loaded. Transformation files from CATS, HOLOS, and GSI are currently supported.


Manual - Manual shift, rotate or scale a 3D file. To shift the data in \(X, Y\) or \(Z\), type the shift values in the boxes and press the Begin button. The value in the boxes will be added to every point in the file.

To rotate the data around the \(\mathrm{X}, \mathrm{Y}\), or \(Z\) axis, enter the rotation value in the appropriate box, and press the Begin button. You may only rotate around one axis at a time. A positive value rotates counterclockwise around the axis as
 viewed down the positive axis. To scale the data enter a value in the scale box and press Begin. Every point coordinate will be multiplied by the scale value.

The Undo button will only undo the most recent alignment.

Setup - Modify the default alignment settings. By default the scale in the Quick and Standard are allowed to adjust. By default the Automatic Rejection is also enabled. If the Automatic Rejection is disabled, then the Rejection Limit can be set. The convergence limit and the maximum number of interations can also be set.



Transform - The Transform option loads the Transformation Wizard dialog. Follow the instructions to complete the transformation process.


Press the Import Data File button if the file is not already in the 3D folder.


Enter a name for the new transformed data set and a rejection limit to use for the transformation. Press Next to continue to the next step of the transformation.



Select the type of transformation and whether the scale needs to be held. A Direct transformation is a simple subtraction between the two data sets. Press the Finish to process the transformation. The results are displayed in a WinTrans dialog. Refer to the WinTrans manual for more information.



Search

AutoRelabel- The AutoRelabel option loads the AutoRelabel Wizard.
AutoRelabel is an automated way to transfer the labels of one set of points to another set of points. In order to work, there must be common points between the two sets. These common points are used to compute a transformation. Once transformed, points that fall within a nearness threshold have their labels transferred.

Follow the instructions to complete the automatic relabeling process.


Start by selecting the file that contains the labels you wish to transfer. Press Next to continue.


A Nearness Thresholdwill be selected automatically depending on how well the common points transform. You have an option to Relabel all the points or only points that have been AutoMatched. The Only AutoMatched is selected by Default. If the label file contains point offset information it will be copied over if the Copy Offset is set to true. Press Next to continue.


The number of points missed by the AutoRelabel with be listed. To view the missing points, select the Show Missed Points command. If you still wish to try and relabel the missed points, press the Back command to go back a step and increase the Nearness Threshold. Press Finish to close the dialog.

Rename AutoMatch - Use this option to automatically group relabel points in the 3D file to another starting label. Only points that start with the key word TARGET will be relabeled. If the Driver file is relabeled then all the corresponding observations will also be relabeled.


Driver - Set the current 3D file as the driver file. If the file is already the driver file then it will become a normal 3D file.

If a 3D file is selected as a driver, you will be prompted to re-resec \(\dagger\) all the pictures in the project.


Detail- Set the current 3D file as a detail file. This option is only available if the cameras are in M Mode. Please refer to the M Mode Manual for more information.


Template- Set the current 3D file as a Template file. This option is not available for the current driver file. The Template function is used to activate Feature Targets. Feature Targets are special calibration files. Right click on the Template file to make it Active or to remove the Template status.


Delete - Delete the current file from the project. The 3D is deleted to the Recycle Bin and can be retrieved if necessary.


Search

\section*{ScaleBars Icon}

Right click on the ScaleBars menu to add, modify or remove scale bars.

New -Create a new scale bar using the following dialog.


Add - Add a scale bar from the system directory or browse for one from the computer or network.



Enabled - Enable or disable a scale bar.

Update - The update command will copy the scale bar parameters from the current project to the scale bar in the
C: /GSI/System directory. If the scale does not exist in the System folder, you have the option to copy it there. An update is tantamount to a scale bar re-calibration. The update command is password protected to prevent accidental update.



Search


\section*{Recycle Bin Icon}

Right click on the Recycle bin menu to restore or delete items placed in the Recycle Bin. Use the Restore function to restore individual files or the Empty command to empty the entire bin.

\section*{Right Click on Picture Thumbnails}


Information - Retrieve information about the current picture selected. You can examine data related to the particular picture.

Contrast- Adjust the viewing contrast of the thumbnails. The Auto setting selects the optimal contrast setting.


\section*{Right Click in Picture}

\section*{SuperStart}

The SuperStart command will reset the open picture and complete the following processes:
1. Scan image for potential targets.
2. Determine the whether an AutoBar is present.
3. Decode any codes that are present.
4. Use the known (in XYZ) coded targets and AutoBar found to
 determine the location in space (resection) of the image.
5. Driveback to any points in the Driver file.

If the frame has been measured previously then You will be warned before the image is reset.


\section*{AutoStart}

The AutoStart command will use the existing resection values to driveback to the points in the driver file. Any points already measured in that frame will be skipped.


\section*{Resect}

The Resect command will open the resection dialog.
The dialog displays the position (XYZ) and attitude (AZ, El, and Roll) of the camera in space.

The Rejection Limit can be adjusted and the resection re-run by using the Resect button. By selecting Automatic Rejection, the software determines the optimal rejection limit.

In the residuals frame all the rejected points can be removed by selecting the Delete Rejected Points command. Individual observations can also be enabled, disabled or deleted by right clicking over the points you wish to modify and selecting one of the options. Refer to the Basics of Photogrammetry for more information.

Line - The line command is a search function to label or relabel points automatically. The command will only be active after two points have been measured or renamed. The search is performed based on the distance and angle between the two previous points.

Retake - Retake the current picture. This command will only be active if the camera is online.

Reset - Delete all the measurement and reset the picture.
Contrast - Adjust the viewing contrast of the pictures. The Auto setting selects the optimal contrast setting.

\section*{Right Click in Graphical View}

Right Clicking in the Graphical View produces the menu in the adjacent image.
\begin{tabular}{|ll|}
\hline Solids & \\
\hline Alignment & \\
Autofylatch & \\
Average & \\
Distance & \\
Vector & \\
Scale & \\
\hline Select & \\
Import & \\
Update & \\
\hline Delete & \\
\hline Save Image \\
View Setup \\
\hline
\end{tabular}


\section*{Solids}

To use any of the measurement objects that use SOLIDS objects or Surfaces you must have a SOLIDS and/or Surface license.

Please refer to the SOLIDS section of the manual for an in-depth explanation of the Solids menu functions.
\begin{tabular}{|c|c|}
\hline Solids & Plane \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Alignment \\
Autolylatch
\end{tabular}} & Line \\
\hline & Circle \\
\hline & Sphere \\
\hline Average & Curve \\
\hline Vector & Measure \\
\hline Scale & Project \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Select \\
Import \\
Update
\end{tabular}} & Flip \\
\hline & Offset \\
\hline & Setup \\
\hline Delete & \\
\hline Save Image & \\
\hline View Setup & \\
\hline
\end{tabular}

\section*{Alignment}

Please refer to the Alignment section of the manual for an in-depth explanation of the different Alignment functions available.
\begin{tabular}{|l|l|l|}
\hline Solids & & \\
\hline Alignment & Residuals - Quick \\
\hline Autolyatch & Residuals - Standard \\
\hline Average & Axis \\
Distance & Quick \\
Vector & Standard \\
Scale & File \\
\hline Select & Manual \\
Import & Plane \\
Update & & Quick Probe \\
\hline Delete & Standard Probe \\
\hline Save Image & Setup \\
\hline View Setup & \\
\hline
\end{tabular}

\section*{AutoMatch}

To activate this option it is necessary to select three images to AutoMatch. In this mode of AutoMatch it is up to you to decide whether the combination selected is worth AutoMatching. A Triangle goodness number is displayed to help this decision process. A figure of greater than \(20 \%\) is recommended. The AutoMatch generates a new "AutoMatch" file that becomes
 the driver file.


\section*{Average}

Create the Average of a number of different points. Select the points and then select the Average command.

Enter a name in the Label field and press


OK to create the point. The Average command can also be reached by using the \({ }^{A}\) key.

\section*{Distance}

Compute the distance between two points. If two points are selected the distance will be computed immediately. If not, a point dialog appears and the two points must be selected. The Distance command can also be reached by using the D key.

To create a vector point, select the two points that define the vector and select Vector from the right click menu or press the key. The Vector Point dialog is displayed. Enter an offset and a new point label and press \(\mathbf{O K}\) to add the point to the

\section*{Vector} vis 3D file.
焐
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Point - Point Measurement} & X \\
\hline Name: & taRGET & ARGET268 & \\
\hline Point1: & target & & \\
\hline Point2: & tARGET & & \\
\hline Distance: & 11.9709 & inches & \\
\hline Sigma: & 0.0005 & inches & \\
\hline \multicolumn{4}{|l|}{ᄃ Create Template} \\
\hline & OK & Cancel & \\
\hline
\end{tabular}

New Point Parameters:
\[
\begin{array}{lll}
X: & 10.5993 & S X: 0.0002 \\
Y: & -5.8403 & S Y: 0.0002 \\
Z: & 0.1508 & S Z: 0.0003 \\
\square & \text { Create Template } &
\end{array}
\]



To create a point in the opposite direction, enter a negative number in the offset field. Refer to the Basic Measurement Sections for more information.


Search
Contents

\section*{Scale}

Apply the scale factor to the current 3D file. The Scale function is a convenient way to scale a 3D file without running the Bundle again. The results of the scaling are summarized in a dialog box.


Select - A number of selections can be made using the Select function. If the \(\square\) is active multiple items can be selected without holding the \(\stackrel{\text { shint }}{ } \mathrm{key}\).

Highlights - Select any points that have been highlighted. Points can be highlighted from the graphical setup.

Close Points - Select points that are within a distance tolerance.


Probed Points - Select points that have been probed.
Constructed Points - Select points that have been constructed.


\section*{Measured}

Select various Solids Objects that have been created that are in the Measured Folder.

\section*{Design}

Select various Solids Objects that have been created that are in the Design folder.

\section*{Probe}

Select points that are in the Probe Folder. Refer to the M Mode
\begin{tabular}{|c|c|c|}
\hline Solids & & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Alignment \\
Autofylatch \\
Average \\
Distance \\
Vector \\
Scale
\end{tabular}} & & \\
\hline & & \\
\hline & & Points \\
\hline Select & Highlights & Planes \\
\hline Import & \multirow[t]{3}{*}{\begin{tabular}{l}
Close Points \\
Probed Points \\
Constructed Points
\end{tabular}} & Lines \\
\hline Update & & \begin{tabular}{l}
Circles \\
Spheres
\end{tabular} \\
\hline Delete & & Curves \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Save Image \\
View Setup
\end{tabular}} & Measured & Suffaces \\
\hline & \begin{tabular}{l}
Design \\
Probe
\end{tabular} & \\
\hline
\end{tabular} manual for more information.

\section*{Import}

To Design - Import the points of the selected data file in to the design area of the file that was right clicked. This is done via the standard Open File dialog.

Construction Data - Import the construction objects of the selected file into the construction area of the right clicked file. This is used to transfer previously created construction objects into a 3D file.

Setup - Enter the setup dialog for the IGES import.
\begin{tabular}{|c|c|}
\hline Solids * & \\
\hline Alignment * & \\
\hline Autiofliatch & \\
\hline Average & \\
\hline Distance & \\
\hline Vector & \\
\hline Scale & \\
\hline Select , & \\
\hline Import & To Design \\
\hline Update & Construction Data \\
\hline Delete & Setup \\
\hline Save Image View Setup & \\
\hline
\end{tabular}


\section*{Update}

Surface Measurements -Only available if a V-SURF license is present. This command will update any previous Surface Measurements made. This is necessary after either the surface of the point data has changed.

Construction Objects - Update or add any of the construction object found in the 3D file. Construction objects are updated automatically after a bundle.
\begin{tabular}{|c|c|}
\hline Solids & \\
\hline Alignment & \\
\hline Autiok lich & \\
\hline Average & \\
\hline Distance & \\
\hline Vector & \\
\hline Scale & \\
\hline Select & \\
\hline Import & \\
\hline Updste & Sufface Measurements \\
\hline Delete & Construction 0bjects \\
\hline Save Image & \\
\hline View Setup & \\
\hline
\end{tabular}

Delete - Delete the selected objects
Save Image - Save the current graphical view to a BMP file. This file can be added to reports etc. To reverse the background on the file save open the View Setup dialog and select the Display Colors Tab. Check the Invert Pt/Bkg on Save. The view can also be save using the Windows att command. This will paste the current view to the clipboard. From here is can be pasted to a Word document or any other Windows program that supports image data.

View Setup - Open the View Setup dialog. Many display options are accessed through the View Setup dialog. The View Setup can also be accessed via the key. Refer to the View Setup Dialog for more information.


\section*{Icons}

\section*{Introduction}

For convenience，the various icons used by V－STARS have been listed below．Where possible they have been listed in the order they would appear in a project．

V．V－STARS Project
（T3）Camera Folder
（बิ）Non－default Camera
（ใิํ Default Camera
［8id Picture Folder
⿴囗木ㅇ Resected Picture
（\＄）Un－resected Picture
Un－measured Picture or No points found in Picture
（2）Disabled
E Epoch Folder（M－Mode Only）
E Epochs
36 Data Folder
3D 3D File
30 Design Folder
\(\triangle\) Control Point
Construction Folder
A Average Point
\％Vector Point
\(\sim\) Curves
\(\diamond\) Planes
Lines
（O）Circle
Spheres

Zoof
(1) Point List
\& Measured Point
Constructed Point
\& Probed Point
30 Probe Folder
\& Probe Folder Points
* AutoBar Folder
\& AutoBar
* Surfaces
~ Curves
\(\checkmark\) Planes
Lines
(O) Circle
- Spheres

瑞 Measurements Folder
Residuals
\ Point-to-Point
" 3 Point-to-Point Curve
Point to Plane Folder
\(\geqslant\) Point to Plane
\& Point used in entity
\& Point measured to entity
V) Point to Line Folder
\(\$\) Point to Line
(C) Point to Circle Folder

10 Point to Circle
Point to Sphere Folder
- Point to Sphere

Point to Surface Folder
W Point to Surface
\$) Point to Curve Folder
\(\lambda\) Point to Curve
 out
\(\mathbb{\&}\) Line to Line
d Line to Plane
30 Current Driver File
30 Detail File
T Template File
T] Active Template File
f Scale Bars Folder
Scale Bar
X Probe Folder
Probe
(T) Empty Recycle Bin
filled Recycle Bin

7 Job

중 Good Picture
평 Weak Picture
8 Bad Picture
\& Good Point
\(\diamond\) Weak Point
- Bad Point
- Good Scale Bar

名 Weak Scale Bar
f Bad Scale Bar
Tool Bars
A. Selection Cursor
-1- Driver Point Cursor
의- New Points Cursor
(s) SuperFind Cursor

OK OK Mode Cursor
( Global Rename Cursor


Search

V Rename Cursor
6) Global Delete Cursor
(2) Delete Cursor
t.. Up One Level

哒 Bring Project to Top
O Show/Hide Zoom Window
国 Show/Hide Data Window
(बิ) Take Picture
\(\leftarrow\) Previous Picture
\(\rightarrow\) Next Picture
M Change to M Mode
M Trigger


\section*{Keyboard Commands}

\section*{Basic Keyboard Commands}

View
Fit
Fit to X axis
Fit to \(Y\) axis
Fit to \(Z\) axis
Zoom in / out
Rotate CCW / CW
Rotate up / down
Rotate left / right
Shift up / down
Shift left / right
Translation multiplier Inc / Dec
Rotation multiplier Inc / Dec
Reset view settings
Toggle \(X\) vector
Toggle Y vector
Toggle \(Z\) vector
Toggle total vector

Residual scale Inc / Dec
Measurement scale Inc / Dec
Resect Cameras


Select camera stations and then press \(\xrightarrow{\text { ctr }} \xrightarrow{R}\)

\section*{Display}
Line width Inc / Dec
Point size Inc / Dec
Axis size Inc / Dec
Toggle point labels
Label size Inc / Dec
Label skip freq. Inc / Dec
Toggle Picture Stations
Toggle point rays
Toggle 3D data file title
Toggle tolerance bar

\section*{Object Analysis and Creation}

Plane
Line
Circle
Sphere
Measure
Flip positive normal direction
Point Distance
Average Point
Vector Point


The use of the Plane, Line, Circle and Sphere commands requires a SOLIDS software license. The use of the Measure command requires a SOLIDS or Surface software license.

\section*{Surface Analysis}

Display stroke Inc / Dec
Display resolution Inc / Dec


Enable / Disable selected surfaces
Enable all surfaces


\section*{Advanced Keyboard Commands}

Toggle orthographic / perspective
Field of view Inc / Dec
Tool Tip timeout, Inc / Dec
Undo timeout, Inc / Dec
Undo previous view modification
Crosshair size divisor, Inc / Dec


\section*{New Keys}

There are now some new hot keys that make V-STARS faster and easier.
The following keys have been added since 4.1
Enable / Disable Picture Stations
Resect Selected Picture Stations
Display stroke Inc / Dec
Display resolution Inc / Dec


\section*{Index}3D Viewer53
Additional Display Options ..... 69
Delete and Rename Points ..... 57
Entity Identification ..... 56
Fitting the view ..... 54
Introduction ..... 53
Multiple Selection ..... 56
Panning ..... 53, 55
Rotating ..... 54
Selection ..... 55
Selection Types ..... 55
Single Selection ..... 56
Using the keyboard ..... 54
Using the mouse ..... 53
Viewpoint ..... 53
Viewpoint Manipulation ..... 53
Zooming ..... 54, 55
Alignment ..... 71
Axis. ..... 71, 80
Changing Standard Deviation Fields ..... 81
File. ..... 72, 83
Introduction. ..... 71
Manual ..... 72, 84
Options ..... 79
Quick ..... 71, 81
Residuals ..... 79
Setup ..... 84
Standard ..... 72, 81
Alignment Setup ..... 181
AutoBarImport148
View ..... 62
AutoMatch ..... 23, 191
AutoMeasure
Components ..... 22
Dialog ..... 24
Flow Chart ..... 22
AutoMeasuring ..... 22
AutoRelabel. ..... 183
Average ..... 85, 192
Construction Objects ..... 116
Axis Alignment ..... 71,80, 180
Axis Size ..... 63
Basic Measurement Functions ..... 85
Average ..... 85


Zooin out
Introduction ..... 85
Vector ..... 86
Browse For Images ..... 5
Bundle ..... 29, 38
Dialog ..... 31
Overview ..... 29
Running a ..... 29
Setup ..... 38
Sub-Sampling ..... 39
Summary Dialog ..... 29
Bundle Statistics ..... 41
Bundle Automatic Scale Rejection ..... 45
Criteria Tests ..... 41
Icons ..... 42
Introduction. ..... 41
Median Test (M) ..... 41
Number Test (\#) ..... 41
Percentage Test (\%) ..... 41
Value Test (V) ..... 41
Viewing Picture Summary ..... 42
Viewing Points Summary ..... 43
Viewing Scale Summary ..... 45
Center of Rotation ..... 70
Circle ..... 91
In Plane ..... 58
Out Plane ..... 60
Clipping Planes ..... 70
Color Gradient ..... 67
Color Schemes ..... 68
Column
Changing Selected Entries ..... 81
Changing Single Entries ..... 83
Modify the Contents of an Entire Column ..... 81
Command Menu ..... 156
AutoStart ..... 157
Find ..... 158
Line ..... 158
Next String ..... 158
Resect ..... 157
SuperStart ..... 156
Target Search ..... 158
Construction Data Import ..... 194
Construction Objects ..... 114
Average ..... 116
Importing ..... 115
Introduction. ..... 114
Measurement Objects ..... 119


Search
Contents
SOLIDS ..... 118
Update ..... 195
Vector ..... 115
Continuous Trigger Delay. ..... 137
Contrast - Picture ..... 188
Control ..... 176
Marking ..... 33
Copy Points. ..... 176
Curves ..... 94
Data File
Import ..... 149
Default Camera ..... 168
Delete
Pictures ..... 170
Delete
Points ..... 57
Design Data ..... 72
Comparing to Measured ..... 74
Creating. ..... 77
Driver File with Design Points ..... 78
Importing ..... 73
Importing Data from a File ..... 77
Introduction. ..... 72
Viewing Differences Graphically ..... 75
Detail File ..... 185
Display Options. ..... 58
Distance ..... 86, 192
Driveback Pictures ..... 170
Driver
Import ..... 149
Set From Existing Data File ..... 14
Export ..... 173
3D ..... 173
AAT ..... 173
Delcam ..... 173
ECDS ..... 173
IGES ..... 173
ManCat ..... 173
Metrolog ..... 174
NC ..... 174
Text ..... 174
Text Setup ..... 174
VDA ..... 173
V-SURF ..... 173
V-SURF Setup ..... 174
XYZ ..... 174
Exposure
Setting the ..... 137


Zoom out
180
File Alignment
128
File Menu
129
Close
134
Exit ..... 130
Export Data Files
128
New Project.
128
Open Project ..... 128
Print ..... 133
Print Preview ..... 133
Print Setup ..... 134
Recent Projects ..... 134
Report ..... 132
Report Setup ..... 132
Save ..... 129
Save Image As ..... 129
Final Bundle. ..... 23
Flip Direction ..... 178
Global Delete ..... 57
Global Rename ..... 57
Graphical Field of View ..... 70
GSI32.INI
Bundle Bad Criteria ..... 51
Bundle General ..... 46
Bundle Weak Criteria ..... 49
Default Settings ..... 46
Highlight Points ..... 60
Icons. ..... 196
IGES Setup ..... 150, 173
Image Path
Default ..... 9
Manually Setting ..... 9
Picture from Disk ..... 10
Setting the ..... 9
Import ..... 172
AutoBar ..... 172
Construction ..... 172
Data File ..... 172
Driver File ..... 172
Offset ..... 172
To Design ..... 172
Import Data File ..... 14, 149
From Project Menu ..... 15
From Right Click on 3D Data Icon. ..... 16
Import Driver
From Advanced Edit ..... 13
From Project Menu ..... 12
From Right Click on Data ..... 13


Zoomt
Search
Contents

Import Driver FileImport Images9, 150
Import Probes ..... 149
Import the Images into the Project ..... 11
Importing Files ..... 9
Include All Images ..... 170
Initial Bundle ..... 23, 35
Invert Print. ..... 69
Invert Save ..... 69
Keyboard Commands ..... 200
Label
Scale ..... 65
Skip ..... 65
Line to Line ..... 97
Line Width. ..... 65
Lines ..... 90
Manual Alignment ..... 84, 181
Maximum Iterations ..... 39
Measurement Scale ..... 65
Merge 3D Files ..... 175
Minimum Rays. ..... 39
MMode Menu. ..... 155
Moved to Design ..... 176
Nearness Threshold ..... 183
New Data File ..... 171
New Project ..... 1
Offset ..... 178
Open Project ..... 4
Opening an Existing V-STARS Project ..... 4
Paste Points ..... 176
Perspective and Orthographic View ..... 70
Picture Menu ..... 159
Close ..... 160
Contrast ..... 161
Delete ..... 161
From Camera ..... 159
From Disk ..... 159
Next ..... 160
Previous ..... 160
Quit Review Mode ..... 161
Reset ..... 160
Set Label ..... 161
Picture View ..... 17
Introduction ..... 17
Picture Icons ..... 18
Picture Tools ..... 17
Pictures
Enabled ..... 169


Search
35
Plan Quality Factor
98
Plane to Line
95
Plane to Plane
88
Planes ..... 102
Offsetting101
Point Size ..... 63
Point to Object ..... 99
Project Menu ..... 135
Advanced Edit ..... 136
AutoMatch ..... 153
AutoMeasure ..... 145
Bundle ..... 142,151
Coded Target ..... 143
General Parameters ..... 137
Global Point Edit ..... 145
Import ..... 136, 148
INCA Camera ..... 142
Label Setup ..... 154
Restore ..... 147
Scale Bars ..... 144
Triangulate ..... 152
Update ..... 146
Quick Alignment ..... 71, 81, 180
Rename AutoMatch ..... 185
Rename Points ..... 57
Renumber Pictures ..... 170
Reports ..... 123
Creating ..... 125
Introduction ..... 123
Setup ..... 123
Template Files ..... 126
Rescan Image Path ..... 170
Resect Pictures ..... 170
Residual RMS ..... 31
Residual Scale ..... 65
Residuals
Quick ..... 180
Standard ..... 180
Right Click
Cameras Icon ..... 168
Created Objects ..... 177
Data Icon ..... 171
Design Points ..... 174
Graphical View. ..... 190
In Picture ..... 189
Measured Points ..... 176
Measurement objects ..... 179


Search

Multiple 3D Files
175
Picture Thumbnails ..... 188
Pictures Icon ..... 169
Points in Design ..... 176
Recycle Bin Icon ..... 188
ScaleBars Icon ..... 187
Right Click Menus ..... 168
Rotation Multiplier ..... 65
Save Epochs ..... 137
Save Images ..... 137
Scale
Applying ..... 28, 193
Scale Bars
Adding ..... 26
View ..... 62
Scaling Measurements ..... 26
Scanning Parameters
M-Mode ..... 138
S-Mode ..... 138
Select ..... 193
Close Points ..... 193
Constructed ..... 193
Design ..... 194
Highlights ..... 193
Measured ..... 194
Probe ..... 194
Probed Points ..... 193
Set Image Path ..... 5, 170
Setting the color ..... 67
SOLIDS ..... 87
Circles ..... 91
Construction Objects ..... 118
Creating Objects ..... 88
Curves ..... 94
Introduction. ..... 87
Line to Line ..... 97
Lines ..... 90
Offsetting Planes ..... 102
Plane to Line ..... 98
Plane to Plane ..... 95
Planes ..... 88
Point to Curve ..... 105
Point to Object ..... 99
Point to Object Projection ..... 103
Spheres ..... 94
Spheres ..... 94
Standard Alignment ..... \(72,81,180\)
Standard Deviation
Changing Fields81
Starting a V-STARS Project. ..... 1
Step Scale ..... 63
Strobe ..... 137
Sub-Sampling ..... 39
SuperStart ..... 23
Surfaces ..... 106
Commands ..... 108
Importing ..... 106
Introduction. ..... 106
Measurement ..... 108
Positive Direction ..... 111
Projection ..... 111
Surfaces in the Project ..... 113
Terminology. ..... 107
Target Criteria ..... 139
Target Filters ..... 139
Target Nuggets ..... 144
Template - Mark a 3D file as ..... 187
Template Project ..... 6
Creating ..... 6
Destination folder ..... 8
Introduction. ..... 6
Opening a ..... 7
Title and Window Dimensions ..... 69
Tolerance
Adjusting the Tolerance ..... 66
Tolerance Bar ..... 63
Tool Tip Enable Tool Tip ..... 63
Tools Menu ..... 166
Customize ..... 166
Total Error Propagation ..... 39
Total Vector Components ..... 60
Transform ..... 181
Translation Multiplier ..... 65
Triangulation ..... 39
Update
Cameras ..... 146, 168
Default System Configuration ..... 147
Default Window Settings ..... 147
Probes ..... 146
Scale Bars ..... 146
Update Construction Objects ..... 179
Vector ..... 86, 192
Construction Objects ..... 115
Vectors
Design Residuals ..... 58

Entity Measurements ..... 58
Entity Residuals ..... 58
View
AutoBar ..... 62
Coordinate Axis ..... 61
Design Data ..... 58
Labels ..... 62
Lighting ..... 63
Measured Data ..... 58
Normals ..... 62
Normals Selected ..... 62
Picture Stations ..... 62
Probe Data ..... 58
Rays ..... 62
Scale Bars ..... 62
Wireframe ..... 63
View Menu ..... 162
Construction Bar ..... 165
Cursors Bar ..... 19, 163
Movement Bar ..... 165
Picture Bar ..... 18, 162
Show Crosses ..... 165
Show Data Window ..... 165
Show Labels ..... 165
Show Objects ..... 165
Show Scan Points ..... 165
Show Zoom Window ..... 165
Status Bar ..... 21, 164
View Bar ..... 21, 164
View Setup ..... 58
Display Colors ..... 69
General. ..... 58
General (cont.) ..... 61
Tolerances ..... 66
WinTrans ..... 183
XYZ Vector Components ..... 60
Zipping a Project ..... 167```

