

Carondelet Division

8600 Commercial Blvd. • Pevely, MO 63070 USA Phone: 636-475-2199 • Fax: 636-479-3399 E-Mail: Charles,Ruud@MetalTek.com

1671

Corrective Action
Carondelet Division
Corrective Action Type NCR
Date 4-10-06 Revised **5-5-06**CA Originator C. Ruud
Applies to: A-6 Coil

Description of Defect / Non-Conformance

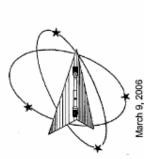
Test bar from zone 1 failed elongation at -320 F. Result was 20% versus a minimum of 32%. The original set of three bars, Z-1, Z-2 and Z-3 were sent for testing. Z-1 failed for elongation, 26% vs 32% minimum and Z-3 failed for elongation 19% vs 32% minimum. All other results were acceptable. Retests were ordered. The second results were similar. Z-1 failed for elongation, 25% vs 32% minimum and Z-3 failed for elongation 13% vs 32% minimum, but broke outside the gauge length. The third set of bars was tested. Z-3 passed and Z-1 failed for elongation, 20% vs 32% minimum, but broke outside the gauge length. All other test results were acceptable. See attached test reports. A fourth set of 3 test bars were tested. All results were acceptable. See last report. Please note that the identification of these bars was not readable, but it is believed that they came from zones 1, 2 and 3. **Failed test bars indicated flaws attributed to the failure.**

Root Cause

See attached report, with attachments.

Corrective Action

Use A-6 as is.


Actual Completion Date

Completed 4/20/06.

Signed: C. Ruud

CC: B. Craig, J. Edwards, E.J. Kubick, J. Markham, J. Galaske

Chlund

Westmoreland Mechanical Testing & Research, Inc. P.O. Box 388

Westmoreland Drive

Youngstown, Pa. 15696-0388 U.S.A.

£ax: 724-537-3151 Telephone: 724-537-3131

WMTerR is a technical leader in the material testing industry. Website: www.wmtr.com

521-01 & 621-02

Section 1 of 1

WMT&R Report No. 6-23847 P.O. No. 19386

Requisition No. 7580

CERTIFICATION

Jim Galaske Attention:

Pevely, MO 63070-1528

I-55 Industrial Park

The Carondelet Division

MetalTek International

8600 Commercial Blvd.

All processes, performed upon the material as received, were conducted at WMT&R, Inc. in accordance with the WMT&R Quality Assurance Manual, Rev. 9, dated 4/1/2000. Subject:

The following tests were performed on this order: TENSILE

TENSILE RESULTS: ASTM E21-05

Requirements: UTS ksi (Min 95\Max ---) 0.2% YS ksi (Min 72\Max ---) 4D Elong. % (Min 32\Max ---) Modulus Msi (Min 21\Max ---)

SOAK TIME: 5 Minutes

SPEED OF TESTING: 0.003 in./in./min., 0.05 in./min./in.

MATERIAL: 316 S/S

DISPOSITION: Acceptable

AVUR		4
Machine /	Number	6W
Orig. Area	(sd. in.)	0.09610135
4D Final	GL (in.)	2.25
4D Orig 4D Final	GL (in.)	1.40
Final	Dia. (in.)	0.2698
Orig	Dia. (in.)	0.3498
0.2% YLD.	ğ	9616
Ult. Load	þ	15730
Modulus	Msi	28.0
RA	%	41
Elong	%	61
0.2% YS	ksi	1001
UTS	ksi	163.7
Temp.	Ļ	-320
TestLog	Number	D18313
Specimen		Z2
8	ģ	A6

ANJAR: A=ACCEPTABLE, U=UNACCEPTABLE, R=REPORT

DISPOSITION: Unacceptable

TENSILE RESULTS: ASTM E21-05

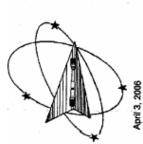
Requirements: UTS ksi (Min 95/Max ---) 0.2% YS ksi (Min 72/Max ---) 4D Elong. % (Min 32/Max ---) Modulus Msi (Min 21/Max ---)

SOAK TIME: 5 Minutes

SPEED OF TESTING: 0.003 in./in./min., 0.05 in./min./in.

MATERIAL: 316 S/S

Final 4D Orlo 4D Final Orio. Area Machine AVUNR TITS 10.2% VS Flond RA Modulus Ult. Load 0.2% YLD. Orig. Coll Specimen Teeff on Temp


_	_	_	_
		n	n
	Number	- 6W	M9
5	(sq. in.)	0.09604641	0.09610135
9	GL (in.)	1.76	1.67
2	GL (in.)	1.40	1.40
	Dia. (in.)	0.2929	0.2959
ė	Dia. (in.)	0.3497	0.3498
Oil Lodd Oil o	Ιρέ	10480	10690
Oil Load	þ	15470	15140
en innounce	Msl	29.7	30.9
5	%	30	28
200	%	56	19
0.2.70 LOUGH	ksi	108.9	111.2
5	ksi	161.1	157.5
emp.	Ļ	-320	-320
esirod	Number	D18312	D18314
specimen		Z1	Z3
3	ė	A6	A6

AIUR: A=ACCEPTABLE, U=UNACCEPTABLE, R=REPORT

KAKWANALY OR WILLPULY FALSFYING OR CONCEALING A MATERIAL PACT ON THE FORM ON MANINO PALE, POTITIONS ON PRINCIAL BIT EXAMINENTS OR REPRESENTATIONS INTERNAL COLLEGIOUS CONTINUES ON THE PRINCIAL COLLEGIONS. THE SECOND SEC

Testing Specialists for Aerospace, Automotive, and Material Testing Fields Locations in Youngstown, PA U.S.A. - Tel. (724) 537-3131 and

Technical Services Manager/

Westmoreland Mechanical Testing & Research, Inc.

Westmoreland Drive

Youngstown, Pa. 15696-0388 U.S.A.

Telephone: 724-537-3131

Jax: 724-537-3151

WMT&R is a technical leader in the material testing industry. Website: www.umtr.com

621-01 & 621-02

WMT&R Report No. 6-25662 P.O. No. 19385 Section 1 of 1

Requisition No. 7580

CERTIFICATION

Pevely, MO 63070-1528 The Carondelet Division 8600 Commercial Blvd. Metal Tek International 1-55 Industrial Park

Jim Galaske Attention: All processes, performed upon the material as received, were conducted at WMT&R, Inc. in accordance with the WMT&R Quality Assurance Manual, Rev. 9, dated 4/1/2000. Subject:

The following tests were performed on this order: TENSILE

TENSILE RESULTS: ASTM E21-05

Requirements: UTS ksi (Min 95Max —) 0.2% YS ksi (Min 72!Max —) 4D Elong. % (Min 32!Max —) Modulus Msi (Min 21!Max —)

SOAK TIME: 5 Minutes

SPEED OF TESTING: 0.003 in./in./inin, 0.05 in./min./in.

MATERIAL: Metaltek CFBMNMnMOD

8

AB S

DISPOSITION: Acceptable Orig. Area Machine AVU/R Number (sq. in.) Final 4D Orig 4D Final Dia. (in.) Dia. (in.) GL (in.) GL (in.) ö 0.2% YS | Elong | RA | Modulus | Ult. Load | 0.2% YLD. ā . 18120 ě Ms 44 -- 25:3 28 * 99.6 Š 168.2 STO KS. Specimen TestLog Temp. Divario Samo ۴ Number 22

TENSILE RESULTS: ASTM E21-05

Requirements: UTS ks! (Min 95Wax —) 0.2% YS ks! (Min 72\Max —) 4D Elong. % (Min 32\Max —) Modulus Ms! (Min 21\Max —)

AWUR: A=ACCEPTABLE, U=UNACCEPTABLE, R=REPORT

0.09698250

2.2

9

0.35:4 0.2622

2877

SOAK TIME: 5 Minutes

SPEED OF TESTING: 0.003 in./in./min., 0.05 in./min./in.

MATERIAL: Metaltek CF8MNMnMOD

වි	Specimen	Tooll on	Tomo	oHi	0000	i										DISPOSITION: Unaccept	JN: Unacc	eptable
		Source.	-	2	0.7%	Buoli	5	Modulus	Codes	Codes Ult. Load 0.29	0.2% YLD.	Orio	Edil	4D Orio AD Charl	AD Charl	200		
Ž		Number	ů	10.7	less.	ì		:						5	100	Cig-Area	Machine	ASS
			-	2	2	e	ķ	SW		į	ž	Colo Go	Die fan Die da 1 Con de 1	-	1			
Q.V	ř	2000	0000									9	Sign (iii.)	9	<u>=</u>	800	.) Number	
2	ī	200	255	166.1	108.1	25	200	27.R		4000	40.470							
						2	3	0.72	!	200	2450	0.3508	0.3024	140	176	00000000	444	:
AB	2	D30720	320	420.7	4000	;	3	1						- 1	2	0.08000100	Ž	>
	-	2	200	1.63.	7.00	2	6	27.9	٥	12540	10170	9250	0.0460	47.7	54,			
												2	2	-	2	- CONTRACTOR	9	

Requirements provided by MetalTek International

D - Ruptured outside middle half of gage length.

COMMEND FALL FORTIONS OF PALACALISM TRAININGS ON REP BEREIN CALL CONTINUES AND SHARE A

Testing Specialists for Revospace, Automotive, and Material Testing Fields Locations in Youngstown, P.A. U.S.A. - Tel. (724) 537-3131 and

Banbury U.K. ~ Tel. +44 (0) 1295 261211

April 3, 2006

Technical Services Manag

4:3-06

ANUR: A=ACCEPTABLE, U=UNACCEPTABLE, R=REPORT

Westmoreland Mechanical Testing & Research, Inc.

Westmoreland Drive

Youngstown, Pa. 15696-0388 U.S.A.

fax; 724-537-3151 Telephone: 724-537-3131

WMTerR is a technical leader in the material testing industry. Website: www.wmtr.com

321-01 & 621-02

Section 1 of 1

WMT&R Report No. 6-26780 Requisition No. 7580 P.O. No. 19386

CERTIFICATION

April 10, 2006

Pevely, MO 63070-1528 The Carondelet Division 8600 Commercial Blwd. MetalTek International I-55 Industrial Park

Jim Galaske Attention:

All processes, performed upon the material as received, were conducted at WMT&R, Inc. in accordance with the WMT&R Quality Assurance Manual, Rev. 9, dated 4/1/2000. Subject:

The following tests were performed on this order. TENSILE

TENSILE RESULTS: ASTM E21-05

Requirements: UTS ksi (Min 95\Max ---) 0.2% YS ksi (Min 72\Max ---) 4D Elong. % (Min 32\Max ---) Modulus Msi (Min 21\Max ---)

SOAK TIME: 5 Minutes

SPEED OF TESTING: 0.003 in./in./min., 0.05 in./min./in.

MATERIAL: Metaitek CF8MNMnMOD

Orig. Area Machine ANUR ŝ 2.02 0.09659650 0.09692731 (sq. ln.) 4D Orig 4D Final Dia. (in.) GL (in.) GL (in.) 98 1.40 9, 0,3513 0,2923 0.3507 0.2686 Final Dia. (in.) ğ UII. Load 0.2% YLD. 9774 9049 ₫ 15540 16070 ğ Modulus 25.5 28.6 Msi 44 41 0.2% YS Elong RA 2 * 38 100.8 93.7 ks 160.9 165.8 213 89 Coil Specimen TestLog Temp. D38884 -320 D38883 -320 ۴ Number

AUJR: A=ACCEPTABLE, U=UNACCEPTABLE, R=REPORT

DISPOSITION: Acceptable

DISPOSITION: Unacceptable

TENSILE RESULTS: ASTM E21-05

ន Ñ

A6

Αß ġ

Requirements: UTS ksi (Min 95)Max —) 0.2% YS ksi (Min 72)Max ---) 4D Elong. % (Min 32)Max ---) Modulus Msi (Min 21)Max ---)

SOAK TIME: 5 Minutes

SPEED OF TESTING: 0.003 in Jin Jimin., 0.05 in Jimin Jin.

MATERIAL: Metaltek CF8MNMnMOD

	MATERIAL	Metaltek	CFBMNN	INMOD											Ī	-		000
							i	44.4	9	Pool all	Order 111 Load D 28, VI D. Orio.	Orio	Final	4D Orla	40 Final	Final 4D Orig 4D Final Orig. Area Machine AVUVR	Machine	202
0	-	Total	Town	35	0.2% YS		Ş	Florid IKA Modulus	3	500		è				,		
3	Specimen	Source !		,		•						Tall Also V	(u) (2) (u) (2) (u) (u) (u) (u) (u)	2	2	(eq. pa)	Number	_
		-	:	ied	ķei	¥	ž	% Wa		b	ō	Ē	5	0-1	200	(m. (b.a)		
2		Number	_	200	2	è	è				l					A SOUTHWARE OF	97	=
					1	5	00	000	c	13030	0026	0.3510	0.3510 0.3084	94.	99.	0.050/050/0	MB	
4	**	200000	2000	134 7	100.2	3	Ş	23 25	2	2								
2	7	70000	2				1						AVI NO.	AN NO. A-ACCEDIANTE		- INACCEPT	CCEPTABLE REREPORT	EPOK

Requirements provided by MetalTek International

D - Ruptured outside middle half of gage fength.

RECENTED YOU WAS THEN THE THE OFFICE AND A MATERIAL RACE OF THE FORM OF MANDED THE THE OFFICE OF THE FORMAL OF A STREET OF A MANDED THE OFFICE OF A STREET OF A MANDED THE OFFICE OFFICE

Testing Specialists for Aerospace, Automotive, and Material Testing Fields Locations in Youngstown, PA U.S.A. - Tel. (724) 537-3131 and Banbury V.K. - Tel. +44 (0) 1295 261211

Roy E. StarrWalt Wolfing Technical Services Managen ensite Supervisor

7000

Addendum to CA 1671
Effect of Solidification Microstructure on Tensile Properties of Stellaloy
J. Edwards and C. Ruud, MetalTek International

Overview

The development of "Stellaloy" by MetalTek International commenced in 2003 with the modification of the base 316 material primarily for magnetic permeability requirements. Initial results demonstrated that this material is extremely robust mechanically at both ambient and cryogenic temperature ranges. Tensile properties gathered from integrally cast test specimens poured with the modules have shown variability. While most have far exceeded the specification minima, outliers have shown to demonstrate reduced elongation.

Background

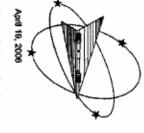
Initial tests on the C5 casting showed that the elongation was lower in test bars associated with Zone1 than in other areas of the casting. Repeat tests showed the same result (Table I). Based on this result, the microstructure of the test specimen was examined and characterized compared to other test bars integral to the same modular coil casting. Results are shown in figures Lab report 05M1167, Figures 1, 2 and 3.

Similarly, testing of the A6 casting has shown a lower elongation in the test specimens associated with Zone 1. Testing was repeated in specimens from the same zone with reproducible results (25-26% elongation at 77K), although one test demonstrated a 20% elongation with breakage outside the gauge. Results of this test are shown in Table II and associated microstructures in Figures contained in WMTR#6-26780.

The tensile test variation seems to demonstrate correlation to microstructure with finer grains and heavily dendritic structures showing lower elongation. Other properties are generally well above specification for both samples.

The attached test specimens from the production coils are machined to a 0.350" diameter ("sub size" or SS) bar. The strain rate on the production components is 0.003 in/in/min to yield and 0.05 in/min/in to fracture.

Analysis


The test specimens are attached to metal feeders ("risers") in the modular coil casting mold. The attachment of these test specimens is largely determined by convenience due to accessibility of the feeder and orientation to a natural interface between mold components (cope, drag, and cores). Metal is introduced into the mold through a series of ceramic tubes from any of 3 ladles and mixes naturally upon entry into the mold cavity. Attached test specimens are filled by the molten metal at different temperatures and at different elapsed time from mold filling onset. The combination of elapsed time and geometric location of the attached specimens results in a range of solidification structures based on the superheat of the metal entering the specimen as well as the rate of heat extraction from the metal through the sand wall due to mold temperature surrounding the specimen (Table III). In general, cooler metal temperatures favor multiple nucleation sites while cooler mold temperatures promote nucleation at an accelerated rate on the mold

surface. Hotter metal temperatures result in fewer nucleation sites and more growth of individual grains during solidification.

Results

- 1. The properties measured from attached test specimens vary; however, exceed the specification minima in most cases.
- 2. Isolated test bars have shown depressed elongation values of approximately 25-29%. Microstructural analysis of these test bars demonstrate that the microstructure is generally fine grained and may or may not contain heavily dendritic structure.
- 3. Test bar structure is the result of solidification physics of the test material and not associated with physical differences of Zone location.
- 4. Stellaloy continues to test well across a variety of microstructures at both 77K and RT.

Table III	High Metal Temperature	Low Metal Temperature
High Mold Temperature	Little incentive for	Multiple nucleation sites
	nucleation and low	within material, but little
	thermal gradients.	thermal gradient to mold.
	Large columnar grains.	Creates finely dispersed
		equiaxed structure within
		metal with little
		correlation to mold wall.
Low Mold Temperature	Strong dendritic structure	Multiple nucleation sites
	with multiple mold	with primary sites on
	surface nucleation sites.	mold walls.
	Relatively "fine"	Intraspecimen nucleation
	appearance of closely	as solidification
	spaced dendrites.	progresses. Broken
		dendritic with equiaxed.

Westmoreland Mechanical Testing & Research, Inc. Westmoreland Drive

Telephone: 724-537-3131 Youngstown, Pa. 15696-0388 U.S.A. Fax: 724-537-3151

WMTerR is a technical leader in the material testing industry. Website: www.wmtr.com

CERTIFICATION

WMT&R Report No. 8-27410 P.O. No. 19386 Requisition No. 7580

Section 1 of 1

621-01 & 621-02

The Carondelet Division Pevely, MO 63070-1528 1-55 Industrial Park 8600 Commercial Blvd. MetalTek International

Attention: Jim Galaske

Subject: The following tests were performed on this order: MICRO and TENSILE All processes, performed upon the material as received, were conducted at WMT&R, Inc. in accordance with the WMT&R Quality Assurance Manual, Rev. 9, dated 4/1/2000.

TENSILE RESULTS: ASTM E21-05

SPEED OF TESTING: 0.003 in./in./min., 0.05 in./min./in

Requirements: UTS kai (Min 95Max --) 0.2% YS kai (Min 72Max --) 4D Elong. % (Min 32Max --) Modulus Hai (Min 21Max --)

SOAK TIME: 5 Minutes

MATERIAL: Metaltek CF8MNMnMOD

DISPOSITION: Acceptable

	ACCEPTABLE B-BEDOOT	- HACCORD	AND A-ACCEPTABLE LI-LIN	2000	A 100												
>	W9	0.09659650	2.12	1.40	0.2620	0.3507	11220	18300	31.7	44	51 44	116.2	189.4	-320	D43607	Z3	A6
>	M9	0.09681698	2.15	1,40	0.1585	0.3511	9394	16180	24.8	98	2	97.0	167.1	-320	D43606	22	Ą
>	M9	0.09654142	2.30	1.40	0.2082	0.3506	9252	16150	25.8	65	2	95.8	167.3	-320	D43605	Z1	Ą
	Number	(sq. ln.)	GL (ln.)	GL (in.) GL (in.)	Dia. (in.)	Dia. (in.)	σŕ	룍	<u>×</u>	%	×	KSi.	S.	Ť	Number		Š
AUR	Machine AVUR	Orig. Area	4D Orig 4D Final	4D Orig	final	Origi	0.2% YLD.	0.2% YS Elong RA Modulus Ult. Load	Modulus	Ŗ	Elong	0.2% YS	SID	Temp.	TestLog	Specimen	δ
-	The second secon																

AWR: A=ACCEPTABLE, U=UNACCEPTABLE, R=REPORT

Requirements provided by MetalTek International

Testing Specialists for Aerospace, Automotive, and Material Testing Fields

Roy E. StarrMat Technical Services Managed

Locations in Youngstown, P.A. U.S.A. - Tel. (124) 537-3131 and

Banbury V.K. - Tel. +44 (0) 1295 261211

4-19-06 April 19, 2006

engile Supervisor